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Computational Group Theory 101

Two basic ways to input a group:
1) generators–relators
G = 〈a, b | a2 = b5 = 1, ba = b−1〉
Is G = 1? Is G finite?

2) “concrete” representation, with generating permutations or ma-
trices (over finite fields)
G = 〈X 〉
|G | =? Given g ∈ Sn (or g ∈ GL(d , q)), is g ∈ G?
G is too big to list



Key task: Constructive membership problem
1) Find “nice” generators Y for G
2) Procedure to write any g ∈ G in terms of Y
(straight-line program from Y to g)
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2) Procedure to write any g ∈ G in terms of Y
(straight-line program from Y to g)

SLP: sequence of expressions w1, . . . ,wm

wi : symbol for some y ∈ Y or
wi = (wj ,wk) for some j , k < i or
wi = (wj ,−1) for some j < i

Evaluation:
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Key task: Constructive membership problem
1) Find “nice” generators Y for G
2) Procedure to write any g ∈ G in terms of Y
(straight-line program from Y to g)

SLP: sequence of expressions w1, . . . ,wm

wi : symbol for some y ∈ Y or
wi = (wj ,wk) for some j , k < i or
wi = (wj ,−1) for some j < i

Evaluation:
eval(wj ,wk) = eval(wj)eval(wk)
eval(wj ,−1) = eval(wj)

−1

eval(wm) = g

Y = {y}, g = y1024

w1 = y , w2 = (w1,w1), w3 = (w2,w2), . . . ,w11 = (w10,w10)



Permutation groups: under control

Parker–Nikolai (1958)
G = 〈X 〉 ≤ Sn; is G ≥ An?

G ≥ An ⇐⇒ G transitive, contains p-cycle with n/2 < p < n − 2
Random sample of elements has good chance to have the order of
one of them divisible by such p



Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i ] = G(β1,...,βi−1)
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Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i ] = G(β1,...,βi−1)

Y is strong generating set (SGS):
G [i ] = 〈G [i ] ∩ Y 〉

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = (1, 3)
G > G1 > G13 = 1
Y = {(1, 5, 2, 6), (1, 2)(3, 4)(5, 6), (3, 4)}



Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i ] = G(β1,...,βi−1)

Y is strong generating set (SGS):
G [i ] = 〈G [i ] ∩ Y 〉
Ti : (right) cosetreps G [i ] mod G [i+1] (easy from SGS)
sifting: write any g ∈ G as g = rm · · · r1, ri ∈ Ti



Parallel (NC) algorithms: polynomially many processors, only poly-
logarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead
of point stabilizer chain



Parallel (NC) algorithms: polynomially many processors, only poly-
logarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead
of point stabilizer chain

Babai, Luks, Seress (1987): permutation groups in NC

By the time |G | is computed: also composition series of G



Sequential consequence (Babai, Luks, Seress 1988)
G ≤ Sym(Ω) arbitrary
1) detect large alternating composition factors
2) constructive membership by special methods
3) rest of group: Sims’s algorithm
4) put it together



Current status: randomized speedup of Sims, BLS
fast (both in practical and theoretical sense)
Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress
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Current status: randomized speedup of Sims, BLS
fast (both in practical and theoretical sense)
Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Moral: in permutation groups, structural exploration and randomi-
zation not unavoidable, but helps

Á. Seress: Permutation Group Algorithms. Cambridge Univ. Press
2003.
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Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices:
G = 〈25, 142, 261〉 ≤ GF(683)∗, |G | =?
Discrete log problem: a, b ∈ GF(q)∗

Is a ∈ 〈b〉? If yes, ?x (a = bx)

3) factorization of large integers

4) great variety of large primitive matrix groups

Randomization, structural exploration (chopping into manageable
pieces) are necessary



Luks (1992): In solvable matrix groups, order, constructive mem-
bership, composition series in deterministic polynomial time, using
discrete log and factorization oracles



Luks (1992): In solvable matrix groups, order, constructive mem-
bership, composition series in deterministic polynomial time, using
discrete log and factorization oracles

randomized algorithm is Monte Carlo: output may be wrong, with
probability controlled by user

randomized algorithm is Las Vegas: output is always correct, may
report failure with probability controlled by user



Neubüser’s question

Given G = 〈X 〉 ≤ GL(d , q); is G ≥ SL(d , q)?

Neumann, Praeger (1990): nonconstructive recognition of SL(d , q)
(by Monte Carlo algorithm)



Geometric approach

(suggested by Neumann, Praeger in 1990, led by Leedham-Green
and O’Brien)

Aschbacher’s classification of matrix groups (1984): nine categories
C1–C7: reductive classes
natural normal subgroup N associated with the action of G
handle N, G/N recursively



C1: G acts reducibly
G/N, N: action and kernel of action on invariant subspace W < V

C2: imprimitive action
V = V1 ⊕ · · · ⊕ Vk , G permutes the Vi

G/N, N: permutation action on blocks and its kernel

etc.



Reduction bottoms out:

C8: giants classical groups in natural representation

C9: almost simple modulo scalars, absolutely irreducible action
no geometry to exploit



Black-box group approach of matrix groups

Babai, Beals (1993, 1999): find abstract structure

1 ≤ Rad(G ) ≤ Soc∗(G ) ≤ PKer(G ) ≤ G

Rad(G ): largest solvable normal subgroup

Soc∗(G )/Rad(G ): socle of G/Rad(G )
Soc∗(G )/Rad(G ) ∼= T1 × · · · × Tk

Ti nonabelian simple, G permutes them by conjugation

PKer(G ): kernel of this permutation action
PKer(G )/Soc∗(G ) ≤ Out(T1)× · · · ×Out(Tk) solvable (CFSG)



Black-box group:

group elements are represented by 0-1 strings of uniform length n
given g , h ∈ G , oracle to compute (strings representing) gh, g−1,
and decide g = 1?



Black-box group:

group elements are represented by 0-1 strings of uniform length n
given g , h ∈ G , oracle to compute (strings representing) gh, g−1,
and decide g = 1?

Why lose information?
(i) sometimes we cannot use more info (random element generation,
C9 groups)
(ii) permutation group elements as words in strong generators: faster
group operation than perm multiplication
(iii) working in factor groups of matrix groups, we lose geometry



G black-box group

Construct H ≤ G : compute generators for H

Recognize H ≤ G : able to test membership in H



G black-box group

Construct H ≤ G : compute generators for H

Recognize H ≤ G : able to test membership in H

H = Z (G ),Rad(G ) are recognizable, but hard to construct

N C G , N recognizable: we can consider G/N as black-box group



Black-box group of characteristic p: G is a section (factor group of
a subgroup) of GL(n, p)

Babai, Beals work with bb groups of characteristic p

1) Landazuri–Seitz–Zaleskii, Feit–Tits: Lie-type composition
factors of characteristic 6= p have small permutation representation

2) some idea about primes occurring in |G |

L = {primes < n9}
∪ {pi − 1 | 1 ≤ i ≤ n} ∪ {22t+1 ± 2t+1 + 1 | 1 ≤ t ≤ n}
∪ {24t+2 + 22t+1 + 1± 2t+1(22t+1 + 1) | 1 ≤ t ≤ n}

∪ {32t+1 ± 3t+1 + 1 | 1 ≤ t ≤ n}

pseudo-primes: refinement of L into pairwise relative prime
numbers



New results

Given G = 〈X 〉 ≤ GL(d , pe),
(1) find |G/Rad(G )| in Monte Carlo pol. time
(2) if p is odd then construct Rad(G ) in Monte Carlo pol. time
(3) if p = 2 and no exceptional Lie-type groups among the Ti then
construct Rad(G ) in Monte Carlo pol. time using discrete log oracles
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(4) if p is odd then constructive membership in G in Monte Carlo
pol. time using discrete log oracles
(5) if p = 2 and no exceptional Lie-type groups among the Ti

then constructive membership in G in Monte Carlo pol. time using
discrete log oracles

(6) for any p: if no exceptional Lie-type groups among the Ti then
upgrade the algorithms to Las Vegas
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consequences:
1) Construct G/PKer(G ) ≤ Sk and Soc∗(G )/Rad(G )
2) name the Ti (Babai–Kantor–Pálfy–Seress, Altseimer–Borovik)
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New additions:

(1) construct PKer(G )/Soc∗(G )
(2) construct Rad(Hi ) for 1 ≤ i ≤ k
(3) construct the part of Rad(G ) not generated by 〈Rad(Hi )〉

(1), (3): in Monte Carlo polynomial time
for odd p, (2) in Monte Carlo polynomial time
works with black-box groups of characteristic p

for p = 2, (2) in Monte Carlo polynomial time using discrete log
oracles if no Ti is exceptional
works only for matrix groups



(1) construct PKer(G )/Soc∗(G ) ≤ Out(T1)× · · · ×Out(Tk)

Leedham-Green trick: T simple, g ∈ Aut(T ); is g ∈ T?

multiply g by random h ∈ T
gcd of {|gh|} is 1: g ∈ T
gcd > 1: with high probability, g 6∈ T

Justification by Babai–Pálfy–Saxl:
there is absolute constant c such that for all prime r , all simple
T , proportion of elements of order not divisible by r is at least
c/rank(T )



(1) construct PKer(G )/Soc∗(G ) ≤ Out(T1)× · · · ×Out(Tk)

Leedham-Green trick: T simple, g ∈ Aut(T ); is g ∈ T?

multiply g by random h ∈ T
gcd of {|gh|} is 1: g ∈ T
gcd > 1: with high probability, g 6∈ T

Justification by Babai–Pálfy–Saxl:
there is absolute constant c such that for all prime r , all simple
T , proportion of elements of order not divisible by r is at least
c/rank(T )

Solution of (1): generalization of LG-trick to product of simples

for each i ≤ k, construct regular permutation representation of pro-
jection of PKer(G )/Soc∗(G ) into Out(Ti )
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T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time
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(2) H = Rad(H).T perfect, construct Rad(H)

T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time
(Beals–Leedham-Green–Niemeyer–Praeger–Seress)
T Lie-type of characteristic 6= p: construct permutation representa-
tion (Babai–Beals)
T Lie-type of characteristic p, acting nontrivially on a non-p chief
layer of Rad(H): construct permutation representation

Remains: T Lie-type of characteristic p, acting trivially on non-p
chief layers of Rad(H)



Two base cases

H = Zd
p .T

Parker–Wilson, Yalcinkaya: in Monte Carlo pol. time, construct h ∈
Zd

p

works only for odd p (uses centralizer of involution computations)



Two base cases

H = Zd
p .T

Parker–Wilson, Yalcinkaya: in Monte Carlo pol. time, construct h ∈
Zd

p

works only for odd p (uses centralizer of involution computations)

H = Zd
r .T , r 6= p, Z (H) = Zd

r

Babai–Shalev: in Monte Carlo pol. time, construct h ∈ Zd
r

easy, based on Babai–Pálfy–Saxl

both algorithms work for black-box groups
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tary abelian, H/N one of the base cases
S ,N not recognizable
How to apply the base case algorithms?
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H = Rad(H).T , S C Rad(H) is the already constructed part of
Rad(H)

if S 6= Rad(H): there is S ≤ N char Rad(H), Rad(H)/N elemen-
tary abelian, H/N one of the base cases
S ,N not recognizable
How to apply the base case algorithms?

Adaptation principle
run the base case algorithms for H/N
at queries h = 1? (i.e., h ∈ N?)
if h ∈ Rad(H) then answer yes, store h

if all answers are correct: with high probability, one of the algorithms
constructs h ∈ Rad(H) \ N

if one of the answers is incorrect: stored h ∈ Rad(H) \ N



p = 2, H = Rad(H).T

Kantor–Seress: construct quasisimple matrix representation
M = Z .T , Z = Z (M) for T
uses that H is a matrix group

Brooksbank, Kantor: for T classical, constructive recognition of M
in Monte Carlo pol. time, using PSL(2, q) oracles

Conder–Leedham-Green–O’Brien: constructive recognition of any
quasisimple matrix representation of PSL(2, q), using discrete logs



(3) construct the part of Rad(G ) not generated by 〈Rad(Hi )〉

easy, based on Babai–Pálfy–Saxl and adaptation principle



constructive membership (construct SLP to given g ∈ G )

Holmes–Linton–O’Brien–Ryba–Wilson:
given T simple Lie-type and g ∈ T as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions x1, x2, x3 ∈
T so that SLP to g is reduced to constructive membership in CT (xi )

if T is classical of large rank then the xi can be chosen to be balanced
(±1-eigenspaces are roughly half dimensional)



constructive membership (construct SLP to given g ∈ G )

Holmes–Linton–O’Brien–Ryba–Wilson:
given T simple Lie-type and g ∈ T as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions x1, x2, x3 ∈
T so that SLP to g is reduced to constructive membership in CT (xi )

if T is classical of large rank then the xi can be chosen to be balanced
(±1-eigenspaces are roughly half dimensional)

Theorem (*) Constructive membership in T in Monte Carlo poly-
nomial time
CT (xi ) are not quasisimple; recursive steps use full machinery



constructive membership in arbitrary G of odd char.

1 ≤ Rad(G ) ≤ Soc∗(G ) ≤ PKer(G ) ≤ G

given g ∈ G , construct SLP to h ∈ G with Soc∗(G )g = Soc∗(G )h
by permutation group methods



constructive membership in arbitrary G of odd char.

1 ≤ Rad(G ) ≤ Soc∗(G ) ≤ PKer(G ) ≤ G

given g ∈ G , construct SLP to h ∈ G with Soc∗(G )g = Soc∗(G )h
by permutation group methods

use Theorem (*) to construct SLP to k ∈ Soc∗(G ) with
Rad(G )gh−1 = Rad(G )k

use Luks to construct SLP to gh−1k−1 ∈ Rad(G )



constructive membership in G of even char., no
exceptional factors

as above, just use constructive recognition in Soc∗(G )/Rad(G )
level


