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Notations

G finite group

RG group ring of G over the commutative ring R

U(RG) group of units of RG

V(RG) group of normalized units of RG, i.e.

V(RG) =

{ ∑
g∈G

ugg ∈ U(RG) :
∑

g∈G

ug = 1

}
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A fundamental question concerning group rings is the following.

Which properties of G are determined by its group ring RG?

It may be investigated with respect to each coefficient ring R. But it is clear that
the

”
best “answers are obtained looking at the integers Z.

Because G lives naturally in the units of RG, ZG rsp. it is natural to expect
answers considering the units and there the normalized units V (ZG) contain all
informations.
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Basic notions and results on torsion units

Most of the basic facts are due to G. Higman and S. Berman.

• Units of the form g ∈ G are called trival units of V (ZG).

• Central torsion units of V (ZG) are trivial units.

• The order of a torsion subgroup of V (ZG) divides |G|.
• A torsion subgroup H of V (ZG) is called a group basis if it consists of

linearly independent elements and generates ZG as ring. In this situation we
write ZG = ZH.

• H is a group basis iff |H| = G|.
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The Zassenhaus Conjectures

”
ZC1 “ 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

”
ZC2 “ 1983

Every group basis of ZG is conjugate within QG to G.

”
ZC3 “ 1983

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed around 1987 a counterexample to
ZC2. We know now — i.e. after the construction of a counterexample to ZC 1 by
F. Eisele and L. Margolis (2018)— that all three Zassenhaus conjectures do not
hold in general, i.e. do not hold for the class of all finite groups.
Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
But ZC 3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) and ZC1 for cyclic-by-abelian groups
(M.Caicedo,A.delRio,L.Margolis 2013).



The Zassenhaus Conjectures

”
ZC1 “ 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

”
ZC2 “ 1983

Every group basis of ZG is conjugate within QG to G.

”
ZC3 “ 1983

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed around 1987 a counterexample to
ZC2. We know now — i.e. after the construction of a counterexample to ZC 1 by
F. Eisele and L. Margolis (2018)— that all three Zassenhaus conjectures do not
hold in general, i.e. do not hold for the class of all finite groups.
Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
But ZC 3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) and ZC1 for cyclic-by-abelian groups
(M.Caicedo,A.delRio,L.Margolis 2013).



The Zassenhaus Conjectures

”
ZC1 “ 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

”
ZC2 “ 1983

Every group basis of ZG is conjugate within QG to G.

”
ZC3 “ 1983

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed around 1987 a counterexample to
ZC2. We know now — i.e. after the construction of a counterexample to ZC 1 by
F. Eisele and L. Margolis (2018)— that all three Zassenhaus conjectures do not
hold in general, i.e. do not hold for the class of all finite groups.
Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
But ZC 3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) and ZC1 for cyclic-by-abelian groups
(M.Caicedo,A.delRio,L.Margolis 2013).



The Zassenhaus Conjectures

”
ZC1 “ 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

”
ZC2 “ 1983

Every group basis of ZG is conjugate within QG to G.

”
ZC3 “ 1983

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed around 1987 a counterexample to
ZC2. We know now — i.e. after the construction of a counterexample to ZC 1 by
F. Eisele and L. Margolis (2018)— that all three Zassenhaus conjectures do not
hold in general, i.e. do not hold for the class of all finite groups.
Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
But ZC 3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) and ZC1 for cyclic-by-abelian groups
(M.Caicedo,A.delRio,L.Margolis 2013).



The Zassenhaus Conjectures

”
ZC1 “ 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

”
ZC2 “ 1983

Every group basis of ZG is conjugate within QG to G.

”
ZC3 “ 1983

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed around 1987 a counterexample to
ZC2. We know now — i.e. after the construction of a counterexample to ZC 1 by
F. Eisele and L. Margolis (2018)— that all three Zassenhaus conjectures do not
hold in general, i.e. do not hold for the class of all finite groups.

Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
But ZC 3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) and ZC1 for cyclic-by-abelian groups
(M.Caicedo,A.delRio,L.Margolis 2013).



The Zassenhaus Conjectures

”
ZC1 “ 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

”
ZC2 “ 1983

Every group basis of ZG is conjugate within QG to G.

”
ZC3 “ 1983

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed around 1987 a counterexample to
ZC2. We know now — i.e. after the construction of a counterexample to ZC 1 by
F. Eisele and L. Margolis (2018)— that all three Zassenhaus conjectures do not
hold in general, i.e. do not hold for the class of all finite groups.
Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.

But ZC 3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) and ZC1 for cyclic-by-abelian groups
(M.Caicedo,A.delRio,L.Margolis 2013).



The Zassenhaus Conjectures

”
ZC1 “ 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

”
ZC2 “ 1983

Every group basis of ZG is conjugate within QG to G.

”
ZC3 “ 1983

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed around 1987 a counterexample to
ZC2. We know now — i.e. after the construction of a counterexample to ZC 1 by
F. Eisele and L. Margolis (2018)— that all three Zassenhaus conjectures do not
hold in general, i.e. do not hold for the class of all finite groups.
Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
But ZC 3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) and ZC1 for cyclic-by-abelian groups
(M.Caicedo,A.delRio,L.Margolis 2013).



Replacements for ZC1
Several questions have been posed which are weaker than ZC 1, e.g.

SP Does the order of a torsion element of V (ZG) coincide with the order of a
group element of G (the so-called Spectrum question SP) ?

Another one (posed by myself in Oberwolfach 2007) is the following.

Question R1 Given a torsion unit u ∈ V (ZG). Is there a finite group H
containing G such that u is conjugate within QH to an element of G?

Proposition (del Rio - Margolis 2017)

Let u ∈ V (ZG) be a torsion unit. Consider G in the natural way (acting by
multiplication on itself) as a subgroup of the symmetric group SG of degree |G|.
Then the following are equivalent.

• Positive answer to Question R1

• u is conjugate to an element of G in QSG.

• (Conjecture of A.A.Bovdi 1987) Let u =
∑

g∈G zgg ∈ ZG. Then for each
m ∈ N with m 6= o(u) the coefficients of elements of order m of u sum up to
zero , i.e. ∑

g∈G,o(g)=m

zg = 0.
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Known results on Bovdi’s conjecture

Bovdi’s conjecture holds provided

• G is metabelian. (M.Dokuchaev-S.K.Sehgal 1994)

• G soluble, all Sylow subgroups are abelian and u has prime power order.
(S.O.Juriaans 1994)

• G arbitrary , u has prime order p. (M.Hertweck 2006)
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Recent Results

The following two recent results are joint work with A. Bächle and M. Serrano
(Can. J. Math. 2019).

Proposition 1 (A.Bächle, W.K. - M.Serrano)

Suppose that G has a nilpotent Hall subgroup N such that G/N is abelian. Then
there is a group H containing G as subgroup such that ZC1 holds for ZH.

Note. In the special case when the Hall subgroup is a p-group M.Hertweck showed
2006 that then even ZC1 holds.
The statement of Proposition 1 is slightly stronger than an affirmative answer to
Question R1.
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Recent Results ctd

Proposition 2 (A.Bächle, W.K. - M.Serrano)

Suppose that G has a normal Sylow p - subgroup P such that Bovdi’s conjecture
has an affirmative answer for ZG/P . Then it has also an affirmative answer for
ZG.

It is an immediate corollary of Proposition 2 that Question R1 has a positive
solution provided G is supersoluble. A bit more general we get that it behaves well
under supersoluble Hall extensions.

Corollary

Suppose that G has a supersoluble normal Hall - subgroup H such that Bovdi’s
conjecture has an affirmative answer for ZG/H. Then it has also an affirmative
answer for ZG.

Note. With respect to supersoluble groups ZC 1 is still open.
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Comparison with ZC 1

The counterexamples G of F. Eisele and L. Margolis to ZC1 are metabelian. They
have even an abelian normal Hall subgroup A such that G/A is abelian.

So the result of M. Dokuchaev and S. K. Sehgal shows that for these groups
Bovdi’s conjecture holds and Proposition 1 that these groups may be even
embedded into larger groups for which ZC 1 holds.
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Ingredients of the proof

Theorem (Hertweck 2013)

Let N be a normal p - subgroup of G. Then any torsion unit in ZG which maps
to the identity under the natural map ZG −→ ZG/N is conjugate to an element
of N by a unit in ZpG, where Zp = p - adic integers.

Proposition (Hertweck 2008)

Let G be a finite group and u a normalized torsion unit of ZpG. Suppose that the
p - part of u is conjugate to an element x ∈ G within ZpG. Then the partial
augmentation

εy(u) = 0 (i.e.
∑

g∈yG

zg = 0, when u =
∑
g∈G

zgg)

for every g ∈ G whose p - part is not conjugate to x.



Sketch of the proof of Proposition 1

Using the two results of Hertweck one can show that ZC 1 holds for the group

G = (P1 ·A1)× . . .× (Pk ·Ak),

where each Aj is abelian and P1 × . . .× Pk form a normal nilpotent Hall
subgroup N of G and Pj are the Sylow subgroups of N.

Recall that Hertweck showed ZC 1 for P ·A, i.e. for
”
Sylow -by- abelian “. So the

first step just generalizes the proof of Hertweck to
”
nilpotent Hall -by- sufficiently

large abelian. “

If now H is given with a nilpotent normal Hall subgroup N such that H/N is
abelian, then let A be a complement of N in H and let

G = N o (A1 × . . .×Ak),

where Ai
∼= A for each i, N = P1 × . . .×Pk is the Sylow decomposition and each

Ai acts on Pi as A and trivially on the other factors Pj .
Then H embeds into G and ZC 1 holds for G by the first step.



Metabelian Groups

Theorem

Let G be a finite metabelian group. Then there is a group E (e.g. E = SG,
containing G such that the following holds.

(1) Each torsion unit of V (ZG) is conjugate within QE to an element of G.

(2) Each group basis of ZG is conjugate within QE to G.

(3) Each subgroup of V (ZG) is conjugate within QE to a subgroup of G.



NilpotentHall - by - Abelian Groups

Theorem
Let G be a finite nilpotentHall-by-abelian group. Then there is a group E
containing G such that the following holds.

(1) Each torsion unit of V (ZG) is conjugate within QE to an element of G.

(2) Each group basis of ZG is conjugate within QE to G.

(3) Each p-subgroup of V (ZG) is conjugate within QE to a subgroup of G.

(3) holds even with QG instead of QE and is due to M.Dokuchaev.
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Supersoluble Groups

Theorem
Let G be a finite supersoluble group. Then there is a group E containing G such
that the following holds.

(1) Each torsion unit of V (ZG) is conjugate within QE to an element of G.

(2) Each group basis of ZG is conjugate within QE to G.

(3) Each p - subgroup of V (ZG) is conjugate within QE to a subgroup of G.



The proof of all these three results uses the following.

Lemma

Suppose (R1) holds for the finite group G.
Let H be a subgroup of V (ZG) and assume that H is isomorphic to a subgroup
of G.
Let E be the symmetric group on G and consider G as subgroup of E via
multiplication on itself.
Then H is conjugate within QE to a subgroup of G.



The preceeding results suggest to consider for certain finite groups and certain
subgroups the following questions

Question R2 Are two group bases of V (ZG) conjugate within QSG, i.e. a
normalized automorphism of ZG is given by such a conjugation followed by a
group automorphism.

Question R3 Given a torsion subgroup U of V (ZG). Is there a finite group E
containing G such that U is conjugate within QE to a subgroup of G?

Of course the questions make only sense for special classes, e.g. for p - subgroups.
This class leads to the following topic.



Sylow in V (ZG)

A Sylowlike theorem in V (ZG) may have the following form

Let H be a finite p - subgroup of V (ZG) then H is conjugate within QG to a
subgroup of G.

So G would determine the finite p - subgroups of V (ZG).

This is an open question.

Of course one could also try to prove as a first goal weaker statements ( so-called
weak Sylow like theorems), weak means isomorphism instead of conjugacy
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Some known results

A Sylowlike theorem holds for V (ZG) provided

• G is nilpotent-by-nilpotent (M. Dokuchaev-S. O. Juriaans 1996)

• G is a Frobenius group (Dokuchaev, Juriaans, Polcino Milies,V.Bovdi,
Hertweck, Margolis and Ki. , between 1996 and 2017 )

and with respect to specific primes, if

• G/Op′(G) has a normal Sylow p - subgroup (A. Weiss 1993)

• G = PSL(2, rf ) if p 6= r or p = r = 2 or f = 1. (Hertweck - Höfert - Ki.
2009, Margolis 2016)

A weak Sylowlike theorem holds, if

• G has cyclic Sylow p - subgroups. (Ki. for p=2 2007, Hertweck for p odd
2008)

• 2 - subgroups of V (ZG) are isomorphic to subgroups of G if Sylow 2 -
subgroups of G are abelian, quaternion or dihedral. (Bächle-Ki. 2011, Ki.
2015, Margolis 2017)
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2015, Margolis 2017)



Some known results

A Sylowlike theorem holds for V (ZG) provided

• G is nilpotent-by-nilpotent (M. Dokuchaev-S. O. Juriaans 1996)

• G is a Frobenius group (Dokuchaev, Juriaans, Polcino Milies,V.Bovdi,
Hertweck, Margolis and Ki. , between 1996 and 2017 )

and with respect to specific primes, if

• G/Op′(G) has a normal Sylow p - subgroup (A. Weiss 1993)

• G = PSL(2, rf ) if p 6= r or p = r = 2 or f = 1. (Hertweck - Höfert - Ki.
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Sylow numbers for group bases

M.Hertweck showed 1997 that group bases of ZG are not always isomorphic.
Thus it is not clear whether different group bases have the same number of Sylow
p - subgroups.

Let G be finite. Let X be a group basis of V (ZG).
Denote by np(G), np(X) rsp. the number of Sylow p - subgroups of G,X rsp.
Is np(G) = np(H) ?



Characters and Sylow numbers

For a finite group U denote by X(U) its ordinary character table and by Spec(U)
its spectral table, i.e. the character table including the head line.

G.Navarro 2003

Let G and H be finite groups with X(G) = X(H). Does it follow for each prime p
that

np(G) = np(H)

Note that ZG ∼= ZH =⇒ Spec(G) = Spec(H) =⇒ X(G) = X(H). Thus results
on character tables yield results for group rings.



Properties from Character Tables

The character table X(G) determines

• The length of the conjugacy classes.

• The normal subgroup lattice. For each normal subgroup N it determines
X(G/N).

• The chief series of G, i.e. in particular the composition factors up to
isomorphism (W.K. 1989).

• It does not determine the orders of the representatives of the conjugacy
classes but the primes dividing the order of a representative (G.Higman).

• It determines whether G has abelian Sylow subgroups and if so their
isomorphism type (W.K. and R.Sandling 1989).



Theorem (G.Navarro and N.Rizo 2016).

Spec(G) = Spec(H) =⇒ np(G) = np(H) ∀p

provided G is p - soluble.

Theorem (W.K. and I.Köster 2017)

X(G) = X(H) =⇒ np(G) = np(H) ∀p

provided G is nilpotent - by - nilpotent or a Frobenius group.
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With respect to integral group rings even more is true

Theorem S

Let G be a p - constrained group. Let q be a prime not dividing Op′(G) and let X
be a group basis of ZG.

a) (W.K.-K.W.Roggenkamp 1993) A q - subgroup U of X is conjugate within
QG to a subgroup of G.

b) (W.K.-I.Köster 2016) The number of Sylow q - subgroups of X and G
coincide.

Note. p - soluble groups are p - constrained. Thus a Sylow like theorem for
group bases follows for integral group rings of arbitrary finite soluble groups.
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Isomorphism Questions

Replacing Conjugacy by Isomorphism

Is a finite subgroup of V (ZG) isomorphic to a subgroup of G?

Martin Hertwecks’s counterexample (1997, Annals 2001) to the isomorphism
problem IP, i.e. to

ZG ∼= ZH =⇒ G ∼= H?

shows that in general the answer is No!

Not each finite subgroup of V (ZG) is isomorphic to a subgroup of G.
In a first moment one might think that there may be no general results on these
problems. However
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ZC2 and therefore IP are almost true

Theorem A

Let G be an arbitrary finite group then ZC2 (and thus also the isomorphism
problem IP) has a positive answer for Z(FpG ·G).

Corollary

Let G be an arbitrary finite group then

Z(FpG ·G) ∼= Z(FpH ·H) =⇒ G ∼= H.

Note that ZG is a subring and a quotient of Z(FpG o G).
The theorem is based on a result of K.W.Roggenkamp and L.L.Scott (the so-called
F ∗ - theorem) concerning automorphisms of p-adic group rings of finite groups
whose generalized Fitting subgroup F ∗(G) is a p - group and a G×G - argument
which permits to establish IP from automorphisms. The F ∗ - theorem yields

Theorem B
Suppose that G has a normal p - subgroup containing its own centralizer then
ZC2 has a positive answer for ZG.

Theorem A is a special case of Theorem B.
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Some Ingredients of the proof of Theorem S and related
results

• Rational conjugacy for finite q - subgroups theorem holds for V (ZG) if it
holds for V (ZG/Op′(G)).

• Theorem B , i.e. if Op′(G) = 1 then ZG determines G up to isomorphism
because G is by assumption p - constrained.

• (I. Köster, 2017) Suppose that the finite group G has normal subgroups M
and N such that M ∩N = 1. Then the number of Sylow p - subgroups may
be computed from the number of Sylow p - subgroups of G/M , G/N and
G/(M ·N),

np(G) =
np(G/M) · np(G/N)

np(G/MN)
.
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Summarizing open questions

For ZC1 it is the case that enlarging the integral group ring to an integral group
ring of a supergroup yields replacements for larger classes of finite groups.

Moreover the following questions are open.

• SP Are finite cyclic subgroups of V (ZG) isomorphic to a subgroup of G? In
other words have V (ZG) and G the same spectrum ?

• Sylowlike Does in V (ZG) a Sylowlike theorem hold ? Does ZG determine
the Sylow numbers ?
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For the proof of the Sylowlike result for PSL(2, rf ) (as in the most results
concerning insoluble groups)
the so-called HeLP - method is used (explained in the workshop last week).

The origin for this computational method and for the many resulting articles is the
paper

Zassenhaus conjecture for A5

by
I.S.Luthar and I.B.S.Passi

Proc.Indian Acad.Sci.Math.Sci. 99 (1989), no.1, 1–5
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Thank you for your attention
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