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What is Schurs exponent conjecture

SETUP: Let G be a finite group.
Exponent Conjecture: Does the exponent of H2(G ,Z) divide the
exponent of G?

Answer: NO
Bayes, Kautsky and Wamsley, 1973 There exists a group G of
order 268 with nilpotency class 4 with exponent of H2(G ,Z) being
8 and exponent of G is 4.
Modified Question 1: Let G be an odd order group. Does the
exponent of H2(G ,Z) divide the exponent of G?
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Validity of the Conjecture

Theorem (M. R. Jones, Some inequalities for the multiplicator of a
finite group, Proc. Amer. Math. Soc 45 1974)

Proves the conjecture for p groups of Class 2.

Definition

A finite p- group is powerful if either p is odd and [G ,G ] ⊆ Gp, or
p = 2 and [G ,G ] ⊆ G 4.

Theorem (Lubotzky and Mann, Powerful p-groups J. Algebra 105
(1987))

Prove the conjecture for powerful p groups.

Theorem (P. Moravec, Schur multipliers and power endomorphisms
of groups, J. Algebra 308 (2007))

Proved the conjecture for metabelian p groups of exponent p
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Validity of the Conjecture

Theorem (P. Moravec, The exponents of nonabelian tensor
products of groups, J. Pure Appl. Algebra 212 (2008))

Proved the conjecture for groups of class at most 3

Theorem (P. Moravec, On the exponent semigroups of finite
p-groups, J. Group Theory 11 (2008))

Proved the conjecture for groups of class 4 and of odd order. He
also proved the conjecture for p groups of class at most p − 2.

Theorem (P. Moravec, On pro-p groups with potent filtrations, J.
Algebra 322 (2009))

Proved the conjecture for potent p groups.
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Validity of the Conjecture

Theorem (P. Moravec, On the exponent of Bogomolov multipliers,
J. Group Theory 22 (2019))

Proves that exp(H2(G ,Z))|(expG )2.

Theorem ( A. Antony, P. Komma, V.Z. Thomas, Commutator
expansions and the Schur Multiplier 2019)

Finite p groups of class 5 with p odd.

Finite p groups of class at most p.

Finite p-central metabelian p groups

Finite groups satisfying γp(G ) ⊂ Gp2 .
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Bounds depending on nilpotency class

Theorem (G. Ellis, On the relation between upper central quotients
and lower central series, Transactions of the AMS 353 2001 )

Let G be a finite p group of nilpotency class c . Then
exp(H2(G ,Z ))|(expG )

c
2 .

Theorem (P. Moravec J. Algebra Vol 308 2007)

Let G be a finite p group of nilpotency class c . Then
exp(H2(G ,Z ))|(expG )2 log2 c

Theorem (N. Sambonet, Bounds for the exponent of the Schur
multiplier, J. Pure Appl. Algebra 221 2017)

exp(M(G )) | (exp(G ))m, where m = logp−1 c + 1
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Bounds depending on nilpotency class

Theorem (A. Antony, P. Komma, V. Z.T 2019)

Let G be a finite group with nilpotency class c > 1 and set
n = log3( c +1

2 ). If exp(G ) is odd, then exp(G ∧G ) | (exp(G ))n. In
particular, exp(M(G )) | (exp(G ))n.

Theorem (A. Antony, P. Komma, V.Z.T 2019)

Let p be an odd prime and G be a finite p-group of nilpotency
class c ≥ p. Then exp(G ∧G ) | exp(G )n, where
n = 1 + logp−1( c +1

p+1). In particular, exp(M(G )) | (exp(G ))n.
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Bounds depending on derived length

Theorem (N. Sambonet, The unitary cover of a finite group and
the exponent of the Schur multiplier, J. Algebra 426 (2015))

If p is odd, then exp(M(G )) | (exp(G ))d .

if p = 2, then exp(M(G )) | 2d −1(exp(G ))d .

Theorem (A. Antony, P. Komma, V.Z.T , 2019)

Let G be a solvable group of derived length d.

If exp(G ) is odd, then exp(G ⊗G ) | (exp(G ))d . In particular,
exp(M(G )) | (exp(G ))d .

If exp(G ) is even, then exp(G ⊗G ) | 2d −1(exp(G ))d . In
particular, exp(M(G )) | 2d −1(exp(G ))d .
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Groups of Arganbright and Andrei Jaikin-Zapirain

Definition (Groups of Arganbright, Power Commutator Structure
of Finite p groups,Pacific Journal Vol 29 1969)

Let G be a finite p group such that γn(G ) ⊆ Gp, 1 < n < p.

Note that for odd primes, powerful groups is a special case of the
above class of groups defined by Arganbright 20 years earlier.

Definition (Groups of A Jaikin-Zapirain, Potent p groups, J.
Algebra 276 2004 193-209)

Let G be a finite p satisfying γp−1(G ) ⊆ Gp for p > 2 and
[G ,G ] ⊆ G 4 if p = 2.
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Groups of L. E Wilson

In his PhD thesis in 2002 at the University of Chicago, Wilson
considered the following two classes of groups

Definition (Condition 2)

Let G be a finite p group satisfying γp(G ) ⊆ Gp2 .
Notice that this generalizes the definition of powerful 2 groups for
all primes.
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Comparison of our results with Ellis’ and Moravec’s

Theorem (A. Antony, K. Patali, V. Thomas)

Let G be nilpotent group of odd order with nilpotency class c . If
c < (3× 2n)− 1, then exp(H2(G ,Z ))|(expG )n.

Comparison 1) When c = 13 Ellis and Moravec get n = 6, we get
n = 3
2) For c = 95, Ellis obtains n = 48, Moravec obtains n = 12 and
we have n = 6.
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Metabelian groups and Solvable groups

The 2015 Phd Thesis of Nicola Sambonet at Technion-Israel
Institute of Technology considered this problem and obtained the
following theorem.

Theorem (N. Sambonet, J. Alg 2015 Unitary Covers of Finite
Groups and Exponent...)

If G is a finite p group of derived length d , then
exp(H2(G ,Z ))|(expG )d when p > 2
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Further results by P. Moravec’s

Theorem (Special Classes of Regular Groups)

If G is a p group of class less than p, then Schurs Conjecture holds

Theorem

If G be an odd nilpotent group of class less than or equal to 4,
then Schurs conjecture holds.

Theorem

If G is a metabelian group of prime exponent, then Schurs
conjecture holds
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Basic setup

Definition (Compatibility Condition)

Let G and H be groups acting on each other and acting on
themselves via conjugation. The mutual actions are said to be
compatible if (gh)g ′ = ghg−1

g ′ and (hg)h′ = hgh−1
h′

Definition (Non-abelian tensor product)

The nonabelian tensor product G ⊗ H is the group generated by
g ⊗ h, g ∈ G h ∈ H and relations gg ′ ⊗ h = (gg ′ ⊗ gh)(g ⊗ h)
and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′) for all g , g ′ ∈ G , h, h′ ∈ H.

Definition (Non-abelian tensor square)

When G = H and all mutual actions are via conjugation, then the
group is called non-abelian tensor square.

Schurs exponent conjecture



Basic setup

Definition (Compatibility Condition)

Let G and H be groups acting on each other and acting on
themselves via conjugation. The mutual actions are said to be
compatible if (gh)g ′ = ghg−1

g ′ and (hg)h′ = hgh−1
h′

Definition (Non-abelian tensor product)

The nonabelian tensor product G ⊗ H is the group generated by
g ⊗ h, g ∈ G h ∈ H and relations gg ′ ⊗ h = (gg ′ ⊗ gh)(g ⊗ h)
and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′) for all g , g ′ ∈ G , h, h′ ∈ H.

Definition (Non-abelian tensor square)

When G = H and all mutual actions are via conjugation, then the
group is called non-abelian tensor square.

Schurs exponent conjecture



Basic setup

Definition (Compatibility Condition)

Let G and H be groups acting on each other and acting on
themselves via conjugation. The mutual actions are said to be
compatible if (gh)g ′ = ghg−1

g ′ and (hg)h′ = hgh−1
h′

Definition (Non-abelian tensor product)

The nonabelian tensor product G ⊗ H is the group generated by
g ⊗ h, g ∈ G h ∈ H and relations gg ′ ⊗ h = (gg ′ ⊗ gh)(g ⊗ h)
and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′) for all g , g ′ ∈ G , h, h′ ∈ H.

Definition (Non-abelian tensor square)

When G = H and all mutual actions are via conjugation, then the
group is called non-abelian tensor square.

Schurs exponent conjecture


