GAP-exercises for group rings

- 1. a) Find non-isomorphic finite groups G and H such that $\mathbb{C}G \simeq \mathbb{C}H$? Is $\mathbb{Q}G \simeq \mathbb{Q}H$?
 - b) Find non-isomorphic finite groups G_1 and H_1 such that $\mathbb{Q}G_1 \simeq \mathbb{Q}H_1$? Is $\mathbb{C}G_1 \simeq \mathbb{C}H_1$? Hint: The command CharacterDegrees might be useful for some part of the exercise. Type ?CharacterDegrees in GAP to find out more.
- 2. Set $G = \langle (1,5,3), (1,2)(3,4,5,6) \rangle \leq S_6$ and

$$u = 2 \cdot (1, 4, 5, 2)(3, 6) - (1, 5)(4, 6),$$

$$v = (2, 4)(3, 5) - (1, 3)(4, 6) - (1, 3, 5)(2, 6, 4) + (1, 5, 3)(2, 4, 6) + (1, 5)(2, 6).$$

What is the order of G and the structure of this group? Is $u, v \in V(\mathbb{Z}G)$? Is $u, v \in V(\mathbb{Q}G)$? Are they rationally conjugate to an element of G? (There was useful content in the lectures of Ángel del Río.)

- 3. Find an element of $U(\mathbb{Z}S_3)$ which is not of the form g or -g for $g \in S_3$, expressed as linear combination of the elements of S_3 .
- 4. Find a group of least order, which is
 - a) not strongly monomial. Is this group monomial?
 - b) not normally monomial.
 - c) strongly monomial but not normally monomial.
 - d) normally monomial group but not metabelian.
 - e) strongly monomial but not abelian by supersolvable. Is this group normally monomial?
 - f) * monomial but not strongly monomial.
- 5. a) Verify that all Bass units (as in the defintion of GAP with 2 parameters) in $\mathbb{Z}D_{16}$ are central in $U(\mathbb{Z}D_{16})$. (Hint: The command ForAll might be useful.)
 - b) Find a finite group G such that $\mathbb{Z}G$ contains a non-trivial (i.e. not contained in G) non-central Bass unit.
 - c) Write a GAP function that takes 3 parameters: a group ring element g and 2 integers k and m and returns the Bass cyclic unit as defined in the lecture of Eric Jespers (generalizing the pre-implemented version of BassCyclicUnit in LAGUNA). Make your function also check whether k and m are coprime and satisfy the required congruence. (Hint: the command Sum might be useful.)

Please turn over

- 6. a) Let $G = Q_8$, the quaternion group of order 8. Use wedderga to determine the Wedderburn decomposition of $\mathbb{Q}Q_8$. The documentation of WedderburnDecompositionInfo might be useful to determine the "unusual" looking components.
 - b) Check that the matrices $z=\begin{pmatrix}0&-1\\1&-1\end{pmatrix}\in\mathrm{GL}_2(\mathbb{Q})$ and $v=\begin{pmatrix}0&1\\1&0\end{pmatrix}\in\mathrm{GL}_2(\mathbb{Q})$ satisfy the relations

$$z^3 = 1$$
, $v^2 = 1$, $z^v = z^2$.

- c) Let $\zeta = \zeta_3 \in \mathbb{C}^{\times}$ be a primitive 3rd root of unity. Convince yourself that $\zeta + \zeta^2 = -1$ and hence $2\zeta^2 + 1 = -2\zeta 1$ and that $(2\zeta + 1)^2 = -3$.
- d) Let $G = C_3 \rtimes C_4$, where the generator of the cyclic group of order 4 acts by inversion on the normal cyclic group of order 3 (this group has SmallGroup ID [12,1]). Determine the Wedderbrun decomposition of $\mathbb{Q}G$ using wedderga.

Hint: One of the simple algebras appearing in the Wedderburn decomposition is the quaternion algebra $\left(\frac{-1,-3}{\mathbb{O}}\right)$.

- 7. Calculate the nilpotency class of the unit group of \mathbb{F}_2D_{64} .
 - a) Without using the UnitLib package.
 - b) Using the UnitLib package.