CENTRAL UNITS OF INTEGRAL GROUP RINGS

Andreas Bächle
Group Algebras, Representations and Computation 2019

ICTS, Bengaluru, India, October 14-23, 2019

Let G throughout be a finite group and $U(\mathbb{Z} G)$ the unit group of its integral group ring.

Problem

(1) Describe $U(\mathbb{Z} G)$.
(2) Describe $Z(U(\mathbb{Z} G)) \leqslant U(\mathbb{Z} G)$.
(3) Which properties of G can we recover from $\mathbb{Z} G$?
$\mathrm{Z}(\mathrm{U}(\mathbb{Z} G)) \simeq \pm \mathrm{Z}(\mathrm{G}) \times C_{\infty}^{r}$.

Definition (Bakshi-Maheshwary-Passi, 2017)

A finite group G is called cut ${ }^{a} \quad \Leftrightarrow \quad Z(U(\mathbb{Z} G))$ is finite.
${ }^{a}$ cut stands for "central units trivial"

Besides the intrinsic interest in cut groups here are two further motivations why cut groups are relevant:

- When describing the structure of the unit group, one frequently aims for a "generic" subgroup of finite index:

$$
\left[\begin{array}{cc}
\nearrow & \nwarrow \\
\begin{array}{l}
\text { often up to f.i. } \\
\text { by "bicyclic }
\end{array} & \begin{array}{l}
\text { covered by "bi- } \\
\text { cyclic units" \& } \\
\text { units" }
\end{array}
\end{array}\right.
$$

(see Jespsers-del Río, Group Ring Groups, Chapter 11). So for cut groups, the Bass units are superfluous.

- G being cut has a strong bearing on fixed point properties like Serre's property (FA) and Kazhdan's property (T) for the group $U(\mathbb{Z} G)$; see B-Janssens-Jespers-Kiefer-Temmerman, Abelianization and fixed point properties of linear groups and units in integral group rings, Chapter III.

Let G throughout be a finite group.

G rational $: \Longleftrightarrow \mathrm{CT}(G) \in \mathbb{Q}^{h \times h}$

$$
\Longleftrightarrow \quad \forall x, y \in G: \quad\langle x\rangle=\langle y\rangle \Rightarrow x \sim y
$$

G cut

$$
\begin{aligned}
& \Longleftrightarrow \Longleftrightarrow \mathrm{Z}(\mathrm{U}(\mathbb{Z} G))= \pm \mathrm{Z}(G) \\
& \Longleftrightarrow \quad \forall \chi \in \operatorname{Irr}(G): \mathbb{Q}(\chi)=\mathbb{Q}\left(\sqrt{-d_{\chi}}\right), d_{\chi} \in \mathbb{Z}_{\geqslant 0} \\
& \Longleftrightarrow \quad \forall x \in G: \quad \mathbb{Q}(x)=\mathbb{Q}\left(\sqrt{-d_{x}}\right), d_{x} \in \mathbb{Z}_{\geqslant 0} \\
& \Longleftrightarrow \forall x, y \in G: \quad\langle x\rangle=\langle y\rangle \Rightarrow x \sim y \text { or } x \sim y^{-1}
\end{aligned}
$$

Where: $\mathbb{Q}(\chi)=\mathbb{Q}(\chi(g): g \in G)$,

$\mathrm{CT}(G)=\left(\begin{array}{ll|l}\| & \ldots & \\ & & \|\end{array}\right)$

Examples.

- S_{n} is rational.
- $P \in \operatorname{Syl}_{p}\left(S_{n}\right)$.

Prational $\Leftrightarrow p=2$.
P cut $\Leftrightarrow p \in\{2,3\}$.

- $P \in \operatorname{Syl}_{p}\left(G L\left(n, p^{f}\right)\right)$.
P rational $\Leftrightarrow p=2$ and $n \leqslant 12$.
P cut $\Rightarrow p=2$ and $n \leqslant 24$ or $p=3$ and $n \leqslant 18$.

Theorem (Bakshi-Maheshwary-Passi, 2017)

$G \neq 1$ cut group, then $2||G|$ or 3$||G|$.
$f(r)$: number of all groups of order r, $c(r)$: number of cut groups of order r.

Proposition (B-Caicedo-Jespers-Maheshwary, 2018)

$$
\lim _{n \rightarrow \infty} \frac{\ln c\left(p^{n}\right)}{\ln f\left(p^{n}\right)}=1, \quad \text { for } p \in\{2,3\} .
$$

Percentage of rational and cut groups in all groups

An old conjecture:

Conjecture

G rational, $P \in \mathrm{Syl}_{2}(G) \quad \Rightarrow \quad$ Prational?

In 2012, I.M. Isaacs and G. Navarro presented counterexamples of order 1536 to this conjecture. Yet, they also proved:

Theorem (Isaacs-Navarro, 2012)

Let G be a solvable rational group and $P \in \operatorname{Syl}_{2}(G)$ has nilpotency class at most 2. Then P is rational.

Problem A

G cut,$P \in \operatorname{Syl}_{3}(G) \Longrightarrow P$ cut?

Why might $p=3$ really be different?
An element $x \in H$ is called inverse semi-rational (isr) in G iff for all $y \in H$ s.t. $\langle x\rangle=\langle y\rangle: x \sim y$ or $x \sim y^{-1}$.

Hence:
H cut $\quad \Longleftrightarrow \quad \forall x \in H$: x inverse semi-rational in H.

Lemma

Let $x \in G$ be a 3 -element. Then
x is isr in $G \quad \Longleftrightarrow \quad x$ is isr in P for some $P \in \operatorname{Syl}_{3}(G)$ with $x \in P$.

Problem A

G cut, $P \in \operatorname{Syl}_{3}(G) \quad \Longrightarrow \quad P$ cut?

Theorem (B-Caicedo-Jespers-Maheshwary, 2018)

Let G be a cut group and $P \in \operatorname{Syl}_{3}(G)$. Then P is also cut, provided one of the following holds:
(1) G is supersolvable,
(2) G is a Frobenius group,
(3) G is (almost) simple,
(4) G is of odd order and $\mathrm{O}_{3}(G)$ is abelian,
(5) $|G| \leqslant 2000$ or $|G| \in\left\{2^{2} \cdot 3^{6}, 2^{3} \cdot 3^{6}, 2^{2} \cdot 3^{7}\right\}$.

Theorem (Grittini, 2019; Navarro-Tiep, 2019)

Let p be an odd prime, let G be a (p-solvable) cut group, $P \in \operatorname{Syl}_{p}(G) \quad \Longrightarrow \quad P / P^{\prime}$ elementary abelian.

Definition. $\pi(G)=\{p$ prime : $p| | G \mid\}$, the prime spectrum of G.
RemARK. $\left|\pi\left(S_{n}\right)\right| \longrightarrow \infty$ for $n \rightarrow \infty$.

Theorem (Gow, 1976)

Let G be a solvable rational group. Then $\pi(G) \subseteq\{2,3,5\}$.

Theorem (Chillag-Dolfi, 2010; B, 2017)

Let G be a solvable cut group. Then $\pi(G) \subseteq\{2,3,5,7\}$.
G solvable. If G is rational, then $\pi(G) \subseteq\{2,3,5\}$. If G is cut, then $\pi(G) \subseteq\{2,3,5,7\}$.

Every $\{2,3\}$-group can be emebdded in a rational $\{2,3\}$-group.

Theorem (Hegedűs, 2005)

If G is a solvable rational group and $P \in \operatorname{Syl}_{5}(G)$. Then $P \& G$ and $\exp P \mid 5$.

Remark

Let G be a solvable cut group and $p \in\{2,3,5,7\}, P \in \operatorname{Syl}_{p}(G)$. The p-length of G and the exponent of P can be arbitrarily large.

Problem B

Let G be a solvable cut group.
Is it true that $\exp \mathrm{O}_{5}(\mathrm{G}) \mid 5$ and $\exp \mathrm{O}_{7}(\mathrm{G}) \mid 7$?

G cut

$$
\begin{aligned}
& \Longleftrightarrow \quad \forall x \in \operatorname{lrr}(G): \mathbb{Q}(\chi)=\mathbb{Q}\left(\sqrt{-d_{\chi}}\right), d_{\chi} \in \mathbb{Z}_{\geqslant 0} . \\
& \Longleftrightarrow \quad \forall x \in G: \quad \mathbb{Q}(x)=\mathbb{Q}\left(\sqrt{-d_{x}}\right), d_{x} \in \mathbb{Z} \geqslant 0 .
\end{aligned}
$$

G semi-rational $\quad: \Longleftrightarrow \quad \forall x \in G: \quad[\mathbb{Q}(x): \mathbb{Q}] \leqslant 2$.
G quadratic
$: \Longleftrightarrow \quad \forall \chi \in \operatorname{lrr}(G):[\mathbb{Q}(\chi): \mathbb{Q}] \leqslant 2$. rational

Denote $\mathbb{Q}(G)=\mathbb{Q}(\chi(g): g \in G, \chi \in \operatorname{Irr}(G))$. Obviously, $[\mathbb{Q}(G): \mathbb{Q}]=1$, if G is rational. Can we bound $[\mathbb{Q}(G): \mathbb{Q}]$ for an interesting class containing the rational groups?

Theorem (Tent, 2012)

Let G be a solvable group, that is semi-rational or quadratic rational. Then $[\mathbb{Q}(G): \mathbb{Q}] \leqslant 2^{7}$.

In particular, this holds for solvable cut groups (there $\leqslant 2^{5}$)!
Robinson-Thompson (1995): $\left[\mathbb{Q}\left(A_{n}\right): \mathbb{Q}\right] \sim 2^{\pi(n)}$ (π prime counting function), so $[\mathbb{Q}(G): \mathbb{Q}]$ can get arbitrarily large for semi-rational and quadratic rational groups G.

Yet, only 5 simple alternating groups are cut and $A_{n} \times \ldots \times A_{n}$'s "tend" to become rational as chief factors of cut groups.

Problem C

 Is there $c>0$ such that for all cut groups $G,[\mathbb{Q}(G): \mathbb{Q}] \leqslant c$?
Theorem (Bakshi-Passi-Maheshwary, 2017)

Description of all (46) metacyclic cut groups.

Theorem (B., 2018)

Let G be a Frobenius cut groups.

1. If the Frobenius complement is of even order, then G is in one of 6 infinite series or one of 4 "sporadic" such groups.
2. If the Frobenius complement K is of odd order, then $K \simeq C_{3}$ and the Frobenius kernel is a 2- or 7-group of nilpotency class at most 2 and exponent dividing 4 or 7 , respectively.

Theorem (Trefethen, 2019)

The non-abelian composition factors of cut groups are all alternating +16 of Lie type +12 sporadics.

Theorem (B.-Caicedo-Kiefer-del Río, 2019)

The Prime Graph question holds for all cut groups not mapping onto the Monster.

Some References

A. BÄCHLE, Integral group rings of solvable groups with trivial central units, Forum Math. 30(4), 845-855, 2018.
A. Bächle, M. Caicedo, E. Jespers, S. Maheshwary, Global and local properties of finite groups with only finitely many central units in their integral group ring, 12 pages, submitted, 1808.03546 [math. GR], 2018.
G.K. Bakshi, S. Maheshwary, I.B.S. PASSI, Integral group rings with all central units trivial, J. Pure Appl. Algebra, 221(8), 1955-1965, 2017.
A.A. BovDI, The multiplicative group of an integral group ring. , Kod GASNTI 27.17.19, Uzhgorodskij Gosudarstvennyj Universitet, 1987.
D. Chillag, S. Dolfi, Semi-rational solvable groups, J. Group Theory 13(4), 535-548, 2010.
J. Ritter, S.K. Sehgal, Integral group rings with trivial central units, Proc. Amer. Math. Soc. 108(2), 327-329, 1990.

THANK YOU FOR YOUR ATTENTION!

