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1. INTRODUCTION

Relative to a frame rotating with angular velocity Ω = Ωẑ,
we are interested in the slow steady flow of an incompressible fluid,
viscocity ν, in the shell between two spheres.
The inner sphere, radius L, is at rest;
the outer sphere rotates with angular velocity εΩ; ε≪ 1.

Our geometry differs slightly from Stewartson (1966):

r Sj = L .

Relative to his frame rotating with angular velocity

ΩS = (1 + ε)Ω ,

his outer sphere is at rest, while his inner sphere rotates
with angular velocity

ωS
j = Ω −ΩS = − εΩ .
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Stewartson’s (1966) configuration, r S

j = L,

relative to a rotating Ω(1 + ε) frame with ωS

j = −εΩ
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Proudman solution (1956):
Geostrophic flow and Ekman layers

The flow in the small Ekman number limit,

E = ν/L2Ω ≪ 1 ,

is characterised by mainstream geostrophic flow
(azimuthal and z-independent) and boundary layer structures:

The Ekman layers on the spheres width (ν/Ω)1/2 = LE 1/2,
which largely control the mainstream flow.

Outside the inner sphere tangent cylinder
the fluid co-rotates with the outer sphere.

Inside it rotates at an intermediate angular velocity
which tends to rest as the tangent cylinder is approached.
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The Proudman (1956) solution
(a) Geostrophic velocity ωS

G
; (b) Streamlines χS =const.
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Quasi-geostrophic flow with radial friction

The discontinuity is smoothed out across nested shear layers
on the tangent cylinder.

In units of L, Stewartson (1966) identified the “outer” layers

an E 1/4-layer outside the tangent cylinder
in which the flow continues to be geostrophic.
Geostrophic degeneracy is resolved
by Ekman suction and internal lateral friction;

an E 2/7 inside the tangent cylinder with similar features.
The different width arises because of
the singularity of the Ekman layer
as the equator is approached.
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Quasi-geostrophic layers
(a) Geostrophic velocity ωS

G
; (b) Streamlines χS =const.
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The “inner” E 1/3 shear layer

The “outer” E 1/4 and E 2/7-layers embed
an “inner” E 1/3-layer, which ceases to be geostrophic,
as the shear is dependent on the axial co-ordinate z†.

A primary source for this layer is the inner core equator.
It thickens proportional to (Ez†)1/3,
while the Ekman layer thins proportional to (E/z†)1/2.
They are equal when

δ = (Ez†)1/3 = (E/z†)1/2 ,

i.e.,
z† = E 1/5 , δ = E 2/5 ,

which define the dimensions of the

E 2/5 Equatorial Ekman Layer
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E
2/5 Equatorial Ekman Layer

(Ez†)1/3 shear layer; (E/z†)1/2 Ekman layer

x

x = –z2/2ri

x = (dE z)1/3

dE⊥ = dE (ri/z)1/2

z W
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Objectives

We investigate the solution of Stewartson’s (1966)
reduced equations and boundary conditions
(scaled independent of E )
on an unbounded domain governing motion in the
E 2/5 Equatorial Ekman Layer.

In the absence of a far boundary, we find that, without some
ingenuity, the numerical solution is dependant on the finite
numerical box size! Our resolution is a “soft” boundary at
finite z†, where we apply a non-local (integral) b.c..

For large z†, we extend Stewartson’s (1966) E 1/3 shear layer
similarity solution valid near the equator to higher orders using
matched asymptotic expansions. That analytic extension is in
excellent agreement with the numerics.
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Equatorial Ekman Layer: Meridional streamfunction
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2. MATHEMATICAL FORMULATION

Geometry

Relative to local Equatorial Ekman layer Cartesian coordinates x†

(radial), “dummy y †” (azimuthal), z† (axial) scaled as

x† = E 2/5Lx (radial) z† = E 1/5Lz (axial) ,

our inner sphere is the severely flattened oblate spheroid

E 2/5
(
x + E−2/5

)2
+ z2 = E−2/5 ,

which for (x , z) = O(1) (E → 0) determines

2x + z2 = 0 .
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Governing equations

Our unit of angular velocity ∆Ω is not εΩ but CE 1/28 εΩ
(constant C of order unity; Stewartson 1966).

The azimuthal and axial velocities are

u†y , = (L∆Ω)v(x , z) , u†z = (L∆Ω)w(x , z) ;

the radial velocity and the meridional flow streamfunction are

u†x = E 1/5(L∆Ω)u , ψ† = E 2/5(L2∆Ω)ψ ,

where u = − ∂ψ/∂z , w = ∂ψ/∂x .

Then the governing equations are

2
∂v

∂z
=

∂4ψ

∂x4
, azimuthal vorticity

2
∂ψ

∂z
= − ∂2v

∂x2
azimuthal velocity
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Boundary conditions

We adopt the frame with the fluid at rest far from the sphere.

More precisely the boundary conditions are

∂v/∂z = 0 , ψ =0 on z =0 , x > 0 ,

v = 1 , w =0 , ψ =0 on z =
√
−2x , x < 0 ,

v → 0 , ψ → 0 as x ↑∞ ,

As z ↑∞ an Ekman layer forms on the sphere boundary x = −1
2z

2

of width O(z−1), in which

vbl0 = e
−ζ cos ζ , wbl

0 = − e
−ζ sin ζ ;

Ekman layer coordinate ζ = z1/2
(
x + 1

2z
2
)
=⇒ top b.c.

v ∼ vbl0 (ζ) , w ∼wbl
0 (ζ) , ψ → 0 for ζ > 0 .
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Stewartson E 1/3-layer solution for z ↑ ∞

The Mainstream region is the entire region outside
the Ekman boundary layer: z−1/2ζ = x + 1

2z
2 ≫ z−1/2.

Stewartson’s (1966) Mainstream similarity solution

v = V0(Φ, z), ψ = Ψ0(Φ, z), w = W0(Φ, z), Φ = x/z1/3;

for the shear layer of width O(z1/3), which forms
in its interior on the tangent cylinder x = 0, is

V0(Φ, z) =
2−1/4 z−5/12

Γ
(
1/4

)
∫ ∞

0
̟1/4 cos

(
̟Φ+ 3

8π
)
exp

(
−1

2̟
3
)
d̟ ,

Ψ0(Φ, z) = − 2−1/4 z−1/12

Γ
(
1/4

)
∫ ∞

0
̟−3/4 cos

(
̟Φ+ 3

8π
)
exp

(
−1

2̟
3
)
d̟ ,

W0(Φ, z) =
2−1/4 z−5/12

Γ
(
1/4

)
∫ ∞

0
̟1/4 sin

(
̟Φ+ 3

8π
)
exp

(
−1

2̟
3
)
d̟ .
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Properties and limitations

The simplicity of the Stewartson z ↑ ∞ solution
hides his leading order mainstream assumption v = 0.

The Ekman layer jump to v = 1 at the sphere boundary
drives the Ekman layer suction

ψ ∼ − 1
2(−2x)−1/4 on x = −1

2z
2

m
Ψ0 ∼ − 1

2z
−1/12(−2Φ)−1/4 on Φ = −1

2z
5/6

providing the crucial b.c. on his lowest order solution.

Here z−1/12 sets the power law in the similarity solution
satisfying the b.c. 2z1/12Ψ0 ∼ −(−2Φ)−1/4 as Φ ↓ −∞.

While ψ = 0 on x > 0, z = 0
implies the b.c. 2z1/12Ψ0 = o

(
Φ−1/4

)
as Φ ↑ ∞.
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The corresponding similarity form z5/12V0 = function of Φ,
is largely slave to z1/12Ψ0.

Indeed Stewartson’s solution determines

V0 ≈
{

1
4z

−5/12(−2Φ)−5/4 (Φ ↓ −∞)

− 2−3/2z−5/12(2Φ)−5/4 (Φ ↑ ∞)

⇓

v ≈
{

1
4(−2x)−5/4 (x < 0, z = 0)

− 2−3/2(2x)−5/4 (x > 0, z = 0)

The symmetry condition ∂v/∂z = 0 on x > 0, z = 0 is met.

Importantly the value

v ≈ 1
4z

−5/2

at the edge of the sphere Ekman layer −2x = z2

does not meet the assumed v = 0.
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3. SERIES SOLUTION

Shear layer solution Φ = x/z1/3 = O(1):



V

W

z−1/3Ψ


 ∼ z−5/12



V̂0

Ŵ0

Ψ̂0


(Φ)+ z−5/6



V̂1

Ŵ1

Ψ̂1


(Φ)+ z−5/4



V̂2

Ŵ2

Ψ̂2


(Φ)+ · · · .

Ekman layer solution ζ = z1/2
(
x + 1

2z
2
)
= O(1):




v

w

z1/2ψ


 ∼



v0
w0

ψ0


(ζ) + z−5/2



v1
w1

ψ1


(ζ) + z−5



v2
w2

ψ2


(ζ) + · · · .

which splits into shear layer sl (mainstream)
and Ekman (boundary) layer bl parts, e.g., v = vbl + v sl .

The complete solution is provided by the composite

v = V + vbl , w = W + wbl , ψ = Ψ + ψbl .
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Shear layer solutions

Set
V̂n + iŴn = Y ′

n(Φ) ,

where Yn solves

Y ′′′
n + 2

3 i
[
ΦY ′

n + 1
4(5n + 1)Yn

]
= 0 .

The solutions, bounded as |Φ| → ∞, are

Yn(Φ) = An exp
[
− i(5n+1)π/8

]∫ ∞

0
̟(5n−3)/4 exp

(
i̟Φ− 1

2̟
3
)
d̟

where Im{An} = 0 to meet

the symmetry condition w = 0 on z = 0, x > 0

=⇒ Im{Yn} = o
(
Φ−(5n+1)/4

)
as Φ ↑ ∞ .

The real constants An are fixed by matching
with the Ekman layer solution.
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Ekman layer solutions

Set
vn − iwn = Wn(ζ) ,

ψn =

∫ ζ

0
wn dζ = −

∫ ζ

0
Im{Wn} dζ ,

where Wn solves

W ′′′
n +2iW ′

n =

{
0 (n = 0) ,

− i
[
ζW ′

n−1 − 5(n − 1)Wn−1

]
(n ≥ 1)

subject to the boundary condition

Wn =

{
1 (n = 0) ,

0 (n ≥ 1)

and matching conditions as ζ ↑ ∞.

The 0th-order solution:

W0 = E (ζ) ≡ exp
[
−(1− i)ζ

]
.
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The 1st-order solution

W1(ζ) = 1
4

{
(1 + iα) −

[
(1 + iα) + 3

2ζ + 1
2(1− i)ζ2

]
E (ζ)

}
.

Here we have fixed the real part of the constant 1 + iα
of integration to meet the matching condition

v1 = Re{W1} → 1
4 as ζ ↑ ∞.

Also ψ1 = −
∫ ζ

0
Im{W1} dζ

∼ 1
4

[
1
4(7 + 2α) − αζ

]
as ζ ↑ ∞ .

Matching the term in z−3ψ1 ∝ αζ with
the 0th-order shear layer solution z−1/12Ψ0 fixes α = 1.

∴ The remaining constant term becomes 1
4(7 + 2α) = 9/4.

In turn, matching (9/16)z−3 with the 1st-order shear layer
contribution z−1/2Ψ̂1 fixes the value of A1.
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With α = 1, the ensuing

W1(ζ) = 1
4

{
(1 + i) −

[
(1 + i) + 3

2ζ + 1
2(1− i)ζ2

]
E (ζ)

}
.

determines the boundary and shear layer contributions

vbl1 = − 1
4

[(
1 + 3

2ζ +
1
2ζ

2
)
cos ζ +

(
1− 1

2ζ
2
)
sin ζ

]
e
−ζ ,

wbl
1 = 1

4

[(
1− 1

2ζ
2
)
cos ζ −

(
1 + 3

2ζ +
1
2ζ

2
)
sin ζ

]
e
−ζ ,

ψbl
1 = − 1

16

[(
9 + 5ζ

)
cos ζ +

(
5ζ + 2ζ2

)
sin ζ

]
e
−ζ ,

v sl1 = 1
4 ,

w sl
1 = − 1

4 ,

ψsl
1 = 1

4

(
9
4 − ζ

)
.

Noting that ψsl
0 = −1

2 , v
sl
0 = 0,

correct to first order the entire shear layer contributions are

ψsl ≈ − 1
2z

−1/2 + 1
4z

−3
(
9
4 − ζ) ,

v sl ≈ 1
4z

−5/2 .
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4. TOP BOUNDARY CONDITION

The top boundary condition

v ∼ vbl0 (ζ) , w ∼wbl
0 (ζ) , ψ → 0 as z ↑∞ , ζ > 0 .

is problematic to implement at finite (but largish) z = H.

The very thin Ekman layer can be managed
but difficulties are encountered with the mainstream.

Since the governing equations are 2nd-order in z ,
we expect one bottom b.c. and one top b.c..

The natural mainstream top b.c. is v = 0.

In practice that is far to severe for the moderate H

usable numerically. The solution is seriously influenced
by that choice and so varies with box size!!!!



Outline Introduction Problem Series Sol. Top b.c. Num. meth. Num. results Free solutions Conclusions

Use of the similarity expansion

v(x ,H) ∼ H−5/12V̂0(ΦH) + H−5/6V̂1(ΦH) + H−5/4V̂2(ΦH) + · · · ,

where ΦH = x/H1/3 fairs little better!

The problem is its approximate nature
and the realised solution is sensitive to the discrepancy.

Fourier Transform of the mainstream solution

Defining

[
ψ̂ , v̂

]
(̟, z) =

∫ ∞

−∞

[
ψ , v

]
ψ(x , z) exp(−i̟x) dx ,

the Fourier transforms of the governing equations are

2
∂v̂

∂z
= ̟4ψ̂ , 2

∂ψ̂

∂z
= ̟2v̂ .
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The solution that tends to zero as z ↑ ∞ is

v̂(̟, z) = a(̟) exp
(
−1

2 |̟|3z
)
,

=⇒
ψ̂(̟, z) =

2

̟4

∂v̂

∂z
(̟, z) = − 1

|̟| v̂(̟, z) .

At z = H the inversion of v̂(̟,H) = −|̟|ψ̂(̟,H)
determines the convolution integral

v(x ,H) = FH{ψ} ≡ − 1

π
−
∫ ∞

−∞

1

x − x ′
∂ψ

∂x
(x ′,H) dx ′ ,

the basis of our top “soft” (cf. acoustics) mainstream b.c..
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5. NUMERICAL METHOD

We make the change of variable y = 1
2z

2 + x and solve

2

(
∂v

∂z
+ z

∂v

∂y

)
=

∂4ψ

∂y4
, 2

(
∂ψ

∂z
+ z

∂ψ

∂y

)
= − ∂2v

∂y2
.

subject to

v = 1 and ψ,
∂ψ

∂y
= 0 on y = 0,

v = 0 and ψ,
∂ψ

∂y
= 0 on y = L,

ψ = 0 on z = 0,

Together with the implementation of the soft b.c. at z = H, which
pretends that the boundary is absent (a familiar acoustic problem).
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The box width L is chosen dependant on the box height H,
so that the tangent cylinder crosses the top boundary
reasonably far from both the y = 0 and y = L edges.

The finite difference discretization of the governing equations uses
a symmetric, second-order scheme for all the y -derivatives
and a third-order backward (respectively forward) scheme
for the approximation of ψ (respectively v) z-derivatives.

Iterative method

Rather than apply the top soft b.c. directly we iterate and consider
the sequence of solutions vn, ψn (n = 0, 1, 2 · · · ) subject to

vH

n =

{
0 (n = 0) ,

FH{ψH

n−1} (n ≥ 1) ,

where vH
n (x) ≡ vn(x ,H), ψH

n(x) ≡ ψn(x ,H).
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The soft boundary condition

Though vH = FH{ψH} was derived for the mainstream solution,
we ignore the Ekman layer and simply apply

vH

n (x) =





0 (−1
2H

2 < x < a) ,

vH
n (x−)

x − a

x− − a
(a < x < x−) ,

− 1

π
−
∫ b

a

1

x − x ′

dψH

n−1

dx
(x ′) dx ′ (x− < x < x+) ,

vH
n (x+)

b − x

b − x+
(x+ < x < b) ,

0 (b < x < −1
2H

2 + L) ,

where thin region [−1
2H

2 , a] contains the Ekman layer,
the wider region [x− , x+] contains the shear layer,
another thin region [b , −1

2H
2 + L],

and the overlap regions [a , x−], [x+ , b].
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Meridional streamfunction ψ L = 60, H = 7
950× 700 gridpoints
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Zoom ψ L = 60, H = 7
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Azimuthal velocity v L = 60, H = 7
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Zoom v L = 60, H = 7
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ψ vs. Φ at z = 6 (H = 7): Numerics —–
Asymptotics - - -, (a,b,c) 0th, 1st, 2nd-order respectively
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v vs. Φ at z = 6 (H = 7): Numerics —–
Asymptotics - - -, (a,b,c) 0th, 1st, 2nd-order respectively
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7. A CAUTIONARY NOTE

• Our far field (z ≫ 1) mainstream solution

ψ ∼ z−1/12Ψ̂0(Φ) + z−1/2Ψ̂1(Φ) + z−11/12Ψ̂2(Φ) + · · ·

is not unique (cf. an o.d.e. Particular Integral).

• There is another “free” solution

ψ ∼ Ψ̂0(Φ, z) + z−1/3Ψ̂1(Φ, z) + z−2/3Ψ̂2(Φ, z) + · · ·

(Moore and Saffman, 1969; cf. an o.d.e. Complimentary Function),
where each term (n = 0, 1, 2 · · · ) has an expansion

Ψ̂n ∼ Ψ̂n
0 (Φ) + z−5/12Ψ̂n

1 (Φ) + z−11/6Ψ̂n
2 (Φ) + · · ·

• Resonances, occur when the z-powers coincide =⇒ ln z terms.
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• The modes n = 0, 1, 2 · · · are “free”
because z−n/3Ψ̂n

0 (Φ) = 0 on z = 0 for all x .

• They correspond to sources at the origin
(Moore and Saffman 1969),
and ultimately their respective magnitudes
are outputs from the complete solution.

• The point source solution Ψ̂0 (for the anti-symmetric spilt discs;
Stewartson 1957) is prohibited (as in the symmetric spilt discs)
by the boundary condition as z ↑ ∞.

• The others are dipole, z−1/3Ψ̂1, quadrupole, z−2/3Ψ̂2, etc..
That they do not seem visible presumably reflects their weak size.

• However, the Stewartson (1966) solution z−1/12Ψ̂0(Φ) dominates
at large z and so the“free” modes might never be significant.
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8. CONCLUSIONS

Numerical solution

We have provided a numerical solution of the Equatorial
Stewartson layer formulated by Stewartson (1996) by a
combination of asymptotic and numerical methods.

The key step in overcoming the solution on an unbounded
domain has been the application of a soft boundary condition
at large z consisting of

a mainstream non-local integral,

the Ekman layer ignored (simply v = 0),

and a linear interpolation across the overlap regions (v ≈ 0).
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Comparison with asymptotics at large z

We extended Stewartson’s similarity solution valid for z ≫ 1
to higher orders using matched asymptotic expansions.

For largish z , the comparisons with the asymptotic results at

0th-order were reasonable;

0th + 1st-order were excellent;

0th + 1st + 2nd-order were marginally improved.

The apparent absence of any significant free “interlocking”
mode at moderately large z was intriguing.
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ψ vs. Φ. 0th-order asymptotics - - - -
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ψ vs. Φ. 1st-order asymptotics - - - -
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ψ vs. Φ. 2nd-order asymptotics - - - -

−10 −8 −6 −4 −2 0 2 4 6 8 10 12

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

 Φ

 (
c)



Outline Introduction Problem Series Sol. Top b.c. Num. meth. Num. results Free solutions Conclusions

v vs. Φ. 0th-order asymptotics - - - -
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v vs. Φ. 1st-order asymptotics - - - -
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v vs. Φ. 2nd-order asymptotics - - - -
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