Schurs exponent Conjecture

October 22, 2019

School of Mathematics
Indian Institute of Science Education and Research
Thiruvananthapuram.

What is Schurs exponent conjecture

SETUP: Let G be a finite group.
Exponent Conjecture: Does the exponent of $H_{2}(G, \mathbb{Z})$ divide the exponent of G ?

What is Schurs exponent conjecture

SETUP: Let G be a finite group.
Exponent Conjecture: Does the exponent of $H_{2}(G, \mathbb{Z})$ divide the exponent of G ?
Answer: NO

What is Schurs exponent conjecture

SETUP: Let G be a finite group.
Exponent Conjecture: Does the exponent of $\mathrm{H}_{2}(G, \mathbb{Z})$ divide the exponent of G ?
Answer: NO
Bayes, Kautsky and Wamsley, 1973 There exists a group G of order 2^{68} with nilpotency class 4 with exponent of $H_{2}(G, \mathbb{Z})$ being 8 and exponent of G is 4 .

What is Schurs exponent conjecture

SETUP: Let G be a finite group.
Exponent Conjecture: Does the exponent of $\mathrm{H}_{2}(G, \mathbb{Z})$ divide the exponent of G ?
Answer: NO
Bayes, Kautsky and Wamsley, 1973 There exists a group G of order 2^{68} with nilpotency class 4 with exponent of $H_{2}(G, \mathbb{Z})$ being 8 and exponent of G is 4 .
Modified Question 1: Let G be an odd order group. Does the exponent of $H_{2}(G, \mathbb{Z})$ divide the exponent of G ?

Validity of the Conjecture

Theorem (M. R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc 45 1974)
Proves the conjecture for p groups of Class 2.

Validity of the Conjecture

Theorem (M. R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc 45 1974)
Proves the conjecture for p groups of Class 2.

Definition

A finite p - group is powerful if either p is odd and $[G, G] \subseteq G^{p}$, or $p=2$ and $[G, G] \subseteq G^{4}$.

Validity of the Conjecture

> Theorem (M. R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc 45 1974)
> Proves the conjecture for p groups of Class 2.

Definition

A finite p - group is powerful if either p is odd and $[G, G] \subseteq G^{p}$, or $p=2$ and $[G, G] \subseteq G^{4}$.

Theorem (Lubotzky and Mann, Powerful p-groups J. Algebra 105 (1987))

Prove the conjecture for powerful p groups.

Validity of the Conjecture

> Theorem (M. R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc 45 1974)
> Proves the conjecture for p groups of Class 2.

Definition

A finite p - group is powerful if either p is odd and $[G, G] \subseteq G^{p}$, or $p=2$ and $[G, G] \subseteq G^{4}$.

Theorem (Lubotzky and Mann, Powerful p-groups J. Algebra 105 (1987))

Prove the conjecture for powerful p groups.

Theorem (P. Moravec, Schur multipliers and power endomorphisms of groups, J. Algebra 308 (2007))
Proved the conjecture for metabelian p groups of exponent p

Validity of the Conjecture

Theorem (P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra 212 (2008))
 Proved the conjecture for groups of class at most 3

Validity of the Conjecture

Theorem (P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra 212 (2008))
 Proved the conjecture for groups of class at most 3

Theorem (P. Moravec, On the exponent semigroups of finite p-groups, J. Group Theory 11 (2008))

Proved the conjecture for groups of class 4 and of odd order. He also proved the conjecture for p groups of class at most $p-2$.

Validity of the Conjecture

Theorem (P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra 212 (2008))
Proved the conjecture for groups of class at most 3

> Theorem (P. Moravec, On the exponent semigroups of finite p-groups, J. Group Theory $11(2008))$

Proved the conjecture for groups of class 4 and of odd order. He also proved the conjecture for p groups of class at most $p-2$.

Theorem (P. Moravec, On pro- p groups with potent filtrations, J. Algebra 322 (2009))
Proved the conjecture for potent p groups.

Validity of the Conjecture

Theorem (P. Moravec, On the exponent of Bogomolov multipliers, J. Group Theory 22 (2019))
 Proves that $\exp \left(H_{2}(G, \mathbb{Z})\right) \mid(\exp G)^{2}$.

> Theorem (P. Moravec, On the exponent of Bogomolov multipliers, J. Group Theory 22 (2019))

> Proves that $\exp \left(H_{2}(G, \mathbb{Z})\right) \mid(\exp G)^{2}$.

Theorem (A. Antony, P. Komma, V.Z. Thomas, Commutator expansions and the Schur Multiplier 2019)

- Finite p groups of class 5 with p odd.

```
Theorem (P. Moravec, On the exponent of Bogomolov multipliers,
J. Group Theory 22 (2019))
Proves that }\operatorname{exp}(\mp@subsup{H}{2}{}(G,\mathbb{Z}))|(\operatorname{exp}G\mp@subsup{)}{}{2}
```

Theorem (A. Antony, P. Komma, V.Z. Thomas, Commutator expansions and the Schur Multiplier 2019)

- Finite p groups of class 5 with podd.
- Finite p groups of class at most p.

Validity of the Conjecture

> Theorem (P. Moravec, On the exponent of Bogomolov multipliers, J. Group Theory 22 (2019))

> Proves that $\exp \left(H_{2}(G, \mathbb{Z})\right) \mid(\exp G)^{2}$.

Theorem (A. Antony, P. Komma, V.Z. Thomas, Commutator expansions and the Schur Multiplier 2019)

- Finite p groups of class 5 with p odd.
- Finite p groups of class at most p.
- Finite p-central metabelian p groups

Validity of the Conjecture

> Theorem (P. Moravec, On the exponent of Bogomolov multipliers, J. Group Theory 22 (2019))

> Proves that $\exp \left(H_{2}(G, \mathbb{Z})\right) \mid(\exp G)^{2}$.

Theorem (A. Antony, P. Komma, V.Z. Thomas, Commutator expansions and the Schur Multiplier 2019)

- Finite p groups of class 5 with p odd.
- Finite p groups of class at most p.
- Finite p-central metabelian p groups
- Finite groups satisfying $\gamma_{p}(G) \subset G^{p^{2}}$.

Bounds depending on nilpotency class

Theorem (G. Ellis, On the relation between upper central quotients and lower central series, Transactions of the AMS 3532001)
Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \left\lvert\,(\exp G)^{\frac{c}{2}}\right.$.

Bounds depending on nilpotency class

Theorem (G. Ellis, On the relation between upper central quotients and lower central series, Transactions of the AMS 3532001)
Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \left\lvert\,(\exp G)^{\frac{c}{2}}\right.$.

Theorem (P. Moravec J. Algebra Vol 308 2007)

Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \mid(\exp G)^{2 \log _{2} c}$

Bounds depending on nilpotency class

Theorem (G. Ellis, On the relation between upper central quotients and lower central series, Transactions of the AMS 3532001)
Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \left\lvert\,(\exp G)^{\frac{c}{2}}\right.$.

Theorem (P. Moravec J. Algebra Vol 308 2007)

Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \mid(\exp G)^{2 \log _{2} c}$

Theorem (N. Sambonet, Bounds for the exponent of the Schur multiplier, J. Pure Appl. Algebra 221 2017)
$\exp (M(G)) \mid(\exp (G))^{m}$, where $m=\log _{p-1} c+1$

Bounds depending on nilpotency class

Theorem (A. Antony, P. Komma, V. Z.T 2019)
 Let G be a finite group with nilpotency class $c>1$ and set $n=\log _{3}\left(\frac{c+1}{2}\right)$. If $\exp (G)$ is odd, then $\exp (G \wedge G) \mid(\exp (G))^{n}$. In particular, $\exp (M(G)) \mid(\exp (G))^{n}$.

Bounds depending on nilpotency class

Theorem (A. Antony, P. Komma, V. Z.T 2019)

Let G be a finite group with nilpotency class $c>1$ and set $n=\log _{3}\left(\frac{c+1}{2}\right)$. If $\exp (G)$ is odd, then $\exp (G \wedge G) \mid(\exp (G))^{n}$. In particular, $\exp (M(G)) \mid(\exp (G))^{n}$.

Theorem (A. Antony, P. Komma, V.Z.T 2019)

Let p be an odd prime and G be a finite p-group of nilpotency class $c \geq p$. Then $\exp (G \wedge G) \mid \exp (G)^{n}$, where $n=1+\log _{p-1}\left(\frac{c+1}{p+1}\right)$. In particular, $\exp (M(G)) \mid(\exp (G))^{n}$.

Bounds depending on derived length

Theorem (N. Sambonet, The unitary cover of a finite group and the exponent of the Schur multiplier, J. Algebra 426 (2015))

- If p is odd, then $\exp (M(G)) \mid(\exp (G))^{d}$.
- if $p=2$, then $\exp (M(G)) \mid 2^{d-1}(\exp (G))^{d}$.

Bounds depending on derived length

Theorem (N. Sambonet, The unitary cover of a finite group and the exponent of the Schur multiplier, J. Algebra 426 (2015))

- If p is odd, then $\exp (M(G)) \mid(\exp (G))^{d}$.
- if $p=2$, then $\exp (M(G)) \mid 2^{d-1}(\exp (G))^{d}$.

Theorem (A. Antony, P. Komma, V.Z.T , 2019)

Let G be a solvable group of derived length d.

- If $\exp (G)$ is odd, then $\exp (G \otimes G) \mid(\exp (G))^{d}$. In particular, $\exp (M(G)) \mid(\exp (G))^{d}$.
- If $\exp (G)$ is even, then $\exp (G \otimes G) \mid 2^{d-1}(\exp (G))^{d}$. In particular, $\exp (M(G)) \mid 2^{d-1}(\exp (G))^{d}$.

Groups of Arganbright and Andrei Jaikin-Zapirain

> Definition (Groups of Arganbright, Power Commutator Structure of Finite p groups, Pacific Journal Vol 29 1969)
> Let G be a finite p group such that $\gamma_{n}(G) \subseteq G^{p}, 1<n<p$.

Groups of Arganbright and Andrei Jaikin-Zapirain

> Definition (Groups of Arganbright, Power Commutator Structure of Finite p groups, Pacific Journal Vol 29 1969)
> Let G be a finite p group such that $\gamma_{n}(G) \subseteq G^{p}, 1<n<p$.

Note that for odd primes, powerful groups is a special case of the above class of groups defined by Arganbright 20 years earlier.

Groups of Arganbright and Andrei Jaikin-Zapirain

> Definition (Groups of Arganbright, Power Commutator Structure of Finite p groups, Pacific Journal Vol 29 1969)
> Let G be a finite p group such that $\gamma_{n}(G) \subseteq G^{p}, 1<n<p$.

Note that for odd primes, powerful groups is a special case of the above class of groups defined by Arganbright 20 years earlier.

> Definition (Groups of A Jaikin-Zapirain, Potent p groups, J. Algebra 2762004 193-209)

Let G be a finite p satisfying $\gamma_{p-1}(G) \subseteq G^{p}$ for $p>2$ and $[G, G] \subseteq G^{4}$ if $p=2$.

Groups of L. E Wilson

In his PhD thesis in 2002 at the University of Chicago, Wilson considered the following two classes of groups

Groups of L. E Wilson

In his PhD thesis in 2002 at the University of Chicago, Wilson considered the following two classes of groups

Definition (Condition 2)

Let G be a finite p group satisfying $\gamma_{p}(G) \subseteq G^{p^{2}}$.

Groups of L. E Wilson

In his PhD thesis in 2002 at the University of Chicago, Wilson considered the following two classes of groups

Definition (Condition 2)

Let G be a finite p group satisfying $\gamma_{p}(G) \subseteq G^{p^{2}}$.
Notice that this generalizes the definition of powerful 2 groups for all primes.

Results of G. Ellis and P. Moravec

> Theorem (G. Ellis Transactions of the AMS 2001 Vol 353 no 10)
> Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \left\lvert\,(\exp G)^{\frac{c}{2}}\right.$.

Results of G. Ellis and P. Moravec

Theorem (G. Ellis Transactions of the AMS 2001 Vol 353 no 10)

Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \left\lvert\,(\exp G)^{\frac{c}{2}}\right.$.

Theorem (P. Moravec J. Algebra Vol 308 2007)

Let G be a finite p group of nilpotency class c. Then $\exp \left(H_{2}(G, Z)\right) \mid(\exp G)^{2 \log _{2} c}$

Comparison of our results with Ellis' and Moravec's

> Theorem (A. Antony, K. Patali, V. Thomas)
> Let G be nilpotent group of odd order with nilpotency class c. If $c<\left(3 \times 2^{n}\right)-1$, then $\exp \left(H_{2}(G, Z)\right) \mid(\exp G)^{n}$.

Comparison of our results with Ellis' and Moravec's

Theorem (A. Antony, K. Patali, V. Thomas)

Let G be nilpotent group of odd order with nilpotency class c. If $c<\left(3 \times 2^{n}\right)-1$, then $\exp \left(H_{2}(G, Z)\right) \mid(\exp G)^{n}$.

Comparison 1) When $c=13$ Ellis and Moravec get $n=6$, we get $n=3$

Comparison of our results with Ellis' and Moravec's

Theorem (A. Antony, K. Patali, V. Thomas)

Let G be nilpotent group of odd order with nilpotency class c. If $c<\left(3 \times 2^{n}\right)-1$, then $\exp \left(H_{2}(G, Z)\right) \mid(\exp G)^{n}$.

Comparison 1) When $c=13$ Ellis and Moravec get $n=6$, we get $n=3$
2) For $c=95$, Ellis obtains $n=48$, Moravec obtains $n=12$ and we have $n=6$.

Metabelian groups and Solvable groups

The 2015 Phd Thesis of Nicola Sambonet at Technion-Israel Institute of Technology considered this problem and obtained the following theorem.

Metabelian groups and Solvable groups

The 2015 Phd Thesis of Nicola Sambonet at Technion-Israel Institute of Technology considered this problem and obtained the following theorem.

> Theorem (N. Sambonet, J. Alg 2015 Unitary Covers of Finite Groups and Exponent...)
> If G is a finite p group of derived length d, then $\exp \left(H_{2}(G, Z)\right) \mid(\exp G)^{d}$ when $p>2$

Theorem (Special Classes of Regular Groups)
 If G is a p group of class less than p, then Schurs Conjecture holds

Theorem (Special Classes of Regular Groups)

If G is a p group of class less than p, then Schurs Conjecture holds

Theorem

If G be an odd nilpotent group of class less than or equal to 4 , then Schurs conjecture holds.

Further results by P. Moravec's

Theorem (Special Classes of Regular Groups)

If G is a p group of class less than p, then Schurs Conjecture holds

Theorem

If G be an odd nilpotent group of class less than or equal to 4 , then Schurs conjecture holds.

Theorem

If G is a metabelian group of prime exponent, then Schurs conjecture holds

Basic setup

Definition (Compatibility Condition)

Let G and H be groups acting on each other and acting on themselves via conjugation. The mutual actions are said to be compatible if $\left.{ }^{(g} h\right) g^{\prime}=g h g^{-1} g^{\prime}$ and $\left.{ }^{(h} g\right) h^{\prime}=h g h^{-1} h^{\prime}$

Basic setup

Definition (Compatibility Condition)

Let G and H be groups acting on each other and acting on themselves via conjugation. The mutual actions are said to be compatible if ${ }^{(g h)} g^{\prime}=g h g^{-1} g^{\prime}$ and ${ }^{\left({ }^{h} g\right)} h^{\prime}=h g h^{-1} h^{\prime}$

Definition (Non-abelian tensor product)

The nonabelian tensor product $G \otimes H$ is the group generated by $g \otimes h, g \in G h \in H$ and relations $g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h)$ and $g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right)$ for all $g, g^{\prime} \in G, h, h^{\prime} \in H$.

Basic setup

Definition (Compatibility Condition)

Let G and H be groups acting on each other and acting on themselves via conjugation. The mutual actions are said to be compatible if $\left.{ }^{(g} h\right) g^{\prime}=g h g^{-1} g^{\prime}$ and $\left.{ }^{(h} g\right) h^{\prime}=h g h^{-1} h^{\prime}$

Definition (Non-abelian tensor product)

The nonabelian tensor product $G \otimes H$ is the group generated by $g \otimes h, g \in G h \in H$ and relations $g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h)$ and $g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right)$ for all $g, g^{\prime} \in G, h, h^{\prime} \in H$.

Definition (Non-abelian tensor square)

When $G=H$ and all mutual actions are via conjugation, then the group is called non-abelian tensor square.

