The Equatorial Ekman Layer

Andrew Soward \dagger, Florence Marcotte $\ddagger \S$, Emmanuel Dormy $\ddagger \S$
\dagger School of
Mathematics and Statistics
Newcastle 5 University

GdR Dynamo
International Centre for Theoretical Sciences, Bangalore 8-12 June 2015

Outline

(1) Introduction

- b.l.'s
- Objectives
(2) Problem
(3) Series Sol.
(4) Top b.c.
(5) Num. meth.
(6) Num. results
(7) Free solutions

1. INTRODUCTION

Relative to a frame rotating with angular velocity $\Omega=\Omega \widehat{\mathbf{z}}$, we are interested in the slow steady flow of an incompressible fluid, viscocity ν, in the shell between two spheres.
The inner sphere, radius L, is at rest; the outer sphere rotates with angular velocity $\varepsilon \boldsymbol{\Omega} ; \varepsilon \ll 1$.

Our geometry differs slightly from Stewartson (1966):

$$
r_{j}^{s}=L
$$

Relative to his frame rotating with angular velocity

$$
\Omega^{s}=(1+\varepsilon) \Omega
$$

his outer sphere is at rest, while his inner sphere rotates with angular velocity

$$
\omega_{j}^{\mathrm{s}}=\Omega-\Omega^{\mathrm{s}}=-\varepsilon \Omega
$$

Stewartson's (1966) configuration, $r_{j}^{s}=L$, relative to a rotating $\Omega(1+\varepsilon)$ frame with $\omega_{j}^{s}=-\varepsilon \Omega$

Proudman solution (1956): Geostrophic flow and Ekman layers

The flow in the small Ekman number limit,

$$
E=\nu / L^{2} \Omega \ll 1
$$

is characterised by mainstream geostrophic flow (azimuthal and z-independent) and boundary layer structures:

- The Ekman layers on the spheres width $(\nu / \Omega)^{1 / 2}=L E^{1 / 2}$, which largely control the mainstream flow.
- Outside the inner sphere tangent cylinder the fluid co-rotates with the outer sphere.
- Inside it rotates at an intermediate angular velocity which tends to rest as the tangent cylinder is approached.

The Proudman (1956) solution
(a) Geostrophic velocity $\omega_{\mathrm{c}}^{\mathrm{s} ;}$ (b) Streamlines $\chi^{s}=$ const.

(a)

Quasi-geostrophic flow with radial friction

The discontinuity is smoothed out across nested shear layers on the tangent cylinder.

In units of L, Stewartson (1966) identified the "outer" layers

- an $E^{1 / 4}$-layer outside the tangent cylinder in which the flow continues to be geostrophic.
Geostrophic degeneracy is resolved by Ekman suction and internal lateral friction;
- an $E^{2 / 7}$ inside the tangent cylinder with similar features.

The different width arises because of the singularity of the Ekman layer as the equator is approached.

Quasi-geostrophic layers

(a) Geostrophic velocity $\omega_{\mathrm{c}}^{\mathrm{s}}$;
(b) Streamlines $\chi^{5}=$ const.

(a)

The "inner" $E^{1 / 3}$ shear layer
The "outer" $E^{1 / 4}$ and $E^{2 / 7}$-layers embed an "inner" $E^{1 / 3}$-layer, which ceases to be geostrophic, as the shear is dependent on the axial co-ordinate z^{\dagger}.

A primary source for this layer is the inner core equator. It thickens proportional to $\left(E z^{\dagger}\right)^{1 / 3}$, while the Ekman layer thins proportional to $\left(E / z^{\dagger}\right)^{1 / 2}$. They are equal when

$$
\delta=\left(E z^{\dagger}\right)^{1 / 3}=\left(E / z^{\dagger}\right)^{1 / 2}
$$

i.e.,

$$
z^{\dagger}=E^{1 / 5}, \quad \delta=E^{2 / 5}
$$

which define the dimensions of the
$E^{2 / 5}$ Equatorial Ekman Layer

$E^{2 / 5}$ Equatorial Ekman Layer

$\left(E z^{\dagger}\right)^{1 / 3}$ shear layer;
 $\left(E / z^{\dagger}\right)^{1 / 2}$ Ekman layer

Objectives

- We investigate the solution of Stewartson's (1966) reduced equations and boundary conditions (scaled independent of E) on an unbounded domain governing motion in the $E^{2 / 5}$ Equatorial Ekman Layer.
- In the absence of a far boundary, we find that, without some ingenuity, the numerical solution is dependant on the finite numerical box size! Our resolution is a "soft" boundary at finite z^{\dagger}, where we apply a non-local (integral) b.c..
- For large z^{\dagger}, we extend Stewartson's (1966) $E^{1 / 3}$ shear layer similarity solution valid near the equator to higher orders using matched asymptotic expansions. That analytic extension is in excellent agreement with the numerics.

Equatorial Ekman Layer: Meridional streamfunction

Outline

(1) Introduction

(2) Problem

- Geometry
- Gov. equ.
- B.C.'s
- Stewartson-layer
(3) Series Sol.

4 Top b.c.
(5) Num. meth
(6) Num. results

2. MATHEMATICAL FORMULATION University

Geometry

Relative to local Equatorial Ekman layer Cartesian coordinates x^{\dagger} (radial), "dummy $y^{\dagger "}$ (azimuthal), z^{\dagger} (axial) scaled as

$$
x^{\dagger}=E^{2 / 5} L x \quad \text { (radial) } \quad z^{\dagger}=E^{1 / 5} L z \quad \text { (axial) },
$$

our inner sphere is the severely flattened oblate spheroid

$$
E^{2 / 5}\left(x+E^{-2 / 5}\right)^{2}+z^{2}=E^{-2 / 5}
$$

which for $(x, z)=\mathrm{O}(1)(E \rightarrow 0)$ determines

$$
2 x+z^{2}=0
$$

Governing equations

Our unit of angular velocity $\Delta \Omega$ is not $\varepsilon \Omega$ but $C E^{1 / 28} \varepsilon \Omega$ (constant C of order unity; Stewartson 1966).

- The azimuthal and axial velocities are

$$
u_{y}^{\dagger},=(L \Delta \Omega) v(x, z), \quad u_{z}^{\dagger}=(L \Delta \Omega) w(x, z)
$$

the radial velocity and the meridional flow streamfunction are

$$
\begin{array}{rlr}
u_{x}^{\dagger}=E^{1 / 5}(L \Delta \Omega) u, & \psi^{\dagger}=E^{2 / 5}\left(L^{2} \Delta \Omega\right) \psi \\
\text { where } \quad u=-\partial \psi / \partial z, & w=\partial \psi / \partial x
\end{array}
$$

- Then the governing equations are

$$
\begin{aligned}
2 \frac{\partial v}{\partial z} & =\frac{\partial^{4} \psi}{\partial x^{4}} \\
2 \frac{\partial \psi}{\partial z} & =-\frac{\partial^{2} v}{\partial x^{2}}
\end{aligned}
$$

azimuthal vorticity
azimuthal velocity

Boundary conditions

We adopt the frame with the fluid at rest far from the sphere.

- More precisely the boundary conditions are
$\partial v / \partial z=0, \quad \psi=0 \quad$ on $\quad z=0, \quad x>0$,
$v=1, \quad w=0, \quad \psi=0 \quad$ on $\quad z=\sqrt{-2 x}, \quad x<0$,
$v \rightarrow 0, \quad \psi \rightarrow 0 \quad$ as $\quad x \uparrow \infty$,
As $z \uparrow \infty$ an Ekman layer forms on the sphere boundary $x=-\frac{1}{2} z^{2}$ of width $\mathrm{O}\left(z^{-1}\right)$, in which

$$
v_{0}^{b}=\mathrm{e}^{-\zeta} \cos \zeta, \quad w_{0}^{b}=-\mathrm{e}^{-\zeta} \sin \zeta ;
$$

Ekman layer coordinate $\zeta=z^{1 / 2}\left(x+\frac{1}{2} z^{2}\right) \Longrightarrow$ top b.c.

$$
v \sim v_{0}^{b l}(\zeta), \quad w \sim w_{0}^{b l}(\zeta), \quad \psi \rightarrow 0 \quad \text { for } \quad \zeta>0
$$

Stewartson $E^{1 / 3}$-layer solution for $z \uparrow \infty$

- The Mainstream region is the entire region outside the Ekman boundary layer:

$$
z^{-1 / 2} \zeta=x+\frac{1}{2} z^{2} \gg z^{-1 / 2}
$$

- Stewartson's (1966) Mainstream similarity solution
$v=V_{0}(\Phi, z), \quad \psi=\Psi_{0}(\Phi, z), \quad w=W_{0}(\Phi, z), \quad \Phi=x / z^{1 / 3} ;$
for the shear layer of width $\mathrm{O}\left(z^{1 / 3}\right)$, which forms in its interior on the tangent cylinder $x=0$, is

$$
\begin{aligned}
& V_{0}(\Phi, z)=\frac{2^{-1 / 4} z^{-5 / 12}}{\Gamma(1 / 4)} \int_{0}^{\infty} \varpi^{1 / 4} \cos \left(\varpi \Phi+\frac{3}{8} \pi\right) \exp \left(-\frac{1}{2} \varpi^{3}\right) \mathrm{d} \varpi \\
& \Psi_{0}(\Phi, z)=-\frac{2^{-1 / 4} z^{-1 / 12}}{\Gamma(1 / 4)} \int_{0}^{\infty} \varpi^{-3 / 4} \cos \left(\varpi \Phi+\frac{3}{8} \pi\right) \exp \left(-\frac{1}{2} \varpi^{3}\right) \mathrm{d} \varpi \\
& W_{0}(\Phi, z)=\frac{2^{-1 / 4} z^{-5 / 12}}{\Gamma(1 / 4)} \int_{0}^{\infty} \varpi^{1 / 4} \sin \left(\varpi \Phi+\frac{3}{8} \pi\right) \exp \left(-\frac{1}{2} \varpi^{3}\right) \mathrm{d} \varpi
\end{aligned}
$$

Properties and limitations

- The simplicity of the Stewartson $z \uparrow \infty$ solution hides his leading order mainstream assumption $\quad v=0$.
- The Ekman layer jump to $v=1$ at the sphere boundary drives the Ekman layer suction

$$
\psi \sim-\frac{1}{2}(-2 x)^{-1 / 4} \quad \text { on } \quad x=-\frac{1}{2} z^{2}
$$

\Uparrow

$$
\Psi_{0} \sim-\frac{1}{2} z^{-1 / 12}(-2 \Phi)^{-1 / 4} \quad \text { on } \quad \Phi=-\frac{1}{2} z^{5 / 6}
$$

providing the crucial b.c. on his lowest order solution.

- Here $z^{-1 / 12}$ sets the power law in the similarity solution satisfying the b.c. $2 z^{1 / 12} \Psi_{0} \sim-(-2 \Phi)^{-1 / 4} \quad$ as $\quad \Phi \downarrow-\infty$.
- While $\psi=0$ on $x>0, z=0$ implies the b.c. $\quad 2 z^{1 / 12} \Psi_{0}=\mathrm{o}\left(\Phi^{-1 / 4}\right) \quad$ as $\quad \Phi \uparrow \infty$.
- The corresponding similarity form $z^{5 / 12} V_{0}=$ function of Φ, is largely slave to $z^{1 / 12} \Psi_{0}$.
- Indeed Stewartson's solution determines

$$
\begin{aligned}
& V_{0} \approx \begin{cases}\frac{1}{4} z^{-5 / 12}(-2 \Phi)^{-5 / 4} & (\Phi \downarrow-\infty) \\
-2^{-3 / 2} z^{-5 / 12}(2 \Phi)^{-5 / 4} & (\Phi \uparrow \infty)\end{cases} \\
& \Downarrow \\
& v \approx \begin{cases}\frac{1}{4}(-2 x)^{-5 / 4} & (x<0, z=0) \\
-2^{-3 / 2}(2 x)^{-5 / 4} & (x>0, z=0)\end{cases}
\end{aligned}
$$

- The symmetry condition $\partial v / \partial z=0$ on $x>0, z=0$ is met.
- Importantly the value

$$
v \approx \frac{1}{4} z^{-5 / 2}
$$

at the edge of the sphere Ekman layer $-2 x=z^{2}$ does not meet the assumed $v=0$.

Outline

(1) Introduction

(2) Problem
(3) Series Sol.

- Shear layer
- Ekman layer

(5) Num. meth

(6) Num. results
(7) Free solutions

3. SERIES SOLUTION

- Shear layer solution $\Phi=x / z^{1 / 3}=O(1)$:

$$
\left[\begin{array}{c}
V \\
W \\
z^{-1 / 3} \Psi
\end{array}\right] \sim z^{-5 / 12}\left[\begin{array}{c}
\widehat{V}_{0} \\
\widehat{W}_{0} \\
\widehat{\Psi}_{0}
\end{array}\right](\Phi)+z^{-5 / 6}\left[\begin{array}{c}
\widehat{V}_{1} \\
\widehat{W}_{1} \\
\widehat{\Psi}_{1}
\end{array}\right](\Phi)+z^{-5 / 4}\left[\begin{array}{c}
\widehat{V}_{2} \\
\widehat{W}_{2} \\
\widehat{\Psi}_{2}
\end{array}\right](\Phi)+\cdots
$$

- Ekman layer solution $\zeta=z^{1 / 2}\left(x+\frac{1}{2} z^{2}\right)=\mathrm{O}(1)$:
$\left[\begin{array}{c}v \\ w \\ z^{1 / 2} \psi\end{array}\right] \sim\left[\begin{array}{c}v_{0} \\ w_{0} \\ \psi_{0}\end{array}\right](\zeta)+z^{-5 / 2}\left[\begin{array}{l}v_{1} \\ w_{1} \\ \psi_{1}\end{array}\right](\zeta)+z^{-5}\left[\begin{array}{c}v_{2} \\ w_{2} \\ \psi_{2}\end{array}\right](\zeta)+\cdots$.
which splits into shear layer ${ }^{s /}$ (mainstream) and Ekman (boundary) layer ${ }^{b l}$ parts, e.g., $\quad v=v^{b l}+v^{s l}$.
- The complete solution is provided by the composite

$$
v=V+v^{b l}, \quad w=W+w^{b l}, \quad \psi=\Psi+\psi^{b l}
$$

Shear layer solutions

- Set

$$
\widehat{V}_{n}+\mathrm{i} \widehat{W}_{n}=\mathrm{Y}_{n}^{\prime}(\Phi)
$$

where Y_{n} solves

$$
\mathrm{Y}_{n}^{\prime \prime \prime}+\frac{2}{3} \mathrm{i}\left[\Phi \mathrm{Y}_{n}^{\prime}+\frac{1}{4}(5 n+1) \mathrm{Y}_{n}\right]=0
$$

- The solutions, bounded as $|\Phi| \rightarrow \infty$, are
$\mathrm{Y}_{n}(\Phi)=\mathrm{A}_{n} \exp [-\mathrm{i}(5 n+1) \pi / 8] \int_{0}^{\infty} \varpi^{(5 n-3) / 4} \exp \left(\mathrm{i} \varpi \Phi-\frac{1}{2} \varpi^{3}\right) \mathrm{d} \varpi$ where $\operatorname{Im}\left\{\mathrm{A}_{n}\right\}=0$ to meet
- the symmetry condition $w=0$ on $z=0, x>0$

$$
\Longrightarrow \quad \operatorname{lm}\left\{\mathrm{Y}_{n}\right\}=\mathrm{o}\left(\Phi^{-(5 n+1) / 4}\right) \quad \text { as } \quad \Phi \uparrow \infty
$$

- The real constants A_{n} are fixed by matching with the Ekman layer solution.

Ekman layer solutions

- Set

$$
\begin{gathered}
v_{n}-\mathrm{i} w_{n}=\mathcal{W}_{n}(\zeta) \\
\psi_{n}=\int_{0}^{\zeta} w_{n} \mathrm{~d} \zeta=-\int_{0}^{\zeta} \operatorname{Im}\left\{\mathcal{W}_{n}\right\} \mathrm{d} \zeta
\end{gathered}
$$

where \mathcal{W}_{n} solves

$$
\mathcal{W}_{n}^{\prime \prime \prime}+2 \mathrm{i} \mathcal{W}_{n}^{\prime}= \begin{cases}0 & (n=0), \\ -\mathrm{i}\left[\zeta \mathcal{W}_{n-1}^{\prime}-5(n-1) \mathcal{W}_{n-1}\right] & (n \geq 1)\end{cases}
$$

subject to the boundary condition

$$
\mathcal{W}_{n}= \begin{cases}1 & (n=0) \\ 0 & (n \geq 1)\end{cases}
$$

and matching conditions as $\zeta \uparrow \infty$.
The $0^{\text {th }}$-order solution:

$$
\mathcal{W}_{0}=E(\zeta) \equiv \exp [-(1-\mathrm{i}) \zeta] .
$$

The $1^{\text {st }}$-order solution

$$
\mathcal{W}_{1}(\zeta)=\frac{1}{4}\left\{(1+\mathrm{i} \alpha)-\left[(1+\mathrm{i} \alpha)+\frac{3}{2} \zeta+\frac{1}{2}(1-\mathrm{i}) \zeta^{2}\right] E(\zeta)\right\}
$$

- Here we have fixed the real part of the constant $1+\mathrm{i} \alpha$ of integration to meet the matching condition

$$
v_{1}=\operatorname{Re}\left\{\mathcal{W}_{1}\right\} \rightarrow \frac{1}{4} \quad \text { as } \quad \zeta \uparrow \infty
$$

- Also

$$
\psi_{1}=-\int_{0}^{\zeta} \operatorname{Im}\left\{\mathcal{W}_{1}\right\} \mathrm{d} \zeta
$$

$$
\sim \frac{1}{4}\left[\frac{1}{4}(7+2 \alpha)-\alpha \zeta\right] \quad \text { as } \quad \zeta \uparrow \infty .
$$

- Matching the term in $z^{-3} \psi_{1} \propto \alpha \zeta$ with the $0^{\text {th }}$-order shear layer solution $\quad z^{-1 / 12} \Psi_{0}$ fixes $\quad \alpha=1$.
- \therefore The remaining constant term becomes $\frac{1}{4}(7+2 \alpha)=9 / 4$.
- In turn, matching $(9 / 16) z^{-3}$ with the $1^{\text {st }}$-order shear layer contribution $z^{-1 / 2} \widehat{\Psi}_{1}$ fixes the value of A_{1}.
- With $\alpha=1$, the ensuing

$$
\mathcal{W}_{1}(\zeta)=\frac{1}{4}\left\{(1+\mathrm{i})-\left[(1+\mathrm{i})+\frac{3}{2} \zeta+\frac{1}{2}(1-\mathrm{i}) \zeta^{2}\right] E(\zeta)\right\}
$$

determines the boundary and shear layer contributions

$$
\begin{aligned}
v_{1}^{b /} & =-\frac{1}{4}\left[\left(1+\frac{3}{2} \zeta+\frac{1}{2} \zeta^{2}\right) \cos \zeta+\left(1-\frac{1}{2} \zeta^{2}\right) \sin \zeta\right] \mathrm{e}^{-\zeta} \\
w_{1}^{b /} & =\frac{1}{4}\left[\left(1-\frac{1}{2} \zeta^{2}\right) \cos \zeta-\left(1+\frac{3}{2} \zeta+\frac{1}{2} \zeta^{2}\right) \sin \zeta\right] \mathrm{e}^{-\zeta} \\
\psi_{1}^{b /} & =-\frac{1}{16}\left[(9+5 \zeta) \cos \zeta+\left(5 \zeta+2 \zeta^{2}\right) \sin \zeta\right] \mathrm{e}^{-\zeta} \\
v_{1}^{s /} & =\frac{1}{4} \\
w_{1}^{s /} & =-\frac{1}{4} \\
\psi_{1}^{s /} & =\frac{1}{4}\left(\frac{9}{4}-\zeta\right)
\end{aligned}
$$

- Noting that $\psi_{0}^{s l}=-\frac{1}{2}, v_{0}^{s l}=0$, correct to first order the entire shear layer contributions are

$$
\begin{aligned}
& \psi^{s l} \approx-\frac{1}{2} z^{-1 / 2}+\frac{1}{4} z^{-3}\left(\frac{9}{4}-\zeta\right) \\
& v^{s l} \approx \frac{1}{4} z^{-5 / 2}
\end{aligned}
$$

Outline

(1) Introduction

(2) Problem
(3) Series Sol.
(4) Top b.c.

- Fourier Transform
(5) Num. meth
(6) Num. results
(7) Free solutions

4. TOP BOUNDARY CONDITION

- The top boundary condition

$$
v \sim v_{0}^{b l}(\zeta), \quad w \sim w_{0}^{b l}(\zeta), \quad \psi \rightarrow 0 \quad \text { as } \quad z \uparrow \infty, \quad \zeta>0
$$

is problematic to implement at finite (but largish) $z=H$.

- The very thin Ekman layer can be managed but difficulties are encountered with the mainstream.
- Since the governing equations are $2^{\text {nd }}$-order in z, we expect one bottom b.c. and one top b.c..
- The natural mainstream top b.c. is $v=0$.

In practice that is far to severe for the moderate H usable numerically. The solution is seriously influenced by that choice and so varies with box size!!!!

- Use of the similarity expansion
$v(x, H) \sim H^{-5 / 12} \widehat{V}_{0}\left(\Phi_{H}\right)+H^{-5 / 6} \widehat{V}_{1}\left(\Phi_{H}\right)+H^{-5 / 4} \widehat{V}_{2}\left(\Phi_{H}\right)+\cdots$, where $\Phi_{H}=x / H^{1 / 3}$ fairs little better!
- The problem is its approximate nature and the realised solution is sensitive to the discrepancy.

Fourier Transform of the mainstream solution

Defining

$$
[\widehat{\psi}, \widehat{v}](\varpi, z)=\int_{-\infty}^{\infty}[\psi, v] \psi(x, z) \exp (-\mathrm{i} \varpi x) \mathrm{d} x
$$

the Fourier transforms of the governing equations are

$$
2 \frac{\partial \widehat{v}}{\partial z}=\varpi^{4} \widehat{\psi}, \quad 2 \frac{\partial \widehat{\psi}}{\partial z}=\varpi^{2} \widehat{v}
$$

- The solution that tends to zero as $z \uparrow \infty$ is

$$
\widehat{v}(\varpi, z)=a(\varpi) \exp \left(-\frac{1}{2}|\varpi|^{3} z\right)
$$

$$
\widehat{\psi}(\varpi, z)=\frac{2}{\varpi^{4}} \frac{\partial \widehat{v}}{\partial z}(\varpi, z)=-\frac{1}{|\varpi|} \widehat{v}(\varpi, z) .
$$

- At $z=H$ the inversion of $\widehat{v}(\varpi, H)=-|\varpi| \widehat{\psi}(\varpi, H)$ determines the convolution integral

$$
v(x, H)=\mathcal{F}_{H}\{\psi\} \equiv-\frac{1}{\pi} f_{-\infty}^{\infty} \frac{1}{x-x^{\prime}} \frac{\partial \psi}{\partial x}\left(x^{\prime}, H\right) \mathrm{d} x^{\prime}
$$

the basis of our top "soft" (cf. acoustics) mainstream b.c..

Outline

(1) Introduction

(2) Problem
(3) Series Sol.

(5) Num. meth.

- Iteration
- Soft b.c.
(6) Num. results
(7) Free solutions

5. NUMERICAL METHOD

We make the change of variable $y=\frac{1}{2} z^{2}+x$ and solve

$$
2\left(\frac{\partial v}{\partial z}+z \frac{\partial v}{\partial y}\right)=\frac{\partial^{4} \psi}{\partial y^{4}}, \quad 2\left(\frac{\partial \psi}{\partial z}+z \frac{\partial \psi}{\partial y}\right)=-\frac{\partial^{2} v}{\partial y^{2}} .
$$

subject to

$$
\begin{aligned}
v=1 \quad \text { and } \quad \psi, \frac{\partial \psi}{\partial y} & =0 & & \text { on } \quad y=0 \\
v=0 \quad \text { and } \quad \psi, \frac{\partial \psi}{\partial y} & =0 & & \text { on } y=L, \\
\psi & =0 & & \text { on } z=0,
\end{aligned}
$$

Together with the implementation of the soft b.c. at $z=H$, which pretends that the boundary is absent (a familiar acoustic problem).

The box width L is chosen dependant on the box height H, so that the tangent cylinder crosses the top boundary reasonably far from both the $y=0$ and $y=L$ edges.

The finite difference discretization of the governing equations uses a symmetric, second-order scheme for all the y-derivatives and a third-order backward (respectively forward) scheme for the approximation of ψ (respectively v) z-derivatives.

Iterative method

Rather than apply the top soft b.c. directly we iterate and consider the sequence of solutions $v_{n}, \psi_{n}(n=0,1,2 \cdots)$ subject to

$$
v_{n}^{H}= \begin{cases}0 & (n=0) \\ \mathcal{F}_{H}\left\{\psi_{n-1}^{H}\right\} & (n \geq 1)\end{cases}
$$

where $v_{n}^{H}(x) \equiv v_{n}(x, H), \psi_{n}^{H}(x) \equiv \psi_{n}(x, H)$.

The soft boundary condition

Though $v^{H}=\mathcal{F}_{H}\left\{\psi^{H}\right\}$ was derived for the mainstream solution, we ignore the Ekman layer and simply apply

$$
v_{n}^{H}(x)=\left\{\begin{array}{lc}
0 & \left(-\frac{1}{2} H^{2}<x<a\right) \\
v_{n}^{H}\left(x_{-}\right) \frac{x-a}{x_{-}-a} & \left(a<x<x_{-}\right) \\
-\frac{1}{\pi} f_{a}^{b} \frac{1}{x-x^{\prime}} \frac{\mathrm{d} \psi_{n-1}^{H}}{\mathrm{~d} x}\left(x^{\prime}\right) \mathrm{d} x^{\prime} & \left(x_{-}<x<x_{+}\right) \\
v_{n}^{H}\left(x_{+}\right) \frac{b-x}{b-x_{+}} & \left(x_{+}<x<b\right) \\
0 & \left(b<x<-\frac{1}{2} H^{2}+L\right)
\end{array}\right.
$$

where thin region $\left[-\frac{1}{2} H^{2}\right.$, a] contains the Ekman layer, the wider region $\left[x_{-}, x_{+}\right]$contains the shear layer,
another thin region $\left[b,-\frac{1}{2} H^{2}+L\right]$, and the overlap regions $\left[a, x_{-}\right],\left[x_{+}, b\right]$.

Outline

(1) Introduction

(2) Problem
(3) Series Sol.
(4) Top b.c.
(5) Num. meth.
(6) Num. results

- Contours
- Asymptotics
(7) Free solutions

Meridional streamfunction ψ

$L=60, H=7$
 950×700 gridpoints

Zoom ψ

$L=60, H=7$

Azimuthal velocity v

$$
L=60, H=7
$$

Zoom v

$$
L=60, H=7
$$

Numerics
Asymptotics ---, $\quad(a, b, c) 0^{\text {th }}, 1^{\text {st }}, 2^{\text {nd }}$-order respectively

Outline

(1) Introduction

(2) Problem
(3) Series Sol.
(4) Top b.c.
(5) Num. meth.
(6) Num. results
(7) Free solutions

7. A CAUTIONARY NOTE

- Our far field $(z \gg 1)$ mainstream solution

$$
\psi \sim z^{-1 / 12} \widehat{\Psi}_{0}(\Phi)+z^{-1 / 2} \widehat{\Psi}_{1}(\Phi)+z^{-11 / 12} \widehat{\Psi}_{2}(\Phi)+\cdots
$$

is not unique (cf. an o.d.e. Particular Integral).

- There is another "free" solution

$$
\psi \sim \widehat{\Psi}^{0}(\Phi, z)+z^{-1 / 3} \widehat{\Psi}^{1}(\Phi, z)+z^{-2 / 3} \widehat{\Psi}^{2}(\Phi, z)+\cdots
$$

(Moore and Saffman, 1969; cf. an o.d.e. Complimentary Function), where each term $(n=0,1,2 \cdots)$ has an expansion

$$
\widehat{\Psi}^{n} \sim \widehat{\Psi}_{0}^{n}(\Phi)+z^{-5 / 12} \widehat{\Psi}_{1}^{n}(\Phi)+z^{-11 / 6} \widehat{\Psi}_{2}^{n}(\Phi)+\cdots
$$

- Resonances, occur when the z-powers coincide $\Longrightarrow \ln z$ terms.
- The modes $n=0,1,2 \cdots$ are "free" because $z^{-n / 3} \widehat{\Psi}_{0}^{n}(\Phi)=0$ on $z=0$ for all x.
- They correspond to sources at the origin (Moore and Saffman 1969), and ultimately their respective magnitudes are outputs from the complete solution.
- The point source solution $\widehat{\Psi}^{0}$ (for the anti-symmetric spilt discs; Stewartson 1957) is prohibited (as in the symmetric spilt discs) by the boundary condition as $z \uparrow \infty$.
- The others are dipole, $z^{-1 / 3} \widehat{\Psi}^{1}$, quadrupole, $z^{-2 / 3} \widehat{\Psi}^{2}$, etc.. That they do not seem visible presumably reflects their weak size.
- However, the Stewartson (1966) solution $z^{-1 / 12} \widehat{\Psi}_{0}(\Phi)$ dominates at large z and so the "free" modes might never be significant.

Outline

(2) Problem
(3) Series Sol.
(4) Top b.c.
(5) Num. meth.
(6) Num. results
(7) Free solutions
(2) Cnnclucinne

8. CONCLUSIONS

Numerical solution

- We have provided a numerical solution of the Equatorial Stewartson layer formulated by Stewartson (1996) by a combination of asymptotic and numerical methods.
- The key step in overcoming the solution on an unbounded domain has been the application of a soft boundary condition at large z consisting of
- a mainstream non-local integral,
- the Ekman layer ignored (simply $v=0$),
- and a linear interpolation across the overlap regions $(v \approx 0)$.

Comparison with asymptotics at large z

- We extended Stewartson's similarity solution valid for $z \gg 1$ to higher orders using matched asymptotic expansions.
- For largish z, the comparisons with the asymptotic results at
- $0^{\text {th }}$-order were reasonable;
- $0^{\text {th }}+1^{\text {st }}$-order were excellent;
- $0^{\text {th }}+1^{\text {st }}+2^{\text {nd }}-$ order were marginally improved.
- The apparent absence of any significant free "interlocking" mode at moderately large z was intriguing.

ψ vs. Φ.

$0^{\text {th }}$-order asymptotics

ψ vs. Φ.
 $1^{\text {st }}$-order asymptotics

ψ vs. Φ.
 $2^{\text {nd }}$-order asymptotics

v vs. Φ.

$0^{\text {th }}$-order asymptotics

v vs. Φ.
 $1^{\text {st }}$-order asymptotics

v vs. Φ.

$2^{\text {nd }}-$ order asymptotics

