
A polynomial-time theory of matrix groups

Ákos Seress
Joint with László Babai, Robert Beals

September 2010

Basics of Computational Group Theory

Basics of Computational Group Theory

Two basic ways to input a group:
1) generators–relators
G = 〈a, b | a2 = b5 = 1, ba = b−1〉
Is G = 1? Is G finite?

Computational Group Theory 101

Two basic ways to input a group:
1) generators–relators
G = 〈a, b | a2 = b5 = 1, ba = b−1〉
Is G = 1? Is G finite?

2) “concrete” representation, with generating permutations or ma-
trices (over finite fields)
G = 〈X 〉
|G | =? Given g ∈ Sn (or g ∈ GL(d , q)), is g ∈ G?
G is too big to list

Key task: Constructive membership problem
1) Find “nice” generators Y for G
2) Procedure to write any g ∈ G in terms of Y
(straight-line program from Y to g)

Key task: Constructive membership problem
1) Find “nice” generators Y for G
2) Procedure to write any g ∈ G in terms of Y
(straight-line program from Y to g)

SLP: sequence of expressions w1, . . . ,wm

wi : symbol for some y ∈ Y or
wi = (wj ,wk) for some j , k < i or
wi = (wj ,−1) for some j < i

Evaluation:
eval(wj ,wk) = eval(wj)eval(wk)
eval(wj ,−1) = eval(wj)

−1

eval(wm) = g

Key task: Constructive membership problem
1) Find “nice” generators Y for G
2) Procedure to write any g ∈ G in terms of Y
(straight-line program from Y to g)

SLP: sequence of expressions w1, . . . ,wm

wi : symbol for some y ∈ Y or
wi = (wj ,wk) for some j , k < i or
wi = (wj ,−1) for some j < i

Evaluation:
eval(wj ,wk) = eval(wj)eval(wk)
eval(wj ,−1) = eval(wj)

−1

eval(wm) = g

Y = {y}, g = y1024

w1 = y , w2 = (w1,w1), w3 = (w2,w2), . . . ,w11 = (w10,w10)

Permutation groups: under control

Parker–Nikolai (1958)
G = 〈X 〉 ≤ Sn; is G ≥ An?

G ≥ An ⇐⇒ G transitive, contains p-cycle with n/2 < p < n − 2
Random sample of elements has good chance to have the order of
one of them divisible by such p

Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i] = G(β1,...,βi−1)

Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i] = G(β1,...,βi−1)

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = (1, 3)
G > G1 > G13 = 1

Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i] = G(β1,...,βi−1)

Y is strong generating set (SGS):
G [i] = 〈G [i] ∩ Y 〉

Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i] = G(β1,...,βi−1)

Y is strong generating set (SGS):
G [i] = 〈G [i] ∩ Y 〉

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = (1, 3)
G > G1 > G13 = 1
Y = {(1, 5, 2, 6), (1, 2)(3, 4)(5, 6), (3, 4)}

Constructive membership (Sims, late 1960’s)

G = 〈X 〉 ≤ Sym(Ω)
B = (β1, . . . , βm) is base for G :
pointwise stabilizer GB = 1
G = G [1] ≥ G [2] ≥ · · · ≥ G [m+1] = 1
G [i] = G(β1,...,βi−1)

Y is strong generating set (SGS):
G [i] = 〈G [i] ∩ Y 〉
Ti : (right) cosetreps G [i] mod G [i+1] (easy from SGS)
sifting: write any g ∈ G as g = rm · · · r1, ri ∈ Ti

Parallel (NC) algorithms: polynomially many processors, only poly-
logarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead
of point stabilizer chain

Parallel (NC) algorithms: polynomially many processors, only poly-
logarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead
of point stabilizer chain

Babai, Luks, Seress (1987): permutation groups in NC

By the time |G | is computed: also composition series of G

Sequential consequence (Babai, Luks, Seress 1988)
G ≤ Sym(Ω) arbitrary
1) detect large alternating composition factors
2) constructive membership by special methods
3) rest of group: Sims’s algorithm
4) put it together

Current status: randomized speedup of Sims, BLS
fast (both in practical and theoretical sense)
Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Current status: randomized speedup of Sims, BLS
fast (both in practical and theoretical sense)
Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Moral: in permutation groups, structural exploration and randomi-
zation not unavoidable, but helps

Current status: randomized speedup of Sims, BLS
fast (both in practical and theoretical sense)
Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Moral: in permutation groups, structural exploration and randomi-
zation not unavoidable, but helps

Á. Seress: Permutation Group Algorithms. Cambridge Univ. Press
2003.

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices:
G = 〈25, 142, 261〉 ≤ GF(683)∗, |G | =?
Discrete log problem: a, b ∈ GF(q)∗

Is a ∈ 〈b〉? If yes, ?x (a = bx)

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices:
G = 〈25, 142, 261〉 ≤ GF(683)∗, |G | =?
Discrete log problem: a, b ∈ GF(q)∗

Is a ∈ 〈b〉? If yes, ?x (a = bx)

3) factorization of large integers

4) great variety of large primitive matrix groups

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices:
G = 〈25, 142, 261〉 ≤ GF(683)∗, |G | =?
Discrete log problem: a, b ∈ GF(q)∗

Is a ∈ 〈b〉? If yes, ?x (a = bx)

3) factorization of large integers

4) great variety of large primitive matrix groups

Randomization, structural exploration (chopping into manageable
pieces) are necessary

Luks (1992): In solvable matrix groups, order, constructive mem-
bership, composition series in deterministic polynomial time, using
discrete log and factorization oracles

Luks (1992): In solvable matrix groups, order, constructive mem-
bership, composition series in deterministic polynomial time, using
discrete log and factorization oracles

randomized algorithm is Monte Carlo: output may be wrong, with
probability controlled by user

randomized algorithm is Las Vegas: output is always correct, may
report failure with probability controlled by user

Neubüser’s question

Given G = 〈X 〉 ≤ GL(d , q); is G ≥ SL(d , q)?

Neumann, Praeger (1990): nonconstructive recognition of SL(d , q)
(by Monte Carlo algorithm)

Geometric approach

(suggested by Neumann, Praeger in 1990, led by Leedham-Green
and O’Brien)

Aschbacher’s classification of matrix groups (1984): nine categories
C1–C7: reductive classes
natural normal subgroup N associated with the action of G
handle N, G/N recursively

C1: G acts reducibly
G/N, N: action and kernel of action on invariant subspace W < V

C2: imprimitive action
V = V1 ⊕ · · · ⊕ Vk , G permutes the Vi

G/N, N: permutation action on blocks and its kernel

etc.

Reduction bottoms out:

C8: giants classical groups in natural representation

C9: almost simple modulo scalars, absolutely irreducible action
no geometry to exploit

Black-box group approach of matrix groups

Babai, Beals (1993, 1999): find abstract structure

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G

Rad(G): largest solvable normal subgroup

Soc∗(G)/Rad(G): socle of G/Rad(G)
Soc∗(G)/Rad(G) ∼= T1 × · · · × Tk

Ti nonabelian simple, G permutes them by conjugation

PKer(G): kernel of this permutation action
PKer(G)/Soc∗(G) ≤ Out(T1)× · · · ×Out(Tk) solvable (CFSG)

Black-box group:

group elements are represented by 0-1 strings of uniform length n
given g , h ∈ G , oracle to compute (strings representing) gh, g−1,
and decide g = 1?

Black-box group:

group elements are represented by 0-1 strings of uniform length n
given g , h ∈ G , oracle to compute (strings representing) gh, g−1,
and decide g = 1?

Why lose information?
(i) sometimes we cannot use more info (random element generation,
C9 groups)
(ii) permutation group elements as words in strong generators: faster
group operation than perm multiplication
(iii) working in factor groups of matrix groups, we lose geometry

G black-box group

Construct H ≤ G : compute generators for H

Recognize H ≤ G : able to test membership in H

G black-box group

Construct H ≤ G : compute generators for H

Recognize H ≤ G : able to test membership in H

H = Z (G),Rad(G) are recognizable, but hard to construct

N C G , N recognizable: we can consider G/N as black-box group

Black-box group of characteristic p: G is a section (factor group of
a subgroup) of GL(n, p)

Babai, Beals work with bb groups of characteristic p

1) Landazuri–Seitz–Zaleskii, Feit–Tits: Lie-type composition
factors of characteristic 6= p have small permutation representation

2) some idea about primes occurring in |G |

L = {primes < n9}
∪ {pi − 1 | 1 ≤ i ≤ n} ∪ {22t+1 ± 2t+1 + 1 | 1 ≤ t ≤ n}
∪ {24t+2 + 22t+1 + 1± 2t+1(22t+1 + 1) | 1 ≤ t ≤ n}

∪ {32t+1 ± 3t+1 + 1 | 1 ≤ t ≤ n}

pseudo-primes: refinement of L into pairwise relative prime
numbers

New results

Given G = 〈X 〉 ≤ GL(d , pe),
(1) find |G/Rad(G)| in Monte Carlo pol. time
(2) if p is odd then construct Rad(G) in Monte Carlo pol. time
(3) if p = 2 and no exceptional Lie-type groups among the Ti then
construct Rad(G) in Monte Carlo pol. time using discrete log oracles

New results

Given G = 〈X 〉 ≤ GL(d , pe),
(1) find |G/Rad(G)| in Monte Carlo pol. time
(2) if p is odd then construct Rad(G) in Monte Carlo pol. time
(3) if p = 2 and no exceptional Lie-type groups among the Ti then
construct Rad(G) in Monte Carlo pol. time using discrete log oracles

(4) if p is odd then constructive membership in G in Monte Carlo
pol. time using discrete log oracles
(5) if p = 2 and no exceptional Lie-type groups among the Ti

then constructive membership in G in Monte Carlo pol. time using
discrete log oracles

New results

Given G = 〈X 〉 ≤ GL(d , pe),
(1) find |G/Rad(G)| in Monte Carlo pol. time
(2) if p is odd then construct Rad(G) in Monte Carlo pol. time
(3) if p = 2 and no exceptional Lie-type groups among the Ti then
construct Rad(G) in Monte Carlo pol. time using discrete log oracles

(4) if p is odd then constructive membership in G in Monte Carlo
pol. time using discrete log oracles
(5) if p = 2 and no exceptional Lie-type groups among the Ti

then constructive membership in G in Monte Carlo pol. time using
discrete log oracles

(6) for any p: if no exceptional Lie-type groups among the Ti then
upgrade the algorithms to Las Vegas

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G
Soc∗(G)/Rad(G) = T1 × · · · × Tk

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to con-
struct perfect Hi ≤ G , Hi/Rad(Hi) ∼= Ti

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G
Soc∗(G)/Rad(G) = T1 × · · · × Tk

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to con-
struct perfect Hi ≤ G , Hi/Rad(Hi) ∼= Ti

consequences:
1) Construct G/PKer(G) ≤ Sk and Soc∗(G)/Rad(G)
2) name the Ti (Babai–Kantor–Pálfy–Seress, Altseimer–Borovik)

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G
Soc∗(G)/Rad(G) = T1 × · · · × Tk

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to con-
struct perfect Hi ≤ G , Hi/Rad(Hi) ∼= Ti

consequences:
1) Construct G/PKer(G) ≤ Sk and Soc∗(G)/Rad(G)
2) name the Ti (Babai–Kantor–Pálfy–Seress, Altseimer–Borovik)

works with black-box groups of characteristic p

New additions:

(1) construct PKer(G)/Soc∗(G)
(2) construct Rad(Hi) for 1 ≤ i ≤ k
(3) construct the part of Rad(G) not generated by 〈Rad(Hi)〉

New additions:

(1) construct PKer(G)/Soc∗(G)
(2) construct Rad(Hi) for 1 ≤ i ≤ k
(3) construct the part of Rad(G) not generated by 〈Rad(Hi)〉

(1), (3): in Monte Carlo polynomial time
for odd p, (2) in Monte Carlo polynomial time
works with black-box groups of characteristic p

New additions:

(1) construct PKer(G)/Soc∗(G)
(2) construct Rad(Hi) for 1 ≤ i ≤ k
(3) construct the part of Rad(G) not generated by 〈Rad(Hi)〉

(1), (3): in Monte Carlo polynomial time
for odd p, (2) in Monte Carlo polynomial time
works with black-box groups of characteristic p

for p = 2, (2) in Monte Carlo polynomial time using discrete log
oracles if no Ti is exceptional
works only for matrix groups

(1) construct PKer(G)/Soc∗(G) ≤ Out(T1)× · · · ×Out(Tk)

Leedham-Green trick: T simple, g ∈ Aut(T); is g ∈ T?

multiply g by random h ∈ T
gcd of {|gh|} is 1: g ∈ T
gcd > 1: with high probability, g 6∈ T

Justification by Babai–Pálfy–Saxl:
there is absolute constant c such that for all prime r , all simple
T , proportion of elements of order not divisible by r is at least
c/rank(T)

(1) construct PKer(G)/Soc∗(G) ≤ Out(T1)× · · · ×Out(Tk)

Leedham-Green trick: T simple, g ∈ Aut(T); is g ∈ T?

multiply g by random h ∈ T
gcd of {|gh|} is 1: g ∈ T
gcd > 1: with high probability, g 6∈ T

Justification by Babai–Pálfy–Saxl:
there is absolute constant c such that for all prime r , all simple
T , proportion of elements of order not divisible by r is at least
c/rank(T)

Solution of (1): generalization of LG-trick to product of simples

for each i ≤ k, construct regular permutation representation of pro-
jection of PKer(G)/Soc∗(G) into Out(Ti)

(2) H = Rad(H).T perfect, construct Rad(H)

T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time
(Beals–Leedham-Green–Niemeyer–Praeger–Seress)

(2) H = Rad(H).T perfect, construct Rad(H)

T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time
(Beals–Leedham-Green–Niemeyer–Praeger–Seress)
T Lie-type of characteristic 6= p: construct permutation representa-
tion (Babai–Beals)
T Lie-type of characteristic p, acting nontrivially on a non-p chief
layer of Rad(H): construct permutation representation

(2) H = Rad(H).T perfect, construct Rad(H)

T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time
(Beals–Leedham-Green–Niemeyer–Praeger–Seress)
T Lie-type of characteristic 6= p: construct permutation representa-
tion (Babai–Beals)
T Lie-type of characteristic p, acting nontrivially on a non-p chief
layer of Rad(H): construct permutation representation

Remains: T Lie-type of characteristic p, acting trivially on non-p
chief layers of Rad(H)

Two base cases

H = Zd
p .T

Parker–Wilson, Yalcinkaya: in Monte Carlo pol. time, construct h ∈
Zd

p

works only for odd p (uses centralizer of involution computations)

Two base cases

H = Zd
p .T

Parker–Wilson, Yalcinkaya: in Monte Carlo pol. time, construct h ∈
Zd

p

works only for odd p (uses centralizer of involution computations)

H = Zd
r .T , r 6= p, Z (H) = Zd

r

Babai–Shalev: in Monte Carlo pol. time, construct h ∈ Zd
r

easy, based on Babai–Pálfy–Saxl

both algorithms work for black-box groups

H = Rad(H).T , S C Rad(H) is the already constructed part of
Rad(H)

if S 6= Rad(H): there is S ≤ N char Rad(H), Rad(H)/N elemen-
tary abelian, H/N one of the base cases
S ,N not recognizable
How to apply the base case algorithms?

H = Rad(H).T , S C Rad(H) is the already constructed part of
Rad(H)

if S 6= Rad(H): there is S ≤ N char Rad(H), Rad(H)/N elemen-
tary abelian, H/N one of the base cases
S ,N not recognizable
How to apply the base case algorithms?

Adaptation principle
run the base case algorithms for H/N
at queries h = 1? (i.e., h ∈ N?)
if h ∈ Rad(H) then answer yes, store h

H = Rad(H).T , S C Rad(H) is the already constructed part of
Rad(H)

if S 6= Rad(H): there is S ≤ N char Rad(H), Rad(H)/N elemen-
tary abelian, H/N one of the base cases
S ,N not recognizable
How to apply the base case algorithms?

Adaptation principle
run the base case algorithms for H/N
at queries h = 1? (i.e., h ∈ N?)
if h ∈ Rad(H) then answer yes, store h

if all answers are correct: with high probability, one of the algorithms
constructs h ∈ Rad(H) \ N

if one of the answers is incorrect: stored h ∈ Rad(H) \ N

p = 2, H = Rad(H).T

Kantor–Seress: construct quasisimple matrix representation
M = Z .T , Z = Z (M) for T
uses that H is a matrix group

Brooksbank, Kantor: for T classical, constructive recognition of M
in Monte Carlo pol. time, using PSL(2, q) oracles

Conder–Leedham-Green–O’Brien: constructive recognition of any
quasisimple matrix representation of PSL(2, q), using discrete logs

(3) construct the part of Rad(G) not generated by 〈Rad(Hi)〉

easy, based on Babai–Pálfy–Saxl and adaptation principle

constructive membership (construct SLP to given g ∈ G)

Holmes–Linton–O’Brien–Ryba–Wilson:
given T simple Lie-type and g ∈ T as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions x1, x2, x3 ∈
T so that SLP to g is reduced to constructive membership in CT (xi)

if T is classical of large rank then the xi can be chosen to be balanced
(±1-eigenspaces are roughly half dimensional)

constructive membership (construct SLP to given g ∈ G)

Holmes–Linton–O’Brien–Ryba–Wilson:
given T simple Lie-type and g ∈ T as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions x1, x2, x3 ∈
T so that SLP to g is reduced to constructive membership in CT (xi)

if T is classical of large rank then the xi can be chosen to be balanced
(±1-eigenspaces are roughly half dimensional)

Theorem (*) Constructive membership in T in Monte Carlo poly-
nomial time
CT (xi) are not quasisimple; recursive steps use full machinery

constructive membership in arbitrary G of odd char.

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G

given g ∈ G , construct SLP to h ∈ G with Soc∗(G)g = Soc∗(G)h
by permutation group methods

constructive membership in arbitrary G of odd char.

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G

given g ∈ G , construct SLP to h ∈ G with Soc∗(G)g = Soc∗(G)h
by permutation group methods

use Theorem (*) to construct SLP to k ∈ Soc∗(G) with
Rad(G)gh−1 = Rad(G)k

use Luks to construct SLP to gh−1k−1 ∈ Rad(G)

constructive membership in G of even char., no
exceptional factors

as above, just use constructive recognition in Soc∗(G)/Rad(G)
level

