
GAP for group rings

1 Generalities about group rings

There are several packages in GAP designed to work with group rings. For example:

• LAGUNA : Lie AlGebras and UNits of group Algebras

• UnitLib : Library of normalized unit groups of modular group algebras

• Wedderga : Wedderburn Decomposition of Group Algebras

• HeLP : Hertweck-Luthar-Passi method.

For each package there is a documentation providing lot of additional information and instructions
(see e.g. the webpages of the packages). To read, for instance, the package LAGUNA into a running
GAP session one can just type

gap> LoadPackage("laguna");

true

In case the package was loaded successfully, true is returned. 1

GAP provides the functionality to define group rings and group algebras:

gap> G := DihedralGroup(16);;

gap> ZG := GroupRing(Integers, G);

<free left module over Integers, and ring-with-one, with 4 generators>

gap> QG := GroupRing(Rationals, G);

<algebra-with-one over Rationals, with 4 generators>

gap> FG := GroupRing(GF(2), G);

<algebra-with-one over GF(2), with 4 generators>

Using LAGUNA one might check whether the group ring is actually a group algebra, i.e. the coefficient
domain is a field:

gap> IsGroupAlgebra(ZG); IsGroupAlgebra(QG); IsGroupAlgebra(FG);

false

true

true

The commands UnderlyingGroup and UnderlyingRing can be used to retrieve the group and
coefficient ring used to define the group ring.
To deal with the group elements as elements of the group ring, one might embed those element in
the group ring:

gap> i := Embedding(G, ZG);;

For example, the center of G = D16 is cyclic of order 2 generated by a rotation z of radian π and
the rotation subgroup is generated by any element a of order 8:

1Note that several packages, such as LAGUNA are loaded by default in recent GAP versions. You can also customize
which packages are loaded by default by editing the gap.ini or gaprc files, see Section 3.2 of the manual.
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gap> z := MinimalGeneratingSet(Center(G))[1];

f4

gap> z in ZG;

false

gap> z^i in ZG;

true

gap> a := First(Elements(G), g -> Order(g) = 8); # generator of rotations

f2

We can now use the arithmetic for elements of ZG just as expected:

gap> v := z^i + a^i;

(1)*f2+(1)*f4

LAGUNA allows to check whether an element of a group ring is symmetric, i.e. invariant under the
canonical involution defined by g 7→ g−1, g ∈ G. And we can of course force elements to become
symmetric:

gap> IsSymmetric(v);

false

gap> IsSymmetric(v*Involution(v));

true

gap> IsSymmetric(v+Involution(v));

true

Is v = a + z a unit in ZG? Well, recall that the augmentation aug : ZG → Z, g 7→ 1 (i.e. the
Z-linear extension of the trivial representation) is a ringhomomorphism. Clearly, aug(v) = 2. This
can be verified by GAP:

gap> Augmentation(v);

2

gap> v^-1;

fail

Assume that b ∈ G is a non-central involution in G. Is x = a−b+z a unit in ZG? Now aug(x) = 1,
but:

gap> b := First(Elements(G), g -> Order(g) = 2 and not g in Center(G));

f1

gap> x := v - b^i;

(-1)*f1+(1)*f2+(1)*f4

gap> Augmentation(x);

1

gap> x^-1;

(1/3)*<identity> of ...+(-1/3)*f1+(1/3)*f2+(1/3)*f3+(1/3)*f4+(-1/3)*f1*f2+(-1/

3)*f1*f3+(2/3)*f1*f4+(1/3)*f2*f3+(-2/3)*f2*f4+(-2/3)*f3*f4+(2/3)*f1*f2*f3+(2/

3)*f1*f2*f4+(-1/3)*f1*f3*f4+(1/3)*f2*f3*f4+(-1/3)*f1*f2*f3*f4

Note that the inverse of x was calculated in QG, yet x−1 6∈ ZG.
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2 Modular group algebras

The package LAGUNA provides much more functionality for finite p-modular group algebras2 like our
FG = F2D16 defined above. The normalized unit group is the kernel of the augmentation map re-
stricted to the group of units of a group ring, i.e. V (RG) = {u ∈ RG | u invertible in RG, aug(u) =
1}.

gap> V := NormalizedUnitGroup(FG);

<group of size 32768 with 15 generators>

When one wants to do calculations with groups it is frequently useful to have a power commutator
(PC) presentation, this can be achieved through the command VC := PcNormalizedUnitGroup(FG);.
For example, compare the runtime of the commands NilpotencyClassOfGroup(V); and
NilpotencyClassOfGroup(VC);. Note however that the generators of the tow unit groups do
not agree in general, one may use the command NaturalBijectionToPcNormalizedUnitGroup to
convert from one to the other.
Even for p-groups G of moderate size, the computation of the structure of the group of units of FpG
might be pretty time and memory consuming (to find it as a set is easy). The package UnitLib

provides pre-computed unit groups for all p-groups up to order 243 (having the same attributes
as if they were computed in LAGUNA, note that for groups of order 128 these are only available on
UNIX-type systems):

gap> LoadPackage("UnitLib");

gap> V := PcNormalizedUnitGroupSmallGroup(128,161);

where V will be the normalized unit group of FG. Having this description at ones disposal one
might calculate certain invariants:

gap> C := Center(V);;

gap> StructureDescription(C);

"C32 x C16 x C8 x C8 x C4 x C4 x C4 x C4 x C2 x C2 x C2 x C2 x C2 x C2 x C2 x C2 x C2 x C2 x C2"

gap> AbelianInvariants(C);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 16, 32 ]

gap> FG := UnderlyingGroupRing(V);

<algebra-with-one over GF(2), with 7 generators>

gap> UnderlyingRing(FG);

GF(2)

gap> UnderlyingGroup(FG);

<pc group of size 128 with 7 generators>

gap> StructureDescription(last);

"D128"

Note that in the case of abelian groups AbelianInvariants might be way more lucid than
StructureDescription. Try to compute the unit group of F2G with G the group with Small-
GroupID (64, 52).

2recall that a group algebra FG is called p-modular if G is a p-group and F is a field of characteristic p.
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3 Units in integral group rings

The package LAGUNA also provides functionality that is particular useful when computing with units
in group rings given by concrete constructions. For elements g, h ∈ G the normalized units

b(h, g̃) = 1 + (1− g)hg̃,

b(g̃, h) = 1 + g̃h(1− g)

are units in RG, called bicyclic units of type 1 and type 2, respectively. (Here g̃ = (1+g+g2+ ...+

g|g|−1.) They can be called in GAP by BicyclicUnitOfType1(gî, hî) and BicyclicUnitOfType2(gî,
hî), respectively (caution: note the change of order of the element in the arguments of bicyclic
units of type 1). Note that b(h, g̃) and b(g̃, h) are trivial, i.e. are elements of G, if and only if
h ∈ NG(〈g〉). In case they are non trivial, these units are of infinite order.
Recall that in our example G is a dihedral group of order 16 generated by the elements a and b of
order 8 and 2, respectively (where the latter inverts the former). We defined i to be the embedding
of G in ZG. One has:

gap> BicyclicUnitOfType1(a^i, b^i);

(1)*<identity> of ..

gap> u1 := BicyclicUnitOfType1(b^i, a^i);

(1)*<identity> of ...+(-1)*f2+(1)*f1*f2+(1)*f2*f3*f4+(-1)*f1*f2*f3*f4

This matches what theory predicts: b ∈ NG(〈a〉), since 〈a〉EG but, a 6∈ NG(〈b〉). Here the arguments
were actually elements from ZG. There is also a three-argument version that takes the group ring
in question together with elements from the underlying group:

gap> v1 := BicyclicUnitOfType1(ZG, b, a);

(1)*<identity> of ...+(-1)*f2+(1)*f1*f2+(1)*f2*f3*f4+(-1)*f1*f2*f3*f4

gap> u1 = v1;

true

Of course, there also exists the command BicyclicUnitOfType2 with the obvious adaptions.
Bicyclic units can also be used to produce torsion units: If u1 = b(h, g̃) is a bicyclic unit of type 1
based on h and g, then

u = u1g = g + (1− g)hg̃

is a torsion unit of order |g|. Furthermore, u is non-trivial, i.e. u 6∈ G, if and only if b(h, g̃) 6∈ G,
that is, h 6∈ NG(〈g〉).

gap> u := u1*b^i;

(1)*f1+(-1)*f2+(1)*f1*f2+(1)*f2*f3*f4+(-1)*f1*f2*f3*f4

gap> Order(u);

2

The units of this form are called Bovdi units (named after Victor Bovdi). In case they are not
contained in G, “how far away” are they from G? We will meet this question later in the realm of
the Zassenhaus Conjectures (or Zassenhaus Problems).
There is another extremely useful generic construction of units in integral group rings, the so-called
Bass cyclic units. In GAP the Bass units is based on two parameters: g ∈ G a group element of
order and an integer 1 < k < n such that k and n are coprime. Then kϕ(n) ≡ 1 (mod n). Then in

4



GAP the Bass cyclic unit is

uk,ϕ(n)(g) =

(
k−1∑
`=0

g`

)ϕ(n)
+

1− kϕ(n)

n
ĝ

gap> v := BassCyclicUnit(a^i, 3);

(-8)*<identity> of ...+(-6)*f2+(9)*f4+(6)*f2*f3+(6)*f2*f4+(-6)*f2*f3*f4

In the generation of large subgroups of the unit group, the Bass cyclic units are important to cover
the center of the units of ZG. The unit v defined above actually happens to be central in U(ZG)
(how do you verify this?), however in general Bass cyclic units are far from being central, cf. the
lectures of Eric Jespers.

4 Wedderburn decompositions of group algebras

The GAP package wedderga provides functionality to calculate the Wedderbrun decomposition of
group algebras FG, where G is a finite group and F is either an abelian number field or a finite
field of characteristic not dividing |G|. The two main functions are WedderburnDecomposition

and WedderburnDecompositionInfo. Both calculate the Wedderburn decomposition of the group
algebra FG, the former returns a list of simple algebras as GAP objects such that their direct product
is isomorphic to the group algebra FG, the latter returns a similar list, but here the entries of the
list are GAP algebras, but are descriptions of the algebras that are usually more appealing for the
human reader (but cannot be further processed in GAP as simple algebras).

gap> LoadPackage("wedderga");

gap> WedderburnDecomposition( GroupRing(Rationals, CyclicGroup(3)) );

[ Rationals, CF(3) ]

gap> WedderburnDecompositionInfo( GroupRing(Rationals, CyclicGroup(3)) );

[ [ 1, Rationals ], [ 1, CF(3) ] ]

In the output of WedderburnDecompositionInfo, each entry is a list [n, F], representing a n×n-
matrix ring over the filed F . Note that CF(n) represents the nth cyclotomic field, i.e. the field
extension of Q obtained by adjoining a primitive nth root of unity. So that QC3 ' Q×Q(ζ3), as
expected.
In case of finite fields, the field extension is usually indicated by the cardinality of the field.

gap> WedderburnDecompositionInfo( GroupRing(GF(5), CyclicGroup(3)) );

[ [ 1, 5 ], [ 1, 25 ] ]

gap> WedderburnDecompositionInfo( GroupRing(GF(7), CyclicGroup(3)) );

[ [ 1, 7 ], [ 1, 7 ], [ 1, 7 ] ]

Hence F5C3 ' F5 × F25 and F7C3 ' F7 × F7 × F7.
In some cases, as for example for the quaternion group of order 8, the output might be more
involved:

gap> WedderburnDecomposition( GroupRing(Rationals, QuaternionGroup(8)) );

[ Rationals, Rationals, Rationals, Rationals,

<crossed product with center Rationals over GaussianRationals of a group of

size 2> ]

gap> WedderburnDecompositionInfo( GroupRiobjectsng(Rationals, QuaternionGroup(8)) );

[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ],

[ 1, Rationals, 4, [ 2, 3, 2 ] ] ]
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Here the last entry indicates a 1× 1 matrix ring over a cyclic algebra. To understand the notation
we can have a look at the documentation of the command:

?WedderburnDecompositionInfo

[...]

Here it might be useful to use the .html-version of the documentation (or the .pdf version):

gap> SetHelpViewer("firefox");

which should work on Linux systems and Macs. On windows use SetHelpViewer("browser");

which should display the documentation in the default browser.

?WedderburnDecompositionInfo

Help: Showing ‘Wedderga: WedderburnDecompositionInfo’

now displays the documentation (of the GAP version used) in the corresponding webbrowser. In
wedderga 4.9.3 we find the description of the cyclic algebra in Sections 2.1.2 and 9.10.
According to that the simple algebra indicated by [ 1, Rationals, 4, [ 2, 3, 2 ] ]= [n, F, k, [d, α, β]]

is a 1× 1 matrix ring over the cyclic algebra A given by

A = F (ζd)[u|ζuk = ζαk , u
d = ζβk ]

= Q(i)[u|iu = ui3, u2 = −1] '
(
−1,−1

Q

)

where i and u in A corresponds to i and j in the definition of
(
−1,−1

Q

)
as given in the lecture of

Eric Jespers.
To display the documentation again as per default in the terminal type:

gap> SetHelpViewer("screen");

(To learn more on how documentations are displayed see the documentation of SetHelpViewer by
typing ?SetHelpViewer.)
Recently Allen Herman added functionality to wedderga to unfold such a description and obtain
a description as matrix ring over a division algebra:

gap> WedderburnDecompositionWithDivAlgParts( GroupRing(Rationals, QuaternionGroup(8)) );

[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ],

[ 1, rec( Center := Rationals, DivAlg := true, LocalIndices := [ [ 2, 2 ], [ infinity, 2 ] ],

SchurIndex := 2 ) ] ]

gap> WedderburnDecompositionWithDivAlgParts( GroupRing(CF(4), QuaternionGroup(8)) );

[ [ 1, GaussianRationals ], [ 1, GaussianRationals ], [ 1, GaussianRationals ],

[ 1, GaussianRationals ], [ 2, GaussianRationals ] ]

implying QQ8 ' 4Q ×
(
−1,−1

Q

)
and Q(i)Q8 ' 4Q(i) ×M2(Q(i)), where

(
−1,−1

Q

)
are the Hamil-

tonian quaternions over Q, see the lecture notes of Eric Jespers, Section 4, for definition. There
is a nice article by Herman describing the algorithm used to calculate the global and local Schur
indices as used in wedderga: https://arxiv.org/abs/1407.4426.
wedderga also allows to compute central idempotents:

gap> S3 := SymmetricGroup(3);

gap> QS3 := GroupRing( Rationals, S3 );;

gap> idems := PrimitiveCentralIdempotentsByCharacterTable(QS3);

[ (1/6)*()+(-1/6)*(2,3)+(-1/6)*(1,2)+(1/6)*(1,2,3)+(1/6)*(1,3,2)+(-1/6)*(1,3),
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(2/3)*()+(-1/3)*(1,2,3)+(-1/3)*(1,3,2), (1/6)*()+(1/6)*(2,3)+(1/6)*(1,2)+(1/

6)*(1,2,3)+(1/6)*(1,3,2)+(1/6)*(1,3) ]

gap> IsCompleteSetOfOrthogonalIdempotents(QS3, idems);

true

gap> IsCompleteSetOfOrthogonalIdempotents(QS3, [One(QS3)]);

true

So IsCompleteSetOfOrthogonalIdempotents does not test whether the idempotents are primi-
tive. It does test neither whether they are central:

gap> M := MatrixAlgebra(Rationals, 2);

( Rationals^[ 2, 2 ] )

gap> ElMats := [

[[1, 0], [0, 0]],

[[0, 0], [0, 1]]];;

gap> IsCompleteSetOfOrthogonalIdempotents(M, ElMats);

true

We can also calculate the value a character takes on a particular idempotent. For this we may
write an auxiliary function:

ApplyCharacterToGroupRingElement := function(chi, x)

# takes a character chi of G and an element x of FG (F ANF) and returns chi(x)

local supp, coeff;

supp := Support(x);

coeff := CoefficientsBySupport(x);

return coeff*List(supp, g -> g^chi);

end;

and then we may calculate and display the character table by

gap> CT := CharacterTable(S3);

CharacterTable( Sym( [ 1 .. 3 ] ) )

gap> Display(CT);

CT1

2 1 1 .

3 1 . 1

1a 2a 3a

2P 1a 1a 3a

3P 1a 2a 1a

X.1 1 -1 1

X.2 2 . -1

X.3 1 1 1

gap> List(idems, e -> List(Irr(CT), chi -> ApplyCharacterToGroupRingElement(chi, e)));

[ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 1 ] ]

gap> C3 := CyclicGroup(3);

<pc group of size 3 with 1 generators>
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gap> QC3 := GroupRing(Rationals, C3);

<algebra-with-one over Rationals, with 1 generators>

gap> CT2 := CharacterTable(C3);

CharacterTable( <pc group of size 3 with 1 generators> )

gap> idems2 := PrimitiveCentralIdempotentsByCharacterTable(QC3);

[ (1/3)*<identity> of ...+(1/3)*f1+(1/3)*f1^2, (2/3)*<identity> of ...+(-1/3)*f1+(-1/3)*f1^2 ]

gap> List(idems2, e -> List(Irr(CT2), chi -> ApplyCharacterToGroupRingElement(chi, e)));

[ [ 1, 0, 0 ], [ 0, 1, 1 ] ]

Acknowledgement. Several examples are based on the examples in the documentations of the
corresponding GAP packages.
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