Representations of reductive groups in defining characteristic

Frank Lübeck Lehrstuhl D für Mathematik, RWTH Aachen

ICTS Bangalore, Oct 14-23, 2019

Setup and Notation

 $K=\bar{\mathbb{F}}_p$

- *G* simple reductive group /K with root datum $(X, \Phi, Y, \Phi^{\vee})$
- Assume *G* simply connected ($Y = \mathbb{Z}\Phi^{\vee}$, SL, Sp, Spin, ...)

We consider rational representations $G \rightarrow GL(M)$, $M = K^n$ (morphism of varieties)

T < B < G maximal torus and Borel subgroup, this determines

 $\Phi = \Phi^+ \stackrel{.}{\cup} - \Phi^+ (\Phi^+ \text{ the positive roots})$

 $\omega_1, \dots, \omega_l$ a \mathbb{Z} -basis of X, dual to simple coroots (fundamental weights) $X^+ = \langle \omega_1, \dots, \omega_l \rangle_{\mathbb{N}_0}$ (dominant weights)

Partial order on *X*: $\mu \leq \lambda$ iff $\lambda - \mu \in \mathbb{N}_0 \Phi^+$

Weights

Restrict M to T (consider M as KT-module), then

$$M = \bigoplus_{\mu \in X} M_{\mu}$$
, where

$$M_{\mu} = \{ v \in M \mid vt = \mu(t)v \text{ for all } t \in T \}$$
 (weight spaces)

 $\Lambda(M) := \{ \mu \in X \mid M_{\mu} \neq 0 \} \quad (\text{weights of } M)$

 $ch(M): X \to \mathbb{N}_0, \mu \mapsto \dim M_{\mu}$ (character of M)

Theorem. [Chevalley '50s] If *M* is irreducible then there exists $\lambda \in \Lambda(M)$ with $\lambda \ge \mu$ for all $\mu \in \Lambda(M)$ (highest weight), $\lambda \in X^+$ is dominant.

For each dominant $\lambda \in X^+$ there is a unique irreducible module $L(\lambda)$ with highest weight λ .

Remark. This gives a parameterization of irreducible representations of *G* over *K*. But what are dim $L(\lambda)$ and ch $L(\lambda)$?

Restricted weights

$$X_p := \{a_1\omega_1 + \ldots + a_l\omega_l \mid 0 \le a_i < p\} \qquad (p\text{-restricted weights})$$

Theorem. [Steinberg tensor product theorem, 60s] Let $\lambda \in X^+$ dominant and write $\lambda = \lambda_0 + p\lambda_1 + \ldots + p^k\lambda_k$ with $\lambda_i \in X_p$. Then

$$L(\lambda) = L(\lambda_0) \otimes_K L(\lambda_1)^{F_p} \otimes \cdots \otimes_K L(\lambda_k)^{F_p^k}.$$

Here, M^{F_p} means the twist with the standard Frobenius F_p on M.

(So, for fixed *p*, the determination of all $chL(\lambda)$ reduces to a finite problem.)

Weyl modules

 \mathcal{L} : complex simple Lie algebra with root system Φ

 \mathcal{U} : its enveloping algebra, its irreducible (complex) representations are also parameterized by the dominant weights

 $V(\lambda)_{\mathbb{C}}$: irreducible representation of \mathcal{U} for $\lambda \in X^+$

Chevalley basis of \mathcal{L} leads to \mathbb{Z} -lattice $V(\lambda)_{\mathbb{Z}}$ (Kostant \mathbb{Z} -form)

 $V(\lambda) := V(\lambda)_{\mathbb{Z}} \otimes_{\mathbb{Z}} K$ becomes a *KG*-module (Weyl module)

 $V(\lambda)$ has a unique irreducible quotient $L(\lambda)$

Theorems. [Weyl, Freudenthal] dim $V(\lambda)$ and ch $V(\lambda)$ are known and computable.

Affine Weyl group

 $W_p := p\mathbb{Z}\Phi \rtimes W$ affine Weyl group

acts on X, $(w, \mu) \mapsto w.\mu$

Let $\rho := \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$ and define

$$\frac{C_{\mathbb{Z}}}{C_{\mathbb{Z}}} := \{ \lambda \in X \mid 0 < \langle \lambda + \rho, \alpha^{\vee} \rangle < p \text{ for all } \alpha \in \Phi^+ \} \\ \overline{C_{\mathbb{Z}}} := \{ \lambda \in X \mid 0 \le \langle \lambda + \rho, \alpha^{\vee} \rangle \le p \text{ for all } \alpha \in \Phi^+ \}$$

Then $\overline{C_{\mathbb{Z}}}$ is a fundamental domain for the action of W_p on X

Theorem. [Jantzen, Andersen, 80s] (Linkage principle) For $\lambda \in X^+$ dominant write uniquely

$$\operatorname{ch} L(\lambda) = \sum_{\mu \in X^+} a_{\mu} \operatorname{ch} V(\mu).$$

Then $a_{\mu} \neq 0$ implies $\mu \in W_p.\lambda$.

Character formula

Let $\lambda_0 \in C_{\mathbb{Z}}$ (exists if p > h, Coxeter number) and $\lambda = w \cdot \lambda_0$ and $\mu = v \cdot \lambda_0$ dominant.

Theorem. [Riche, Williamson, 2019] Let p > 2h - 1. Then $a_{\mu} = {}^{p}P_{v,w}(1)$, where ${}^{p}P_{v,w}$ is a *p*-Kazhdan-Lusztig polynomial.

For *p* "big enough" ${}^{p}P_{v,w} = P_{v,w}$, the Kazhdan-Lusztig polynomial.

Theorem. [Jantzen, Andersen, 80s] (Translation principle) Reduce computation of $chL(\lambda)$ for all $\lambda \in X_p$ to these cases.

Computing characters

Remarks. Character formula is difficult to evaluate, (p-)Kazhdan-Lusztig polynomials are difficult to compute. There is no formula or conjecture for small $p \le 2h - 1$.

There is a bilinear form on $V(\lambda)_{\mathbb{Z}}$ which can be evaluted using commutator relations in \mathcal{U} , vectors for different weights are orthogonal. Let *B* be the Gram matrix of this form restricted to $(V(\lambda)_{\mathbb{Z}})_{\mu}$ for a weight μ .

Theorem. [Wong] The dimension of $L(\lambda)_{\mu}$ in characteristic *p* is the rank of *B* mod *p* (as matrix over \mathbb{F}_p).

Combining this with various mathematical results and algorithmic ideas we were able to compute many explicit characters for groups of not too large rank and $V(\lambda)$ with weight spaces up to dimension about 10000.

Finite groups G^F

 $F: G \to G$ Frobenius, such that $F^k = F_{q^k}$, q an integer

Theorem. [Steinberg 60's] The irreducible representations of G^F over K are the

 $\{L(\lambda) \mid_{G^F} \mid \lambda \in X_q\}$ (*q*-restricted weights)

Remarks.

The same G-representations are restricted to twisted and untwisted groups.

[Brunat-L., 2014] Essentially reduce the case of G^F from arbitrary reductive G to the case above.
(In general it is no longer true that all irreducibles of G^F are restrictions of irreducibles of G.)

An application: Representations of small degree in defining characteristic

Type E_8 , bound M = 100000

All highest weights λ and primes p such that $L(\lambda)$ in characteristic p has degree at most M are:

deg	λ	p	deg	λ	p	deg	λ	р
1	(0000000)	all	23125	(0000002)	7	30132	(0000010)	3
248	(0000001)	all	26504	(0000010)	2	30132	(0000010)	5
3626	(1000000)	2	26999	(0000002)	31	30380	(0000010)	≠2,3,5
3875	(1000000)	<i>≠</i> 2	27000	(0000002)	≠7,31			

Have similar results for all types of groups up to rank 10 (and more) and also have the characters of these representations.