
Polynomial Groups, Polynomial 2- cocycles, Dimension Subgroups
and Related Problems

L. R. Vermani

Let G be a group, ZG the integral group ring of G and ∆(G) its augmenta-
tion ideal. For n = 1, let ∆n(G) denote the nth associative power of ∆(G) with
∆1(G) = ∆(G) and let γn(G) denote the nth term in the lower central series of
G with γ1(G) = G and γ2(G) = G′ the derived group of G.Let T = Q/Z denote
the additive group of rationals mod1 regarded as a trivial G− module. For G
Abelian, let SPn(G) denote the nth symmetric power of G. If R is a commuta-
tive ring with identity, let RG denote the group ring of G with coefficients in R
and let ∆R(G) denote its augmentation ideal.

In this talk we give a report/ review the work done by Professor I. B. S.
Passi upto the year 1990. Later work of Professor Passi will be reprted upon by
the next speakers.

1. Polynomial groups
For an Abelian group A, a map f : G −→ A is called a polynomial map of de-

gree ≤ n if the linear extension f∗29 : ZG −→ A of f vanishes on ∆n+1(G).The
quotient groups Pn(G) = ∆(G)/∆n+1(G), Qn(G) = ∆n(G)/∆n+1(G) are called
polynomial groups. Passi [29] proves that

Theorem 1.1. (a) If G is finite, then Pn(G) and, so also, Qn(G) is finite
for all n = 1;

(b) If G is cyclic, then Qn(G) ≡ G;
(c) If G is a free group of finite rank, then Pn(G), Qn(G) are

free Abelian for all n ≥ 1.
(d) If G is a free Abelian group of rank m,then Pn(G) is a

free Abelian group of rank
(
n+m
m

)
−1 and Qn(G) is a free Abelian group of rank(

n+m−1
n−1

)
.

He also obtains the structure of Pn(G) and Qn(G) when G is a finite ele-
mentary Abelian p−group.

Passi [31] proves that Pn and Qn are nonadditive functors from the category

of Abelian groups to itself.
The map θn(G) : SPn(G) −→ Qn(G), given by θn(G)(

∑
xij

εG xi1 ⊗∧ ... ⊗∧

xin) =
∑
xij

εG(xi1 − e)...(xin − e) + ∆n+1(G), xij ∈ G,
which is an epimorphism induces a natural transformation θn : SPn −→

Qn which is always surjective and is an isomorphism on free Abelian groups.
Consequently it follows that the derived functors of Qn coincide with those of
SPn. He also proves

Theorem 1.2. θ2 is always an isomorphism.
G. Losey tried to extend the above result of Passi and proved
Theorem 1.3.[23]. If G is any finitely generated group, then Q3(G) ∼=

γ2(G)/γ3(G)⊕ SP 3(G/γ2(G)).
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Recall that if G is an Abelian group, the group SPn(G) = F/R, where F
is the free Abelian group generated by all symbols u(x1, x2, ... , xn), xi ∈
G and R is the subgroup of F generated by all elements of the form (1)
u(x1, ..., xi−1, xix

′
i, xi+1..., xn)−u(x1, ...xi−1, xi, xi+1, ..., xn)−u(x1, ..., xi−1, x

′
i, xi+1, ..., xn)

and (2) u(x!, ..., xn) − u(xπ(1), ..., xπ(n)), where π denotes any permutation of

1, 2, ..., n.The coset u(x1, ..., xn) +R is denoted by x1 ⊗ˆ ...⊗ˆ xn. Vermani [51]
proved that φn : G −→ SPn(G) given by φn(x) = x ⊗ˆ ... ⊗ˆ x (n factors,
xεG) is a polynomial map of degree 5 n.The map φn induces a natural trns-
formation : Qn −→ SPn. Vermani further proves that the composition φnθn is
multiplication by n! (factorial n). Consiquently

Theorem 1.4. [52]. (a) If G is n! tortionfree, then θn is an isomorphism.
(b) If G is torsionfree, then θn is an isomorphism for all n = 1.

For an Abelian group G, let S(G) =
∑
n SP

n(G) be the symmetric algebra
of G and grZG =

∑
nQn(G) be the associated graded ring of ZG. The natural

epimorphisms θn then induce a natural epimorphism θ(G) : S(G) −→ grZG. F.
Bachman and L. Grunenfelder prove

Theorem 1.5[3]. For a finite Abelian group G, θ(G) is an isomorphism if
and only if G is cyclic.

Passi and Vermani prove that
Theorem 1.6 [44]. (1) If G is an elementary Abelian p−group of rank k,

then grZG ≡ Z[x1, ..., xk]/ < pxi, x
p
jxi − xjx

p
i > .

(2) If G 6= (1) is of type (pm1 , pm2 , ..., pmk) with p prime and mi = 1, then
θn is an isomorphism if and only if n < (r + 1)(p − 1) + 2, where r = ∞ for
k = 1 and r = min{|mi −mj ||i 6= j} for k > 1.

Bachman and Grunenfelder prove that
Theorem 1.7 [5]. If the group G is finite Abelian, then there exists an

integer N(G) such that Qn(G) ∼= Qn+1(G) for all n = N(G).
It is then immediate that
Theorem 1.8 [44]. For the p−group G as in Theorem 1.6(2), N(G) =

(r + 1)(p− 1) + 1 for k > 1.

Hales [17] has described the structure of Qn(G) for finite Abelian G for large
n. Later, Hales and Passi [20] gave a simplified proof of the following:

Theorem 1.9. If G is a finite Abelian p−group, p prime, then for sufficient
large n,Qn(G) is independent of n and its order is pd−1, where d is the number
of cyclic subgroups of G.

Finding the structure of the polynomial groups Qn(G) generated a lot of
interest. The structure of Q2(G), is given by an exact sequence

o −→ γ2(G)/γ3(G) −→ Q2(G) −→ SP 2(G/γ2(G)) −→ 0 (1.1)
in which the maps are natural. Sandling [47] proved that the sequence (1.1)

splits (although not naturally) if G is finite and Losey [24] proved the splitting
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of this sequence for G finitely generated. Hales and Passi [19] imroved upon
this result and proved

Theorem 1.10. The sequence (1.!) splits in the following cases:
(i) G/γ2(G) and, hence, G is finitely generated; (the same as Losey’s result)
(ii) Gγ2(G) is direct sum of (a) direct sum of cyclic groups, or (b) is divisible,

or (c) completely decomposable torsion- free, or (d) torsion.
They also show that the sequence (1.1) does not always split and construct

an example to prove their claim.
If R is a radical ring, then R with composition defined by a ? b = a + b +

a× b, a, b ∈ R, is a group called the circle group of R. Hales and Passi [19] also
consider the question: which nilpotent groups of class 2 arise as circle groups of
nilpotent rings of index 3? They prove

Theorem 1.11. A nilpotent groupG of class 2 is a circle group of a nilpotent
ring of index 3 if G/γ2(G) is a direct sum of cyclic groups, or is divisible, or is
torsion, or is torsion-free and completely decomposable.

This result corresponds to a result of Ault and Watters [2] who proved it
with G/γ2(G) replaced by G/ζ(G), ζ(G) the center of G. They then prove that
the conjecture of Ault and Watters namely ”every nilpotent group of class 2 is
a circle group of a nilpotent ring of index 3” is false.

2. Polynomial 2−cocycles and dimension subgroup
For an ideal J of ZG,G∩ (1 +J) = {x ∈ G|x− 1 ∈ J} is a normal subgroup

of G. Also G

is commutative. Let indH2(G,T ) denote the subgroup of H2(G,T ) which
is generated by the elements of H2(G,T ) which correspond to induced cental
extensions. Passi [32] proved

Theorem 2.5. Dimension conjecture is equivalent to the following state-
ment:

For all finite p−groups G, every element of indH2(G,T ) is of degree ≤ class
of G.

He then characterized induced central extensions and proved

Theorem 2.6. If G is nilpotent of class n, then a central extension 0 −→
T

i−→M
α−→ G −→ 1 is an induced central extension if and only if the central

extension 0 −→ T/γn+1(M) −→M/γn+1(M) −→ G −→ 1 is a split extension.

He then deduced that
(a) every central extension of T by any Abelian group is an induced central

extension;
(b) every central extension of T by a free nilpotent group is an induced cental

extension.
Improving upon an earlier result of his, he roved
(c) For any Abelian group G,degH2(G,T ) ≤ 1.
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As another characterization of induced central extensions, he proved
Theorem. 2.7 If G is a nilpotent group of class n = 2, then every cental

extension of T by G is an induced central extension if and only if the inflation
homomorphism inf : H2(G/γn(G), T ) −→ H2(G,T ) is zero.

Vermani [53] gave yet another characterization of induced central extensions.
Induced central extensions could, in fact, also be defined with T replaced by any
Abelian group A regarded as a trivial G−module. Let A be an Abelian group
regarded as a trivial G−module and

E : 0 −→ A
i−→M

α−→ G −→ 1

be a central extension of A by a nilpotent group G of class n = 1. Let ξ
be the element of H2(G,A) which corresponds to the central extension E, δE :
H2(G,Z) −→ A be the cotransgression associated with E and τ : H2(G,Z) −→
H2(G/γn(G), Z) be the coinflation homomorphism. Let B be image of δE .
Vermani[53] gave the following characterization.

Theorem 2.8. The central extension E is induced if and only if
(i) H2(G,Z) = ker δE + ker τ,and (ii) ξ ∈ ker{H2(G,A) −→ H2(G,A/B)},

where H2(G,A) −→ H2(G,A/B) is the homomorphism induced by the natural
projection A −→ A/B.

He also obtained certain necessary conditions for E to be Baer sum of an
induced central extension and a central extension of class n. As a particular case
, he proved

Every central extension of an elementary Abelian p−group by a nilpotent
group of class n is Baer sum of an induced central extension and a central
extension of class n.

In view of Theorems 2.5 and 2.7, we are lead to investigate conditions under
which the inflation homomorhism H2(G/γn(G), T ) −→ H2(G,T ) is zero. Ob-
serve that when G = H ⊕K, with H a finite p−group of class 2 and K cyclic of
order p,then inf : H2(G/γ2(G), T ) −→ H2(G,T ) is not zero. Let Z2

m(G,A) de-
note the the subgroup of Z2(G,A) consisting of 2−cocycles of G to A which are
of degree ≤ m. As a first step Passi and Vermani [43] prove that the subgroup
PnH

2(G,T ) is given by the following exact sequence

0 −→ Hom(∆2(G)/∆n+2(G), T )
un−→ Z2

n(G,T )
vn−→ Pn(G,T ) −→ 0

where un and vn are suitably defined homomorphisms. They prove that if
H2(G/γn(G), T ) is of degree ≤ n− 1, then inf : H2(G/γn(G), T ) −→ H2(G,T )
is zero if and only if the homorphism un−1 is an isomorphism. As a consequence
of this, it can be proved

Proposition 2.9. For any group G, inf : H2(G/γ2(G), T ) −→ H2(G,T ) is
zero if and only if ∆2(G)/∆3(G) ∼= G/γ2(G)⊗G/γ2(G).

Then they prove
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Theorem 2.10. IfG is a finite group, then inf:H2(G/γ2(G), T ) −→ H2(G,T )
is zero if and only if |γ2(G)/γ3(G)||SP 2(G/γ2(G)| = |G/γ2(G)⊗G/γ2(G)|.

If G is nilpotent of class n and 1 −→ R −→ F −→ G −→ 1 is a free
presentation of G, they prove

Theorem 2.11. inf : H2(G/γn(G), T ) −→ H2(G,T ) is
(a) zero if and only if R ∩ γ2(F ) = [F,R]γn+1(F );
(b) an epimorphism if and only if γn+1(F ) ⊆ [F,R].

3. Filtration of the Schur multiplicator
(a) Schur multiplicator
In view of the relationship between the dimension property and the study

of the subgroup PnH
2(G,T ), of H2(G,T ) (refer Theorem 2.2) it is of inter-

est to study the increasing filtration 0 = P0H
2(G,T ) ⊆ P1H

2(G,T ) ⊆ ... ⊆
PnH

2(G,T ) ⊆ Pn+1H
2(G,T ) ⊆ ...

of the multiplicator H2(G,T ) of G. Passi and Stammbach [40] construct a

short exact sequence 0 −→ Hom(∆n+1(G)/∆n+2(G), T ) −→ Hom(∆(G)/∆n+1(G), T ) −→
PnH

2(G,T ) −→ 0.

Let 1 −→ R −→ F −→ G −→ 1 be a free presentation of G. Set R =

R/[R,F ], F = F/[R,F ],and{w(g)}g∈G be a set of representatives of G in F with

W : G×G −→ R the corresponding 2−cocycle. For α ∈ Hom(R, T ),let θ(α) be
the element of H2(G,T ) determined by the 2−cocycle αW : G×G −→ T. The

map θ is an epimorphism : Hom(R, T ) −→ H2(G,T ).The subgroup Pn(G,T ) is
then characterized as follows

Theorem 3.1.[40] PnH
2(G,T ) = {θ(α)|α ∈ Hom(R, T ), α|

R∩(1+∆n+2(F )+∆(F )∆(R))=0.
}

Using this characterization they prove

Theorem 3.2. PnH
2(G,T ) = H2(G,T ) if and only if R ∩ (1 + ∆n+2(F ) +

∆(F )∆(R)) = 1.

A group G is called parafree if G is residually nilpotent and G has the same
lower cental sequence as some free froup.

Parafree groups are then characterized by
Theorem 3.3. A residually nilpotent group G is parafree if and only if
(i) G/γ2(G) is free Abelian and (ii) PnH

2(G,T ) = 0 for all n = 0.

Continuing with the relationship between dimension subgroups and filtration
of the Schur multiplicator,

Passi and Vermiani [45] first give the following necessary and sufficient con-
dition for an element cooresponding to a central extension to be of degree ≤ n.

Proposition 3.4. Let A be a divisible Abelian group regarded as a trivial
G− module, ξ ∈ H2(G,A) and 0 −→ A −→ Π −→ G −→ 1 be a central
extension corresponding to ξ. Then ξ ∈ PnH

2(G,A) if and only if A ∩ (1 +
∆n+2(Π) + ∆(Π)∆(A)) = (0).
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If the group G is a torsion group, then the above result becomes (with the
notations as in Theorem 3.4)

Proposition 3.5. ξ ∈ PnH2(G,A) if and only if A ∩Dn+2(Π) = (0).

Passi and Vermani then prove
Theorem 3.6. The following statements are equivalent
(i) For every nilpotent group G, there is an integer n ≥ 1 such that Dn(G) =

1.
(ii) For every nilpotent group G, there exists an integer n ≥ 1 such that

PnH
2(G,T ) = H2(G,T ).

Write γω(G) = ∩nγn(G) and Dω(G) = ∩nDn(G).
Theorem 3.7. The following statements are equivalent.
(i) For every group G,Dω(G) = γω(G).
(ii) For every nilpotent p− group G without elements of infinite p− height,

∪nPnH2(G,Tp) = H2(G,Tp).

If ζ(G) denotes the center of G, let In(G) = G∩(1+∆n(G)+∆(G)∆(ζ(G)))
for n = 1. Then In(G) is called the nth generalized dimension subgroup of G.
Let Iω(G) = ∩nIn(G). We have

Theorem 3.8. The following statements are equivalent.
(i) For every group G, Iω(G) = γω(G).
(ii) For every nilpotent group G and prime p, ∪nPnH2(G,Tp) = H2(G,Tp).

As some positive results, Passi and Vermani [45] prove
Theorem 3.9. Let the group G be nilpotent which is either finitely gener-

ated or torsionfree. Then there exists an integer n = 1 such that PnH
2(G,T ) =

H2(G,T ).
Theorem 3.10. IfG is a nilpotent p−group of class n < p, then PnH

2(G,T ) =
H2(G.T ).

Sjogren [49] has given constants c1, c2, ..., cn,, ... such that for every group
G,Dcn

n (G) ≤ γn(G) for all n = 1. This result is equivalent to a result about
{PnH2(G,T )}. Explicitly

Theorem 3.11[45].The following statements are equivalent:
(i) There exist constants c1, c2, ..., cn, ...such that for every groupG,Dcn

n (G) ≤
γn(G) for all n = 1.

(ii) There exist constants d1, d2, ..., dn, ...such that , for every nilpotent group
G of class ≤ n, dnH2(G,T ) ≤ PnH2(G,T ).

When G is a torsionfree nilpotent group of class c, then the n in Theorem
3.9 is c2 + 4c + 1. Improving upon the argument of Passi- Vermani, Passi and
Sucheta[41] prove that this n = 3c + 1. Passi and Sucheta also prove that if
G is nilpotent of class c such that the torsion subgroup of G is central, then
D2c+1(G) = 1.
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Looking for classes of groups for which the dimension property holds, Passi
and Sucheta[41] first prove

Theorem 3.12. IfG is a divisible nilpotent group of class c, then PcH
2(G,T ) =

H2(G,T ).
Using this result, they prove
Theorem 3.13. If G is a divisible group, then In(G) = γn(G) for all n = 1.

Observe that this result in particular implies that dimension property holds
for divisible groups.

In connection with Theorem 2.3(c) and (d), M. Goyal [11] proved
Theorem 3.14. If G is finite nilpotent of class 2 with γ2(G) cyclic, then

P2H
2(G,T ) = H2(G,T ).

while Passi, Sucheta and Tahara [42] prove
Proposition 3,15.. If the group G is finite 2−group of class 2 with G/γ2(G)

direct sum of three cyclic groups, then P2H
2(G,T ) = H2(G,T ).

Regarding dimension subgroupps, they give an alternative proof of the fol-
lowing result of Tahara.

Proposition 3.16. [51] If G is a finite 2−group of class 3 with G/γ2(G)
direct sum of three cyclic groups, then D4(G) = 1.

For a subgroup H of G, let
√
H = {x ∈ G|xm ∈ H for some integer m = 1}

Working with the coefficients in the field Q, Passi, Sucheta and Tahara [42]
prove

Theorem 3.16. For any group G, In,Q(G) =
√
γn(G) for all n = 1.

As a consequence of this, it is deduced
Corollary 3.17. If G is torsionfree nilpotent of class c, then PcH

2(G,Q) =
H2(G,Q).

Corollary 3.18. If G is nilpotent of class c such that the second integral
homology group H2G is torsionfree, then PcH

2(G,T ) = H2(G,T ).
(b) Varietal multiplicator
Let V be a variety, G a group in V and A an Abelian group regarded as

a trivial G−module. If q : F −→ G is a V−free presentation of G, then the

varietal multiplicator of G with coefficients in A is
∼
V (G,A) = kernel of the

inflation map q∗ = inf : H2(G,A) −→ H2(F,A) (cf. U. Stammbach, Homology
in Group Theory, Lecture Notes in Math. no. 359, Springer Verlag, 1973).

Define Pn
∼
V (G,A) =

∼
V (G,A) ∩ PnH2(G,A). This leads to a filtration of the

varietal multiplcator
∼
V (G,A). Then Pn

∼
V (G,A) = ker( q∗ : PnH

2(G,A) −→
PnH

2(F,A)). Passi, Sharma and Vermani [39] prove that if Ab denotes the

category of Abelian groups, then Pn
∼
V : V × Ab −→ Ab is a bifunctor, cn-

travariant in the first variable and covariant in the second variable. Then they

prove that Pn
∼
V (G,A) 5 Im(inf :

∼
V (G/γn+1(G), A) −→

∼
V (G,A)).

Generalizing an earlier result of Passi, they prove
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P1

∼
V (G,T ) = Im(inf :

∼
V (G/γ2(G) −→

∼
V (G,T ) for any G ∈ V.

If V = Nm is the variety of nilpotent groups of class 5 m, then for any

G ∈ V, inf :
∼
V (G/γm(G), T ) −→

∼
V (G,T ) is an epimorphism.

Let 1 −→ N −→ G −→ K −→ 1 be an exact srquence with G in V.
Let En(N) be the subgroup of G given by En(N)/[G,N ] = G/[G,N ] ∩ (1 +
∆n(G/[G,N ]) + ∆(G/[G,N ])∆(N/[G,N ])). Then {En(N)} is a decreasing se-
quence of normal subgroups G. Corresponding to the 5−term exact sequence of
Hochschild and Serre, we have

Theorem 3. 19. For every n = 0, there exists a natural exact se-
quence 0 −→ Hom(K/γn(K), T ) −→ Hom(G/γn(G), T ) −→ Hom(N/N ∩
En+2(N), T ) −→ Pn

∼
V (K,T )

inf−→ Pn
∼
V (G,T ).

Using the above natural exact sequence, they prove
Theorem 3.20. Let 1 −→ R −→ F −→ G −→ 1 be a V−free presentation

of G ∈ V and n a positive integer. Then Pn
∼
V (G,T ) ∼= Hom(R ∩ γn(F )/R ∩

En+2(R), T ).
Cosequently, we have

Proposition 3. 21. (i) For any positive integer n, Pn
∼
V (G,T ) =

∼
V (G,T )

if and only if R ∩ En+2(R) = [F,R]. Proposition 3.22. If F is a V−free

group, then Pn
∼
V (F/γi(F ), T ) = 0 for n ≤ i − 2 and Pi−1

∼
V (F/γi(F ), T ) ∼=

Hom(γi(F )/γi(F ) ∩Di+1(F ), T )..
Proposition 3.23. (i) If F is a V−free group, then every element of

∼
V (F/γn+1(F ), T ) is of degree precisely n if and only if γn+2(F ) = γn+1(F ) ∩
Dn+2(F ).

(ii) If V is a variety free groups have the dimension property, then every

element of
∼
V (F/γn+1(F ), T ) is of degree n.

The authors prove the following interesting result
Proposition 3.24. If 1 −→ R −→ F −→ G −→ 1 is a V−free presentation

of a group G in V, then R∩γn(F )/R∩γn(F )[F,R] is a V−presentation invariant
of G.

.

The authors then extend the exact sequence of Theorem 3.19 by one more
term and prove

Theorem 3.25. If the group G is in V,N is a normal subgroup of G,
and 1 −→ R −→ F −→ G −→ 1, 1 −→ S −→ F −→ G/N −→ 1 are
V−presentations of G,G/N respectively, then for every n = 0 there exists a
natural exact sequence 0 −→ Hom(G/γ2(G)N,T ) −→ Hom(G/γ2(G), T ) −→
Hom(N/N ∩ En+2(N), T )

t−→ Pn
∼
V (G/N, T )

inf−→ Pn
∼
V (G,T )

θ−→
Hom(R ∩ En+2(S)/R ∩ En+2(R), T ) −→ 0.
A group G is called V−parafree if G is residually nilpotent and there ex-

ists a V−free group F and a homomorphism f : F −→ G which induces an
isomorphism F/γn(F ) −→ G/γn(G) for every natural number n.
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Passi, Sharma and Vermani then give a characterization of V− parafree

groups in terms of Pn
∼
V for the variety V in which the free groups have the

dimension property. Explicitly
Theorem 3.27. Let V be a variety such that V−free groups satisfy the

dimension property. If G ∈ V is
(a) residually nilpotent,
(b) G/γ2(G) is free in V ∩Ab,and

(c) Pn
∼
V (G,T ) = 0 for all n = 1,

then G is V−parafree.

Observe that free groups have the dimension property in (i) the variety of all
groups, (ii) the variety in which the free groups have torsion-free lower central
sequences.

If V is a variety and G ∈ V is V−parafree, is it true that Pn
∼
V (G, t) = 0

for all n = 1?
Finally, it is proved
Theorem 3.28. Let V be a variety, G a finitely generated group in V and

p a prime. Then Pn
∼
V (G,Zp) = 0 for all n = 1 if and only if there exists a free

group F in V and a homomorphism f : F −→ G which induces isomorphisms
fn : F/(γn(F ))(p) −→ G/(γn(G))(p) for all n = 1.

4. Relation modules
Let 1 −→ R −→ F

α−→ G −→ 1 be a non-cyclic free presentation of G.
Let n = 1. For a ∈ γn(R), g ∈ G,define aγn+1(R).g = x−1axγn+1(R), where
g = α(x). This is a well defined action of G on γn(R)/γn+1(R) and makes it a
right ZG−module. For n = 1, this module is called a relation module while for
n = 2, these modules are called higher relation modules. Recall that if S is a ring
with identity, a right S−module M is called faithful if AnnM = {s ∈ S|a.s = 0
for all a ∈ M} = 0. Using free differential calculus, Mital and Passi [27] prove
that if R/γ2(R) is a faithful ZG−module, then so are γn(R)/γn+1(R) for all
n = 2. In [33] Passi prved

Theorem 4.1. R/γ2(R) and, hence, γn(R)/γn+1(R) for all n = 1 are
faithful ZG−modules.

A generalization of this result of Passi namely: If R,S are normal subgroups
of a noncyclic free group F, then when is the Z(F/R)− module R ∩ S/[R,S]
faithful has been considered by Passi and Mikhailov but we do not consider this
here.

Let G be a group, R be a commutative ring with identity, U(R) the multi-
plicative group of invertible elements (units) of R and t : G×G −→ U(R) be a
twisting fuction i.e. a funtion which satisfies t(x, yz)t(y, z) = t(x, y)t(xy, z), x, y, z ∈
G.
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Observe that the twisting fuction is just like a 2−cocycle (wth trivialG−action
on U(R).

Let RtG be the twisted group ring of G over R with the twisting function t.

observe that RtG is a free R−module freely generated by the set G = {x|x ∈ G}
with multiplication defined by x.y = t(x, y)xy, x, y ∈ G and linearity.

An ideal A of RtG is said to be controlled by a normal subgroup H of G if
A = (A∩RtH)RtG. For a subset S of RtG, let l(S) = {α ∈ RtG|αS = o} which
is a left ideal of RtG. A two sided ideal A of RtG is called an annihilator ideal
if A = l(S) for some non-empty subset S of RtG. Let δ+(G) be the subgroup
of G generated by those torsion elemnts of G which have only finitely many
conjugates. Arora and Passi [1] proved

Theorem 4.2. If the order of every element of δ+(G) is regular in R, then
the annihilator ideals of RtG are controlled by δ+(G).

This leads, in particular, to the follwing
Corollary 4.3. If RG is a semiprime group ring, then the annihilator ideals

of RG are cotrolled by δ+(G).

The above result is a generalization of a result of Smith [49] who proved that
if k is a field such that kG is semiprime, then the annihilator ideals of kG are
controlled by δ+(G).

5. Polynomial groups, dimension subgroups mod n and modular
group algebras

Let R be a commutative ring with identity. Let ∆R(G) denote the aug-
mentation ideal of the group ring RG, Qn,R(G) = ∆n

R(G)/∆n+1
R (G) and the

Brauer-Jennings-Zassenhaus series {Mi(G)} defined by M1(G) = G, Mi(G) =
[G,Mi−1(G)]M(i/p)(G)p for i = 2, where (i/p) is the largest integer > i/p. If N is
a normal subgroup of G, let ∆R(G,N) denote the kernel of the homomorphism
RG −→ RG/N which is induced by the natural projection G −→ G/N.

Passi and Sehgal [37] prove
Theorem 5.1. If G and H are two groups with ZpG ∼= ZpH for some prime

p, then the quotients of the M−series with respect to the prime p satisfy
(i)Mi(G)/Mi+1(G) ∼= Mi(H)/Mi+1(H) and (ii)Mi(G)/Mi+2(G) ∼= Mi(H)/Mi+2(H)

for all i = 1.

They deduce
Proposition 5.2. If M3(G) = 1, then ZpG ∼= ZpH implies that G ∼= H.
They then prove
Theorem 5.3. If division by 2 is uniquely defined in Q2,R(G/γ2(G)), then

the exact sequence
0 −→ ∆R(G, γ2(G)) + ∆3

R(G)/∆3
R(G) −→ Q2,R(G)

α−→ Q2,R(G/γ2(G)) −→
0,

where α is the homomorphism induced by the natural epimorphism G −→
G/γ2(G), splits.
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When R = Zn and n is an odd integer or 0, then the above exact sequence
takes the form

0 −→ γ2(G)/(γ2(G)∩D3(G,Zn)) −→ Q2,Zn
(G)

α−→ Q2,Zn
(G/γ2(G)) −→ 0.

(5.1)

Finally, Passi and Sehgal prove
Theorem 5.4. If n is an odd integer or G is a group of odd exponent and

ZnG ≡ ZnH for some group H. then G/D3(G,Zn) ≡ H/D3(H,Zn).
Corollary 5.5. If G and H are p−groups of exponent pn, p 6= 2 and class 2

with ZpnG ∼= ZpnH, then G ∼= H.

Passi and Sharma [28] consider the above results for n even and modify the
exact sequence (5.1) to include the case of n even and prove

Theorem 5.6. If G is a finitely generated group and n is an integer = 0,
the the sequence

0 −→ γ2(G)/(γ2(G)∩GnD3(G,Zn))
i−→ ∆2

Zn
(G)/∆3

Zn
(G)+∆Zn

(G,Gn)
j−→

Q2,Zn
(G/Gnγ2(G)) −→ 0

where i is induced by x −→ x − 1 + ∆3
Zn

(G) + ∆Zn
(G,Gn), x ∈ G and j is

induced by the natural projection G −→ G/Gnγ2(G), is a split exact sequence.

Corresponding to Theorem 5.4 and Corollary 5.5, they prove
Corollary 5.7. (i) IfGn ≤ D3(G,Zn), G finitely generated, thenG/D3(G,Zn)

is an isomorphism invariant for such groups.
(ii) If G and H are finite 2−groups of exponent 2n and class 2 with Z2nG ∼=

Z2nH, then G ∼= H.

Let n = 0 and if n is even, let n = 2qm where q is a power of 2 and m is
odd. Let

Kn(G) =

{
Gnγ3(G) for n odd or n = 0

Gmγ3(G) ∩
〈
x2q|xq ∈ G2qγ2(G)

〉
γ3(G) for n even,

}
and N/Kn(G) =the subgrop of the centre of G/Kn(G) consisting of elements

of order dividing n.For n odd or n = 0, N/Kn(G) is the centre of G/Kn(G).
Passi and Sharma prove
Proposition 5.8. (i) G ∩ {1 + ∆3

Zn
(G) + ∆Zn(G)∆Zn(N)} = Kn(G) for n

odd or n = 0.
(ii) G∩{1+∆3

Zn
(G)+∆Zn

(G)∆Zn
(N)} = Kn(G) 〈xn|xqm ∈ N〉 for n even.

(iii) G ∩ {1 + ∆3
Zn
G)] = Kn(G) for all n.

6. Polynomial ideals in group rings and Lie solvable group rings
Parmentor, Passi and Sehgal [28] considered polynomial ideals which are

a generalization of polynomial maps. Let f(x1, x2, ..., xn) be a polynomial in
n non-commutating variables x1, x2, ..., xn and their inverses with coefficients
in the ring Z of integers. Let R be a commutative ring with identity 1R.
If g1, g2, ..., gn are elements of the group G, then f(g1, g2, ..., gn) can be re-
garded as an element of the group ring RG. The 2−sided ideal of RG gener-
ated by f(g1, g2, ..., gn), g1, g2, ..., gn ∈ G denoted by Af.,R is called a poly-
nomial ideal given by the polynomial f. For ideals A,B of RG, let [A,B]
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be the R−submodule of RG spanned by the Lie products [a, b] = ab − ba.
a ∈ A, b ∈ B. For any A, the Lie powers A(i) are defined by A(1) = A, and

for i = 2, A(i) = [A,A(i−1)]RG. Ideals ∆n
R(G),∆

(n)
R (G) and ∆R(G, γn(G)) are

polynomial ideals. Let iR : ZG −→ RG be the homomorphism induced by the
map n −→ n1R, n ∈ Z. Generalizing the concept of polynomial maps, they de-
fine what are called fR−polynomial maps. Explicitely, if f is a polynomial in
n non- commuting variables x1, ..., xn and their inverses with coefficients in Z,
then a map θ : G −→ M,M an R−module, is called an fR−polynomial map
if the linear extension θ∗ of θ to RG vanishes on the polynomial ideal Af,,R
determined by f.

Parmentor, Passi and Sehgal [28] study the elements of ZG which are mapped
into Af,R, both when the characteristic of R is 0 and > 0. They then obtain
dimension subgroups Dn,R(G) and Lie dimension subgroups D(n),R(G) in terms
of Dn,Z(G), Dn,Z?prZ(G) and D(n),Z(G), D(n),Z//prZ(G) respectively. These re-
sults for charecteristic of R non-zero being particlarly simple, we have

Theorem 6.1. If charecteristic of R is r > 0, then
(i) Dn,R(G) = Dn,Zr

(G) for all n = 1;
(ii) D(n),R(G) = D(n),Zr

(G) for all n = 1.

They then consider Lie powers of the augmentation ideal and prove

Theorem 6.2. ∆
(n)
R (G) = 0 for some n > 2 and ∆

(2)
R (G) 6= 0 if and only if

G is nilpotent, γ2(G) 6= 1 is a finite p−group and p is nilpotent in R.
Theorem 6.3. When the characteristic of R is is a power of p, p prime,

then ∩n∆
(n)
R (G) = 0 if and only if G is a residually nilpotent group with γ2(G)

a p−group of finite exponent.

They also give necessary and sufficient conditions for ∩n∆
(n)
R (G) = 0 in the

case when characteristic of R is 09. The result of Theorem 6.3 for finite G is
due to Sandling [47(a)]

Passi, Passman and Segal [36] consider group rings KG where K is a field
and obtain necessary and sufficient condions for KG to be Lie nilpotent and to
be Lie solvable.

When p is a prime > 0, a group A is called p−Abelian if γ2(A) is a finite
p−group. Let R be a K−algebra. Lie central and Lie derived series of R are
defined inductively by

γ0R = R, γn+1R = [R, γnR] (central series) and δ0R = R, δn+1R =
[δnR, δnR] (derived series). (The brackets are Lie brackets/products.)

The K−algebra R is called Lie nilpotent if γnR = 0 for some integer n and
R is Lie solvable if δnR = 0 for some integer n.Then Passi, Passman and Segal
obtain the following result about Lie nilpotence and Lie solvability of KG.

Theorem 6.4. Let the characteristic of K be p = 0. Then
(i) KG is Lie nilpotent if and only if G is p−Abelian and nilpotent;
(ii) for p 6= 2,KG is Lie solvable if and only if G is p−Abelian;
(iii) for p = 2,KG is Lie solvable if and only if G has a 2−Abelian subgroup

of index at most 2.

7. Fox subgroups of free groups
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Let F be a noncyclic free group and R a normal subgroup of F. For n = 0, the
subset F (n,R) = F ∩ (1 + ∆n(F )∆(R)) is a normal subgroup of F and is called
the nth Fox subgroup of F relative to R. Identification of the Fox subgroups is a
problem that dates back to Fox [9]. Observe that for R = F, F (n,R) is just the
dimension subgroup Dn+1(F ) = γn+1(F ) and it is clear that F [1, R] = γ2(R).
The results for n = 2 and for R = γ2(F ), n = 1 are due to Enright ( cf. [14]) and
Gupta and Gupta (cf.[14]) respectively. Gupta and Passi ([14], [17]) investigate

the quotients F/F (n,R) and F (n,R) = F (n,R)/F (n + 1, R). The quotients

F (n,R) are free Abelian groups and can be regarded as right F/R− modules
via conjugation in F. Passi and Gupta prove that are faithful. The case n = 0
of this result which is due to Passi and has already been discussed. Let ζk(G)
denote the kth term of the upper central series of G. Passi and Gupta[16] prove

Theorem 7.1.(i) ζn+1(F/F (n,R)) = ζn(F/F (n,R)) for all n = 1 and
(ii) ζ1(F/F (n,R)) is nontrivial if and only if F/R is finite.
(iii) If R ≤ γc(F ) but R � γc+1(F ), then ζ1F/F (n,R)) ≤ ζ1(R/F (n,R)) =

F (n− c,R)/F (n,R) for all n = c.
Regarding the residual proerties of F/F [n,R], they prove
Theorem. 7.2. If F/R is residually torsion free nilpotent, then so is

F/F [n,R]. Conversely, if F/[n,R] is residually nilpotent, then ∩k∆k(F/R) = 0.

In [15] Gupta and Passi cosider the structure of Uk = F (k,R)⊗Q as a right
Q(F/R)−module, where Q is the field of all rational numbers.Explicitely, they
prove (using basic commotators and Witt’s formula)

Theorem. 7.3. Uk= Q⊕ ...⊕Q⊕∆(F/R)⊕ ...⊕∆(F/R) with ρk+1 copies

of Q and mk(m− 1) copies of ∆(F/R),
where m is the rank of F and ρk+1 is the rank of γk+1(F )/γk+2(F ).

Among applications of this theorem, they prove
Theorem 7.4. (i)The centre ζ(F/F (k + 1, R)) of F/F (k + 1, R) is the

isolator of γk+1(C)F (k + 1, R)/F (k + 1, R), where C/γ2(R) is the center of
F/γ2(R).

(ii) If F/R is finite, then ζ2(F/F (k+1, R)) = ζ(F/F (k+1, R)) for all k = 0.

8. Sugroups of G determined by ideals of ZG of the form ∆n(G) +
∆(G)∆(H)

There has been considerable interest in determining generalized dimension
subgroups In(G) = G ∩ (1 + ∆n(G) + ∆(G)∆(ζ(G)) and subgroups of G de-
termined by ideals of the form ∆n(G) + ∆(G)∆(H) of ZG for some suitable
subgroups H of G. For example (among many other researchers) Sandling [47]
proved

Theorem 8.1. (a) Abelian- by- cyclic groups have dimension property.
(b) A split extension of an Abelian group by a group with dimension property

itself has dimension property.
(c) I3(G) = γ3(G).
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Let 1 −→ A
i−→ Π −→ G −→ 1 be an exact sequence with A Abelian and i

the inclusion map. Let M be an Abelian group and f : A −→ M a homomor-
phism. Passi [34] obtains necessary and sufficient conditions for extending f to
a polynomial map φ : Π −→ M the linear extension of which to ZΠ vanishes
on ∆n+1(Π) + ∆(Π)∆(A). As an application of this result he proves

Theorem 8.2. If A is an Abelian normal Abelian subgroup of G with G/A
cyclic, then G ∩ (1 + ∆n(G) + ∆(G)∆(A)) = γn(G).

An immediate consequence of this is Theorem 8.1(a) of Sandling.
Theorem 8.3. If A,H are subgroups ofG withH normal such thatG = AH

and A∩H = 1, then G∩(1+∆n(G)+∆(G)∆(A)) = Dn(H)[A, (n−1)G], where
[A, kG] = [...[[A,G], G], ..., G], G repeated k times.

This result as a corollary gives Theorem 8.1(b) of Sandling.
Passi also gives an alternative proof of Theorem 8.1(c) of Sandling. As

another application of his technical result on the extension of a homomorphism
to a polynomial map, he proves

Proposition 8.4. If G is a p−group of odd order, then I4(G) = γ4(G).

Continuing search for classes of groups which have the dimension property,
Guta, Hales and Passi [16] first prove

Theorem 8.5. If F is a free group of finite rank and S is a normal subgroup
of F containing γ2(F ), then there exists a natural number n0(F/S) depending
only on F/S such that for all n = n0(F/S), F ∩ (1 + ∆n+1(F ) + ∆(F )∆(S)) =
γn+1(F )γ2(S).

Then they deduce
Theorem 8.6. Let H be a normal Abelian subgroup of a finitely generated

metabelian group G with G/H Abelian. Then there exists a natural number
n0(G/H) depending only on G/H such that for all n = n0(G/H), G ∩ (1 +
∆n+1(G) + ∆(G)∆(H)) = γn+1(G).

In case the finitely generated metabelian group G is such that G/γ2(G) ∼=
C

(r)

pk
for some prime p and integers r, k = 1, they prove that the natural number

n0(G/γ2(G)) = pk + pk−1. Finally they prove
Proposition. 8.7. If G is a finitely generated metabelian group such that

G/γ2(G) is elemetary Abelian, then Dn(G) = γn(G) for all n = 1.

For a treatment of the subgroups of G determined by some ideals of the form
∆n(G) + ∆(H1)...∆(Hk), for some normal subgroups Hi of G upto the end of
1998 refer to [54]. As a particular example, Vermani [55] proved

Theorem 8.8. For any normal subgroupH ofG,G∩(1+∆(H)∆(G)∆(H)) =
γ3(H).

9. Residual nilpotence of augmentation ideal and residual solv-
ability of units group

Let P a property. Recall that a group G is said to be residually P if for every
x ∈ G, x 6= 1, there exists a normal subgroup Hx of G such that x /∈ Hx and
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the group G/Hx has the property P. Augmentation ideal ∆(G) of G is said to
be residually nilpotent if ∆ω(G) = ∩∞m=1∆m(G) = 0. Lichtman [22] proved

Theorem 9.1. For a group G,∆ω(G) = 0 if and only if either (a) G is resid-
ually torsion-free nilpotent or (b) G is discriminated by the class of nilpotent
groups of finite prime power exponenets.

He, then, also proved
Theorem 9.2. If F is a noncyclic free group with a normal subgroup R,

then ∆ω(F/R) = 0 if and only if ∆ω(F/γ2(R)) = 0.
The above result of Lichtman was improved upon by Hartley [21] who proved
Theorem 9.3. With F,R as in Theorem 9.2, let V (R) be a fully invariant

subgroup of R with R/V (R) torsion- free nilpotent. Then ∆ω(F/R) = 0 if and
only if ∆ω(F/V (R)) = 0.

Let F be a noncyclis free group and R be a normal subgroup of F. Let
ŕ = ZF∆(R) i.e. the ideal of ZF generated by ∆(R). Define ŕq, q ∈ {0, 1} to
be ŕ if q = 1 and ∆(F ) if q = 0. Let (q1, ..., qn) be an n− tuple with every
qi ∈ {0, 1}, and let M(q1, ..., qn) = F ∩ (1 + ŕq1 ...ŕqn). M(q1, ..., qn) is said to be
minimally expressed if M(q1, ..., qn) is a proper subgroup of both M(q1,..., qn−1)
and M(q2, ..., qn).

Generalizing one side of the result of Lichtman which is different from that

of Hartley, Gupta and Passi [15] prove (with the notations as above)
Theorem 9.4. If ∆ω(F/R) = 0, then ∆ω(F/M(q1, ..., qn)) = 0 for any

n−tuple (q1, ..., qn) 6= (0, ..., 0).
They also prove
Theorem 9.5. If F/R is periodic and the group F/M(q1, ..., qn) is residually

nipotent wih n = 2, then ∆ω(F/R) = 0 provided (q1, qn) 6= (0, 0).
In the reverse direction they prove
Theorem 9.6. If δ+(F/R) = 1 and M(q1, ..., qn) is minimally expressed,

then the residual nilpotence of F/M(q1, ..., qn) implies that ∆ω(F/R) = 0 pro-
vided (q1, qn) 6= (0, 0).

As a corollary it follows
Proposition 9.7. If F/R is torsion-free and M(q1, ..., qn) is minimally ex-

pressed, then the residual nilpotence of F/M(q1, ..., qn) implies that ∆ω(F/R) =
0 provided (q1, qn) 6= (0, 0).

Goncalves [10] proved that for G finite, the group U(QG) of units of the
group algebra QG,Q the field of rational numbers, is residually nilpotent if and
only if it is nilpotent and that U(QG) is solvable if and only if G is Abelian.
Bhandari and Passi consider and charcterize the residual solvability of U(KG),
when K is either (i) a P−adic field of charecteristic 0 or (ii) an algebraic number
field. Explicitely they ([6], [7]) prove

Theorem 9.8. When G is a finite group, then U (ω)(QG) is the identity
group or an elementary Abelian 2−group if and only if either (i) G is Abelian or
(ii) G is a Hamiltonian group of order 2nm,m odd, such that the multiplicative
order of 2 modulo m is odd.

They [7] also prove
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Theorem 9.9. The unit group U(RG),R the field of real numbers, is resid-
ually solvable if and only if G is Abelian.

10. Algebraic elements in group rings
Definition. Two torsion units u and v of ZG,G a finite group are rationally

conjugate if in each irreducible representation the matrices of u, v have the same
charcteristic polynomials.

Let C be a conjugacy class of G. For an element α =
∑
α(g)g in KG,K a

field, define its partial augmentation εC(α) over C by εC(α) =
∑
g∈C α(g). This

leads for a fixed conjugacy class C to a map εC : KG −→ K which is K−linear.
Since for g, h ∈ G, gh is a conjugate of hg, we have εC(αβ) = εC(βα) for all
α, β ∈ KG. The map εC is thus a trace map. The partial augmentation εC(α)
is also called the C−trace of α. Two torsion units u and v of ZGare said to be
rationally conjugate if and only if in each irreducible representation the matrices
of u, v have the same characteristic polynomial.

tLuthar and Passi [25] prove
Theorem 10.1. Let the group G be finite. Let u and v be units in ZG

with uk = 1 = vk, k = 1. Then u and v are rationally conjugate if and only if
εC(ud) = εC(vd) for every divisor d of k and every conugacy class C of G.

In particular, if the units u, v are of order p, p a prime, then they are ra-
tionally congruent if and only if εC(u) = εC(v) for every conjugacy class C of
G.

A conjecture of Zaqsssenhaus asserts that a torsion unit of augmentation 1
in ZG is conjugate in QG to a group element. Equivalently, that every partial
augmentation of a torsion unit of augmentation 1 in ZG is 0 or 1.

Using Theorem 10.1, they prove the Zassenhaus conjecture for the alternat-
ing group A5 of degree 5. Explicitely they prove

Theorem 10.2. Every normalized torsion unit in ZA5 is rationally conju-
gate to a group element.

In [18] Hales, Luthar and Passi make a detailed study of partial augmen-
tations. Let C1,..., Ct be the conjugacy classes of G. As a first result, they
prove

Theorem 10.3. Let G be a finite group and α ∈ CG. Let λ be the maximum
of the absolute values of the roots of the minimal polynomial m(x) of α over
C. Then

∑t
i=1 |εi(α)|2/|Ci| ≤ λ2. Equality holds if and only if α is the sum of

a central and a nilpotent element and all roots of m(x) are of absolute value
λ.(Here εi(α} stands for εCi

(α) and |Ci|| is the orderof Ci.)
Corollary 10.4. Every torsion unit u as also every idempotent u in CG

satisfies
∑t−1
i=1 εi(u)2/|Ci| ≤ 1.

Following are two other conseqences of Theorem 10.3.
(i) A central torsion unit of augmentation 1 in ZG is a group element.
(ii) If u is a torsion unit of augmentation 1 in ZG and u(g) 6= 0 for some

central element g in G,then u = g.
Some other applications of partial augmrntations (which include an alter-

native proof of a theorem of Bass) are also proved. Then they consider the
problem of Jordan decomposition.
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Let K be a field of characteristic 0, V be a finite dimensioal vector space
over K. An endomorphism φ ∈ EndK(V ) is called semisimple if its minimal

polynomial over K has no repeated roots in the algebraic closure K of K. Also
an element α of KG is said to be semisimple if its minimal polynomial over K

has no repeated roots in K. Jordan decomposition theorem states:
(1) φ ∈ EndK(V ) can be uniquely expressde as φ = φs +φn, where φs, φn ∈

EndK(V ), with φs semisiple and φn nilpotent,
(2) φs and φn can be expressed as polynomials in φ with coefficients in K.
(3) α ∈ KG can be uniquely expressed as α = αs + αn, where αs, αn ∈ KG

and αs is semisimple, αn is nilptent.
(4) αs and αn can be expressed as polynomials in α with coeffficients in K.
One of the results on Jordan decomposition provedis:
Theorem 10.5. Let A be the ring of algebraic integers of K. If Jordan

decomposition holds in AG, then G is Abelian.
Towards a contribution on determining finite groups so that Jordan decom-

position holds nontrivially in ZG,
Hales, Luthar and Passi prove
Theorem 10.6. If G is a dihedral group of order 2p, p a prime, then Jordan

decomposition holds in ZG.
.
Continuing this study of partial augmentations, Passi and Passman [35]

prove
Theorem 10.7 Let ξ be an element of the group algebra CG,C the field

of complex numbers, G any group (not necessarily finite) and suppose that
f(ξ) = 0 for some nonzero polynomial f(x) ∈ C[x]. If λ denotes the maximum

of the absolute values of the complex roots of f, then
∑
C εC(ξ)εC(ξ)/|C| ≤ λ2.

Here α for α ∈ C denotes the complex conjugate of α.
For G finite, this result reduces to that of the inequality inTheorem 10.3. In

case ξ is an idempotent, the above theorem extends a result of Weiss [56]. We
mention just two interesting corollaries of the above theorem proved by Passi
and Passman.

Corollary 10.8. Let ξ ∈ CG be algebraic over C and suppose that its
minimal polynomial has distinct roots, say λ1, ..., λn. If λ is the maximum of

the absolute values of the λi, then
∑
C εC(ξ)εC(ξ)/|C| ≤ λ2 with equality if and

only if ξ is central and |λi| = λ for all i.

Corollary 10.9. Let ξ be a unit of finite order in CG. Then
∑
C εC(ξ)εC(ξ)/|C| ≤

1 with equality if and only if ξ is central. Furthermore if ξ is in ZG, then equal-
lity occurs if and only if ±ξ is acentral torsion element of G.

In conclusion, let me admit that the presentation has been very sketchy
and that I have not done justice to the other researchers who have worked on
the problems considered above. I appologise to those authors. The problems
considered here are not considered by Passi and his coauthors in isolation but are
an active area of research. The only thing is that the history of these problems
could not be traced in one lecture. To do that each topic considered would need
one lecture. Also I have restricted myself to the work done by Professor Passi
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only upto the year 1990. Later developments and work done by Professor Passi
will be taken care of by next speakers.
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