
A very short introduction to GAP

• GAP helps to compute small examples or search for counterexamples. It provides

� good possibilities to compute with groups, many useful functions are already imple-

mented in GAP,

� libraries of groups, character tables etc.

� a possibility to use and combine these functions.

• GAP is included in many package managers or can be downloaded from

www.gap-system.org

On this website, under �Documentation� → �Manuals� you can also �nd in pdf and html-

format

� a �Tutorial� (ca. 80 pages, a short introduction including �A First Session with GAP�)

� the �Reference Manual� (ca. 1400 pages, a detailed description of most available func-

tions including examples, can be searched through.)

• GAP can be exited by typing quit;

• Each GAP-comand is �nished by a semicolon. If you forget this, you have to add it in the

next line. Two semicolons prevent printing of the output, which is particularly useful for long

outputs.

• After a �wrong input� GAP will enter a �break loop� and print brk> (or, if you are already

in a break loop it will print, brk_02>, brk_03> and so forth). You can leave the most inner

break loop by typing quit;

• You can log your session, e.g. into file.log in the current directory by typing LogTo(�file.log�);.

To end the logging type LogTo();

• Taping �↑� shows you the last entered command.

• Taping the tabulator completes a command, if it can be completed uniquely. Double taping

the tabulator shows all possible completions.

• Typing a question mark before a command shows the help for this command. E.g. ?Comm;

shows the help for the command Comm, which commutes a commutator.

You can change the way GAP displays help using the SetHelpViewer command.

E.g. SetHelpViewer("firefox");

• Variables are set using :=

• GAP includes many packages which are �Add-Ons� of the basic functions of GAP and provide

functionality for special types of calculations. A package which has not been loaded yet in a

session can be activated by typing LoadPackage("name"); where name must be replaced by

the name of the package. E.g. LoadPackage("wedderga"); will be very helpful this week.

1

• Computing with permutations:

� Permutations are entered and printed in the usual notation using disjoint cycles:

f := (1,4)(2,5,3); and g := (2,3); gives the permutations

f =

(
1 2 3 4 5

4 5 2 1 3

)
and g =

(
1 2 3 4 5

1 3 2 4 5

)

� Permutations are multiplied using *. Here f*g; means that f is applied �rst and g

second. So here we get (1,4)(2,5)

� () denotes the identity in a permutation group.

� g�-1; computes the inverse of g. By g�f; we get the conjugate f−1gf of g by f . Here

we get (2,5)

� Permutation groups can be de�ned as G := SymmetricGroup(5); or by entering gen-

erating elements, e.g. H := Group((2,3,4,5,6), (2,3)); or a list of generating ele-

ments K := Group([(1,2,3), (3,4,5)]);. Here H generates a group isomorphic to

S5, but acting on the set {2, 3, 4, 5, 6}. As by default in GAP the group SymmetricGroup(5)
acts on the �rst �ve integers, the input G = H; returns false

� The command IsomorphismGroups(G, H); searches for an isomorphism between G and

H and returns such an isomorphism if it �nds one. Otherwise it returns fail. In the

example above we will hence get an isomorphism between G and H.

� The order of a group element can be found using the command Order.

E.g. Order((1,2)(3,4,5)); returns 6.

• Computing with matrices.

� Matrices are entered in GAP using lists of lists. E.g. A := [[2,1],[-1,3]] will write

the matrix

(
2 1

−1 3

)
into the variable A.

� The usual arithmetic operations +, -, *, / are all available for matrices. Also A� -1

will return the inverse of an invertible matrix A.

• On conjugacy classes. The example A5

� The command CCG := ConjugacyClasses(AlternatingGroup(5)); sets the variable

CCG to a list containing the conjugacy classes of A5. Here it gives

[()�G, (1,2)(3,4)�G, (1,2,3)�G, (1,2,3,4,5)�G, (1,2,3,5,4)�G]

� The i-th entry of the list CCG can be accessed by CCG[i];.

� A representative of an element in CCG can found using the command Representative.

E.g. Representative(CCG[2]); gives (1,2)(3,4).

� The command List can be used to apply the same command to all elements of a list.

E.g. List(CCG, x -> Size(x)); will return the length of all conjugacy classes in A5:

[1, 15, 20, 12, 12].

• A short function: Are there square roots?

� Using GAP we want to check, if a given �nite group G contains a square root for every

element, i.e. if all elements in G are squares. We write a function SquareIsOnto(G),

which takes a �nite group G as input and returns true if the map g 7→ g2 is surjective.

Otherwise it returns false.

2

� Such a function can be saved in a separate �le which can then be copied into the GAP-

session or read using the command Read. Here our function could look like this:

SquareIsOnto := function(G)

local squares, x; # Declare local variables

squares := []; # List which will contain all squares

for x in G do # go through all elements in G

Add(squares, x�2); # Write

od;

squares := DuplicateFreeList(squares);

Delete elements appearing multiple times

if Size(squares) = Order(G) then

return true;

else

return false;

fi;

end;

In a shorter way the same can be achieved by:

SquareIsOnto := function(G)

return Size(DuplicateFreeList(List(G, g -> g�2))) = Order(G);

end;

• Some other useful GAP-functions:

� Special groups:

∗ CyclicGroup(n) generates a cyclic group of order n.

∗ AlternatingGroup(n) generates an alternating group of degree n.

∗ DihedralGroup(n) generates the dihedral group Dn of order n.

∗ GL(n,q), the general linear group of n× n-matrices over a �led with q elements.

∗ DirectProduct(G,H) will return the direct product of the two groups G and H.

∗ G/N the quotient group of G by the normal subgroup N.

� Some subgroups of a group:

∗ AllSubgroups(G) returns a list of all subgroups of G.

∗ NormalSubgroups(G) returns a list of all normal subgroups of G.

∗ SylowSubgroup(G,p) returns a Sylow p-subgroup of G.

∗ Centralizer(G,U) returns the centralizer of U in G.

∗ Normalizer(G,U) returns the normalizer of U in G.

∗ Centre(G) or Center(G) returns the center of G.

∗ DerivedSubgroup(G) returns the derived group G′.

� Testing properties:

∗ IsSolvable(G) checks if G is solvable.

∗ IsPGroup(G) checks if G is a p-group.

∗ IsCyclic(G) checks if G is cyclic.

∗ IsAbelian(G) checks if G is abelian.

3

∗ IsSubgroup(G,U) checks if U is a group and a subset of the group G.

∗ IsNormal(G,N) checks if N is a normal subgroup of G.

� Integers:

∗ IsPrimeInt(n) tests if n is a prime.

∗ IsPrimePowerInt(n) tests if n is a prime power.

∗ FactorsInt(n) returns the prime factors of n with their multiplicity.

� Lists:

∗ Filtered(L, x -> f(x)) returns those of the entries in the list L for which the

function f returns true. E.g. Filtered(AllGroups(27), x -> IsAbelian(x))

returns all abelian groups of order 27.

∗ Positions(L, x) returns the positions in which the list L contains the element x.

If x is not contained in L it returns [].

� More:

∗ StructureDescription(G) gives a description of G in terms of �known� groups, if

it can �nd such a description.

∗ Order(G), Order(g) returns the order of a group or an element.

∗ AllGroups(n) returns a list of all groups of order n up to isomorphism (only for

small n).

∗ A �nite �eld of order q is denoted by GF(q) and multiplicatively generated by Z(q).

4

