GAC2010 - Groups, Actions and Computations GAP session 6
 p-group generation

1. Load the following packages:
```
LoadPackage("autpgrp");
LoadPackage("polycyclic");
LoadPackage("anupq");
```

2. Compute the p-cover of $G:=C_{2} \times C_{2}$ and look at its presentation.

Hint 1: Fetch this group from the SmallGroups library as a PC-group.
Hint 2: Use \rightarrow ? PqPCover from the anupq package.
3. Compute all immediate descendants of G.

Hint 1: Use \rightarrow ?PqDescendants from the anupq package.
Hint 2: The following function is useful for printing PC presentations:

```
PrintPC := function(g)
    PrintPcpPresentation(Image(IsomorphismPcpGroup(g)));
end;
```

4. Let H be the unique group among the immediate descendants of G of order 16 and nuclear rank 3 . Compute all descendants of H up to p-class 4 . How many have p-class 3 and how many have p-class 4 ?
Hint 1: Use \rightarrow ?NuclearRank to determine the nuclear rank.
Hint 2: Use the ClassBound option of the PqDescendants command. It is documented in section \rightarrow ?ANUPQ options.
Hint 3: To count the numbers you can use \rightarrow ? Collected.
5. In this exercise we want to find a 3-group with a small automorphism group. To this end, we start with $G:=C_{3} \times C_{3}$ and compute the immediate descendants. We take one with a relatively small automorphism group and compute its descendants and so on. In this way you can find a group with 243 elements whose automorphism group has order 486. What is its identication in the SmallGroups library?
Hint 1: Use \rightarrow ?AutomorphismGroup to compute the automorphism group.
Hint 2: Once you have it constructed, use IdGroup to find its ID.
6. Look at some examples for the anupq package by using the \rightarrow ? PqExample function.

Hint 1: Find out what examples there are using \rightarrow ?AllPqExamples.
7. Use anupq to find the largest 2 -quotient of class 8 of the group

$$
G:=\left\langle a, b \mid a^{4}, b^{4}\right\rangle
$$

Hint 1: Use the \rightarrow ? Pq command with the options Prime and ClassBound.
8. Find the largest finite 3 -group that has exponent 3 and can be generated by 4 elements.

Hint 1: Start with a free group of rank 4 and run the 3 -quotient algorithm with the option Identities.
Hint 2: A convenient way to specify the exponent 3 identity is

$$
x->x^{\wedge} 3
$$

Hint 3: \rightarrow ? Pq to learn that you have to give a list of functions for the Identities option.
9. Find the largest finite 2-generated 2-group of class 4 with the Engel-2 property (that is, for all elements a, b we have $[[a, b], b]=1$).
Hint 1: Use the following function for Ident ities:

```
function(a,b) return Comm(Comm(a,b),b); end;
```

