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Let G throughout be a finite group and U(ZG) the unit group of
its integral group ring.

Problem
(1) Describe U(ZG).
(2) Describe Z(U(ZG)) 6 U(ZG).
(3) Which properties of G can we recover from ZG?

Z(U(ZG)) ' ±Z(G)× Cr
∞.

Definition (Bakshi-Maheshwary-Passi, 2017)
A finite group G is called cuta ⇔ Z(U(ZG)) is finite.

acut stands for “central units trivial”
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Besides the intrinsic interest in cut groups here are two further
motivations why cut groups are relevant:
I When describing the structure of the unit group, one

frequently aims for a “generic” subgroup of finite index:[
U(ZG) :

〈
(ZG)1,Z(U(ZG))

〉]
<∞

↗ ↖
often up to f.i.
by “bicyclic
units”

covered by “bi-
cyclic units” &
“Bass units”

(see Jespsers-del Río, Group Ring Groups, Chapter 11). So
for cut groups, the Bass units are superfluous.

I G being cut has a strong bearing on fixed point properties
like Serre’s property (FA) and Kazhdan’s property (T) for the
group U(ZG); see B-Janssens-Jespers-Kiefer-Temmerman,
Abelianization and fixed point properties of linear groups
and units in integral group rings, Chapter III.
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Let G throughout be a finite group.

G rational :⇐⇒ CT(G) ∈ Qh×h

⇐⇒ ∀ x, y ∈ G: 〈x〉 = 〈y〉 ⇒ x ∼ y

G cut :⇐⇒ Z(U(ZG)) = ±Z(G)
⇐⇒ ∀ χ ∈ Irr(G): Q(χ) = Q(

√
−dχ), dχ ∈ Z>0

⇐⇒ ∀ x ∈ G: Q(x) = Q(
√
−dx), dx ∈ Z>0

⇐⇒ ∀ x, y ∈ G: 〈x〉 = 〈y〉 ⇒ x ∼ y or x ∼ y−1

Where: Q(χ) = Q(χ(g) : g ∈ G),

CT(G) =


 CT(G) =

 ...

 CT(G) =

 ...
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EXAMPLES.
I Sn is rational.
I P ∈ Sylp(Sn).

P rational ⇔ p = 2.
P cut ⇔ p ∈ {2,3}.

I P ∈ Sylp(GL(n, pf)).
P rational ⇔ p = 2 and n 6 12.
P cut ⇒ p = 2 and n 6 24 or p = 3 and n 6 18.
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Theorem (Bakshi-Maheshwary-Passi, 2017)
G 6= 1 cut group, then 2 | |G| or 3 | |G|.

f(r): number of all groups of order r,
c(r): number of cut groups of order r.

Proposition (B-Caicedo-Jespers-Maheshwary, 2018)

lim
n→∞

ln c(pn)

ln f(pn)
= 1, for p ∈ {2,3}.
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Percentage of rational and cut groups in all groups
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Rational groups vs Cut groups

Rational Cut
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An old conjecture:

Conjecture
G rational, P ∈ Syl2(G) ⇒ P rational?

In 2012, I.M. Isaacs and G. Navarro presented counterexamples
of order 1536 to this conjecture. Yet, they also proved:

Theorem (Isaacs-Navarro, 2012)
Let G be a solvable rational group and P ∈ Syl2(G) has nilpotency
class at most 2. Then P is rational.
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Problem A
G cut, P ∈ Syl3(G) =⇒ P cut?

Why might p = 3 really be different?

An element x ∈ H is called inverse semi-rational (isr) in G iff for
all y ∈ H s.t. 〈x〉 = 〈y〉: x ∼ y or x ∼ y−1.

Hence:
H cut ⇐⇒ ∀ x ∈ H: x inverse semi-rational in H.

Lemma
Let x ∈ G be a 3-element. Then
x is isr in G ⇐⇒ x is isr in P for some P ∈ Syl3(G) with x ∈ P.
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Problem A
G cut, P ∈ Syl3(G) =⇒ P cut?

Theorem (B-Caicedo-Jespers-Maheshwary, 2018)

Let G be a cut group and P ∈ Syl3(G). Then P is also cut,
provided one of the following holds:
(1) G is supersolvable,
(2) G is a Frobenius group,
(3) G is (almost) simple,
(4) G is of odd order and O3(G) is abelian,
(5) |G| 6 2000 or |G| ∈ { 22 · 36, 23 · 36, 22 · 37 }.

Theorem (Grittini, 2019; Navarro-Tiep, 2019)
Let p be an odd prime, let G be a (p-solvable) cut group,
P ∈ Sylp(G) =⇒ P/P′ elementary abelian.
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DEFINITION. π(G) = {p prime : p | |G|}, the prime spectrum of G.

REMARK. |π(Sn)| −→ ∞ for n→∞.

Theorem (Gow, 1976)
Let G be a solvable rational group. Then π(G) ⊆ {2,3,5}.

Theorem (Chillag-Dolfi, 2010; B, 2017)
Let G be a solvable cut group. Then π(G) ⊆ {2,3,5, 7}.
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G solvable. If G is rational, then π(G) ⊆ {2,3,5}.
If G is cut, then π(G) ⊆ {2,3,5, 7}.

Every {2,3}-group can be emebdded in a rational {2,3}-group.

Theorem (Hegedűs, 2005)
If G is a solvable rational group and P ∈ Syl5(G).
Then P C6 G and expP | 5.

Remark
Let G be a solvable cut group and p ∈ {2,3,5, 7}, P ∈ Sylp(G).
The p-length of G and the exponent of P can be arbitrarily large.

Problem B
Let G be a solvable cut group.
Is it true that expO5(G) | 5 and expO7(G) | 7?
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G cut ⇐⇒ ∀ χ ∈ Irr(G): Q(χ) = Q(
√
−dχ), dχ ∈ Z>0.

⇐⇒ ∀ x ∈ G: Q(x) = Q(
√
−dx), dx ∈ Z>0.

G semi-rational :⇐⇒ ∀ x ∈ G: [Q(x) : Q] 6 2.

G quadratic :⇐⇒ ∀ χ ∈ Irr(G): [Q(χ) : Q] 6 2.
rational

CT(G) =

 ...

 CT(G) =

 ...

 CT(G) =

 ...

 CT(G) =

 ...
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Denote Q(G) = Q(χ(g) : g ∈ G, χ ∈ Irr(G)). Obviously,
[Q(G) : Q] = 1, if G is rational. Can we bound [Q(G) : Q] for an
interesting class containing the rational groups?

Theorem (Tent, 2012)
Let G be a solvable group, that is semi-rational or quadratic
rational. Then [Q(G) : Q] 6 27.

In particular, this holds for solvable cut groups (there 6 25)!
Robinson-Thompson (1995): [Q(An) : Q] ∼ 2π(n) (π prime
counting function), so [Q(G) : Q] can get arbitrarily large for
semi-rational and quadratic rational groups G.
Yet, only 5 simple alternating groups are cut and An × ...× An’s
“tend” to become rational as chief factors of cut groups.

Problem C
Is there c > 0 such that for all cut groups G, [Q(G) : Q] 6 c?
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Theorem (Bakshi-Passi-Maheshwary, 2017)
Description of all (46) metacyclic cut groups.

Theorem (B., 2018)
Let G be a Frobenius cut groups.
1. If the Frobenius complement is of even order, then G is in

one of 6 infinite series or one of 4 “sporadic” such groups.
2. If the Frobenius complement K is of odd order, then K ' C3

and the Frobenius kernel is a 2- or 7-group of nilpotency
class at most 2 and exponent dividing 4 or 7, respectively.
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Theorem (Trefethen, 2019)
The non-abelian composition factors of cut groups are all
alternating + 16 of Lie type + 12 sporadics.

Theorem (B.-Caicedo-Kiefer-del Río, 2019)
The Prime Graph question holds for all cut groups not mapping
onto the Monster.
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