A polynomial-time theory of matrix groups

Akos Seress
Joint with L3szl6 Babai, Robert Beals

September 2010



Basics of Computational Group Theory



Basics of Computational Group Theory

Two basic ways to input a group:
1) generators—relators
G=(ab|a®=b"=1,b"=b1)
Is G =17 Is G finite?



Computational Group Theory 101

Two basic ways to input a group:
1) generators—relators
G=(ab|a®=b"=1,b"=b1)
Is G =17 Is G finite?

2) “concrete” representation, with generating permutations or ma-
trices (over finite fields)

G = (X)

|G| =7 Given g € 5, (or g € GL(d, q)), is g € G?

G is too big to list



Key task: Constructive membership problem

1) Find “nice” generators Y for G

2) Procedure to write any g € G in terms of Y
(straight-line program from Y to g)



Key task: Constructive membership problem

1) Find “nice” generators Y for G

2) Procedure to write any g € G in terms of Y
(straight-line program from Y to g)

SLP: sequence of expressions wy, ..., Wn
w;: symbol for some y € Y or

w; = (wj, wi) for some j, k < i or

w; = (wj, —1) for some j < i

Evaluation:

eval(w;, wi) = eval(w;)eval(wy)
eval(w;, —1) = eval(w;) !
eval(wp) = g



Key task: Constructive membership problem

1) Find “nice” generators Y for G

2) Procedure to write any g € G in terms of Y
(straight-line program from Y to g)

SLP: sequence of expressions wy, ..., Wn
w;: symbol for some y € Y or

w; = (wj, wi) for some j, k < i or

w; = (wj, —1) for some j < i

Evaluation:

eval(w;, wi) = eval(w;)eval(wy)
eval(w;, —1) = eval(w;) !

eval(wp) = g

Y={y}, g=y"%
wi =y, wo = (wy,w), wz = (wo,ws),..., w1 = (wi, wio)



Permutation groups: under control

Parker—Nikolai (1958)
G=(X)<SpisG>A"?

G > A, < G transitive, contains p-cycle with n/2 < p<n—2
Random sample of elements has good chance to have the order of
one of them divisible by such p



Constructive membership (Sims, late 1960's)

G = (X) < Sym(Q)

B = (f1,...,0m) is base for G:
pointwise stabilizer Gg =1
G=aGMU>gk >...>¢glmtl] — 1
Gl =G,



Constructive membership (Sims, late 1960's)

G = (X) < Sym(Q)

B = (f1,...,0m) is base for G:
pointwise stabilizer Gg =1
G=aGMU>gk >...>¢glmtl] — 1
Gl =G,

G =((1,5,2,6),(1,2)(3,4)(5,6))
B =(1,3)
G > G1 > G13 =1



Constructive membership (Sims, late 1960's)

G = (X) < Sym(Q)

B = (f1,...,0m) is base for G:
pointwise stabilizer Gg = 1
G=aGMU>gk >...>¢glmtl] — 1
Gl =G,

Y is strong generating set (SGS):
Gl = (Gl nY)



Constructive membership (Sims, late 1960's)

G = (X) < Sym(Q)

B = (f1,...,0m) is base for G:
pointwise stabilizer Gg =1
G=aGMU>gk >...>¢glmtl] — 1
Gl =G,

Y is strong generating set (SGS):
Gl = (Gl n v)
((gl 2,6),(1,2)(3,4)(5,6))

5,

3)

> Giz=1
{(1,5,2,6),(1,2)(3,4)(5,6),(3,4)}



Constructive membership (Sims, late 1960's)

G = (X) < Sym(Q)

B = (f1,...,0m) is base for G:
pointwise stabilizer Gg =1
G=aGMU>gk >...>¢glmtl] — 1
Gl =G,

Y is strong generating set (SGS):

Gl = (Gl nY)

Ti: (right) cosetreps Gl mod Gl+1 (easy from SGS)
sifting: writeany g€ Gasg =ty ---r, € T;



Parallel (NC) algorithms: polynomially many processors, only poly-
logarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead
of point stabilizer chain



Parallel (NC) algorithms: polynomially many processors, only poly-
logarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead
of point stabilizer chain

Babai, Luks, Seress (1987): permutation groups in NC

By the time |G| is computed: also composition series of G



Sequential consequence (Babai, Luks, Seress 1988)
G < Sym(2) arbitrary

1) detect large alternating composition factors

2) constructive membership by special methods

3) rest of group: Sims's algorithm

4) put it together



Current status: randomized speedup of Sims, BLS

fast (both in practical and theoretical sense)

Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhoffer, Seress



Current status: randomized speedup of Sims, BLS

fast (both in practical and theoretical sense)

Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhoffer, Seress

Moral: in permutation groups, structural exploration and randomi-
zation not unavoidable, but helps



Current status: randomized speedup of Sims, BLS

fast (both in practical and theoretical sense)

Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-
Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhoffer, Seress

Moral: in permutation groups, structural exploration and randomi-
zation not unavoidable, but helps

A. Seress: Permutation Group Algorithms. Cambridge Univ. Press
2003.



Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)



Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices:

G = (25,142,261) < GF(683)*, |G| =?
Discrete log problem: a, b € GF(q)*

Is a e (b)? If yes, ?x(a = b¥)



Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices:

G = (25,142,261) < GF(683)*, |G| =?
Discrete log problem: a, b € GF(q)*

Is a e (b)? If yes, ?x(a = b¥)

3) factorization of large integers

4) great variety of large primitive matrix groups



Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices:

G = (25,142,261) < GF(683)*, |G| =?
Discrete log problem: a, b € GF(q)*

Is a e (b)? If yes, ?x(a = b¥)

3) factorization of large integers

4) great variety of large primitive matrix groups

Randomization, structural exploration (chopping into manageable
pieces) are necessary



Luks (1992): In solvable matrix groups, order, constructive mem-
bership, composition series in deterministic polynomial time, using
discrete log and factorization oracles



Luks (1992): In solvable matrix groups, order, constructive mem-
bership, composition series in deterministic polynomial time, using
discrete log and factorization oracles

randomized algorithm is Monte Carlo: output may be wrong, with
probability controlled by user

randomized algorithm is Las Vegas: output is always correct, may
report failure with probability controlled by user



Neubiiser's question

Given G = (X) < GL(d, q); is G > SL(d, q)?

Neumann, Praeger (1990): nonconstructive recognition of SL(d, q)
(by Monte Carlo algorithm)



Geometric approach

(suggested by Neumann, Praeger in 1990, led by Leedham-Green
and O'Brien)

Aschbacher’s classification of matrix groups (1984): nine categories
C1-C7: reductive classes

natural normal subgroup N associated with the action of G

handle N, G/N recursively



C1: G acts reducibly
G/N, N: action and kernel of action on invariant subspace W < V

C2: imprimitive action
V=WV&- - ® Vi G permutes the V;
G/N, N: permutation action on blocks and its kernel

etc.



Reduction bottoms out:
(C8: giants classical groups in natural representation

C9: almost simple modulo scalars, absolutely irreducible action
no geometry to exploit



Black-box group approach of matrix groups

Babai, Beals (1993, 1999): find abstract structure
1 <Rad(G) < Soc*(G) < PKer(G) < G
Rad(G): largest solvable normal subgroup
Soc*(G)/Rad(G): socle of G/Rad(G)
Soc*(G)/Rad(G) = Ty x --- x Tk

T; nonabelian simple, G permutes them by conjugation

PKer(G): kernel of this permutation action
PKer(G)/Soc*(G) < Out(Ty) x --- x Out(T) solvable (CFSG)



Black-box group:

group elements are represented by 0-1 strings of uniform length n

given g, h € G, oracle to compute (strings representing) gh, g1,

and decide g = 17



Black-box group:

group elements are represented by 0-1 strings of uniform length n
given g, h € G, oracle to compute (strings representing) gh, g1
and decide g = 17

Why lose information?

(i) sometimes we cannot use more info (random element generation,
C9 groups)

(ii) permutation group elements as words in strong generators: faster
group operation than perm multiplication

(iii) working in factor groups of matrix groups, we lose geometry



G black-box group

Construct H < G: compute generators for H

Recognize H < G: able to test membership in H



G black-box group

Construct H < G: compute generators for H
Recognize H < G: able to test membership in H
H = Z(G),Rad(G) are recognizable, but hard to construct

N <1 G, N recognizable: we can consider G/N as black-box group



Black-box group of characteristic p: G is a section (factor group of
a subgroup) of GL(n, p)

Babai, Beals work with bb groups of characteristic p

1) Landazuri—Seitz—Zaleskii, Feit-Tits: Lie-type composition
factors of characteristic # p have small permutation representation

2) some idea about primes occurring in |G|

L = {primes < n°}
U{p—1]1<i<nju{®tliottl1]1<t<n}
U {24t+2+22t+1+1i2t+1(22t+1+1) |1<t<n}

U {3%1 43 L1 |1<t<n}

pseudo-primes: refinement of L into pairwise relative prime
numbers



New results

Given G = (X) < GL(d, p°),

(1) find |G/Rad(G)| in Monte Carlo pol. time

(2) if p is odd then construct Rad(G) in Monte Carlo pol. time
(3) if p =2 and no exceptional Lie-type groups among the T; then
construct Rad(G) in Monte Carlo pol. time using discrete log oracles



New results

Given G = (X) < GL(d, p°),

(1) find |G/Rad(G)| in Monte Carlo pol. time

(2) if p is odd then construct Rad(G) in Monte Carlo pol. time
(3) if p =2 and no exceptional Lie-type groups among the T; then
construct Rad(G) in Monte Carlo pol. time using discrete log oracles

(4) if p is odd then constructive membership in G in Monte Carlo
pol. time using discrete log oracles

(5) if p = 2 and no exceptional Lie-type groups among the T;
then constructive membership in G in Monte Carlo pol. time using
discrete log oracles



New results

Given G = (X) < GL(d, p°),

(1) find |G/Rad(G)| in Monte Carlo pol. time

(2) if p is odd then construct Rad(G) in Monte Carlo pol. time
(3) if p =2 and no exceptional Lie-type groups among the T; then
construct Rad(G) in Monte Carlo pol. time using discrete log oracles

(4) if p is odd then constructive membership in G in Monte Carlo
pol. time using discrete log oracles

(5) if p = 2 and no exceptional Lie-type groups among the T;
then constructive membership in G in Monte Carlo pol. time using
discrete log oracles

(6) for any p: if no exceptional Lie-type groups among the T; then
upgrade the algorithms to Las Vegas



1 <Rad(G) < Soc*(G) < PKer(G) < G
Soc*(G)/Rad(G) = Ty x -+ x Tk

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to con-
struct perfect H; < G, H;/Rad(H;) = T;



1 <Rad(G) < Soc*(G) < PKer(G) < G
Soc*(G)/Rad(G) = Ty x -+ x Tk

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to con-
struct perfect H; < G, H;/Rad(H;) = T;

consequences:
1) Construct G/PKer(G) < Sk and Soc*(G)/Rad(G)
2) name the T; (Babai—-Kantor—Palfy—Seress, Altseimer—Borovik)



1 <Rad(G) < Soc*(G) < PKer(G) < G
Soc*(G)/Rad(G) = Ty x -+ x Tk

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to con-
struct perfect H; < G, H;/Rad(H;) = T;

consequences:
1) Construct G/PKer(G) < Sk and Soc*(G)/Rad(G)
2) name the T; (Babai—-Kantor—Palfy—Seress, Altseimer—Borovik)

works with black-box groups of characteristic p



New additions:

(1) construct PKer(G)/Soc*(G)
(2) construct Rad(H;) for 1 <i <k
(3) construct the part of Rad(G) not generated by (Rad(H;))



New additions:

(1) construct PKer(G)/Soc*(G)
(2) construct Rad(H;) for 1 <i <k
(3) construct the part of Rad(G) not generated by (Rad(H;))

(1), (3): in Monte Carlo polynomial time
for odd p, (2) in Monte Carlo polynomial time
works with black-box groups of characteristic p



New additions:

(1) construct PKer(G)/Soc*(G)
(2) construct Rad(H;) for 1 <i <k
(3) construct the part of Rad(G) not generated by (Rad(H;))

(1), (3): in Monte Carlo polynomial time
for odd p, (2) in Monte Carlo polynomial time
works with black-box groups of characteristic p

for p = 2, (2) in Monte Carlo polynomial time using discrete log
oracles if no T; is exceptional
works only for matrix groups



(1) construct PKer(G)/Soc*(G) < Out(Ty) x --- x Out(Tk)

Leedham-Green trick: T simple, g € Aut(T);isg e T?

multiply g by random he T
ged of {|gh|}isl:ge T
gcd > 1: with high probability, g & T

Justification by Babai—Palfy—Saxl:

there is absolute constant ¢ such that for all prime r, all simple
T, proportion of elements of order not divisible by r is at least
c/rank(T)



(1) construct PKer(G)/Soc*(G) < Out(Ty) x --- x Out(Tk)

Leedham-Green trick: T simple, g € Aut(T);isg e T?

multiply g by random he T
ged of {|gh|}isl:ge T
gcd > 1: with high probability, g & T

Justification by Babai—Palfy—Saxl:

there is absolute constant ¢ such that for all prime r, all simple
T, proportion of elements of order not divisible by r is at least
c/rank(T)

Solution of (1): generalization of LG-trick to product of simples

for each i < k, construct regular permutation representation of pro-
jection of PKer(G)/Soc*(G) into Out(T;)



(2) H=Rad(H).T perfect, construct Rad(H)

T sporadic: brute force

T alternating: constructive recognition in Monte Carlo pol. time
(Beals—Leedham-Green—Niemeyer—Praeger—Seress)



(2) H=Rad(H).T perfect, construct Rad(H)

T sporadic: brute force

T alternating: constructive recognition in Monte Carlo pol. time
(Beals—Leedham-Green—Niemeyer—Praeger—Seress)

T Lie-type of characteristic  p: construct permutation representa-
tion (Babai—Beals)

T Lie-type of characteristic p, acting nontrivially on a non-p chief
layer of Rad(H): construct permutation representation



(2) H=Rad(H).T perfect, construct Rad(H)

T sporadic: brute force

T alternating: constructive recognition in Monte Carlo pol. time
(Beals—Leedham-Green—Niemeyer—Praeger—Seress)

T Lie-type of characteristic  p: construct permutation representa-
tion (Babai—Beals)

T Lie-type of characteristic p, acting nontrivially on a non-p chief
layer of Rad(H): construct permutation representation

Remains: T Lie-type of characteristic p, acting trivially on non-p
chief layers of Rad(H)



Two base cases

H=2z{.T

Parker—Wilson, Yalcinkaya: in Monte Carlo pol. time, construct h €
d

ZP . . . .

works only for odd p (uses centralizer of involution computations)



Two base cases

H=2z{.T
Parker—Wilson, Yalcinkaya: in Monte Carlo pol. time, construct h €
Zd

P

works only for odd p (uses centralizer of involution computations)
H=2z4T, r#p, Z(H) = z¢
Babai—Shalev: in Monte Carlo pol. time, construct h € Z¢

easy, based on Babai—P4lfy—Saxl

both algorithms work for black-box groups



H = Rad(H).T, S <Rad(H) is the already constructed part of
Rad(H)

if S # Rad(H): there is S < N char Rad(H), Rad(H)/N elemen-
tary abelian, H/N one of the base cases

S, N not recognizable

How to apply the base case algorithms?



H = Rad(H).T, S <<Rad(H) is the already constructed part of
Rad(H)

if S # Rad(H): there is S < N char Rad(H), Rad(H)/N elemen-
tary abelian, H/N one of the base cases

S, N not recognizable

How to apply the base case algorithms?

Adaptation principle

run the base case algorithms for H/N
at queries h =17 (i.e.,, h € N?)

if h € Rad(H) then answer yes, store h



H = Rad(H).T, S <Rad(H) is the already constructed part of
Rad(H)

if S # Rad(H): there is S < N char Rad(H), Rad(H)/N elemen-
tary abelian, H/N one of the base cases

S, N not recognizable

How to apply the base case algorithms?

Adaptation principle

run the base case algorithms for H/N
at queries h =17 (i.e.,, h € N?)

if h € Rad(H) then answer yes, store h

if all answers are correct: with high probability, one of the algorithms
constructs h € Rad(H) \ N

if one of the answers is incorrect: stored h € Rad(H) \ N



p=2, H=Rad(H). T

Kantor—Seress: construct quasisimple matrix representation
M=2ZT,Z=2Z(M)for T
uses that H is a matrix group

Brooksbank, Kantor: for T classical, constructive recognition of M
in Monte Carlo pol. time, using PSL(2, g) oracles

Conder—Leedham-Green—Q'Brien: constructive recognition of any
quasisimple matrix representation of PSL(2, ), using discrete logs



(3) construct the part of Rad(G) not generated by (Rad(H;))

easy, based on Babai—P4lfy—Sax| and adaptation principle



constructive membership (construct SLP to given g € G)

Holmes—Linton—O'Brien—Ryba—Wilson:
given T simple Lie-type and g € T as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions xj, xo, X3 €
T so that SLP to g is reduced to constructive membership in C7(x;)

if T is classical of large rank then the x; can be chosen to be balanced
(+1-eigenspaces are roughly half dimensional)



constructive membership (construct SLP to given g € G)

Holmes—Linton—O'Brien—Ryba—Wilson:
given T simple Lie-type and g € T as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions xj, xo, X3 €
T so that SLP to g is reduced to constructive membership in C7(x;)

if T is classical of large rank then the x; can be chosen to be balanced
(+1-eigenspaces are roughly half dimensional)

Theorem (*) Constructive membership in T in Monte Carlo poly-
nomial time
Cr(x;) are not quasisimple; recursive steps use full machinery



constructive membership in arbitrary G of odd char.

1 <Rad(G) < Soc*(G) < PKer(G) < G

given g € G, construct SLP to h € G with Soc*(G)g = Soc*(G)h
by permutation group methods



constructive membership in arbitrary G of odd char.

1 <Rad(G) < Soc*(G) < PKer(G) < G

given g € G, construct SLP to h € G with Soc*(G)g = Soc*(G)h
by permutation group methods

use Theorem (*) to construct SLP to k € Soc*(G) with
Rad(G)gh™! = Rad(G)k

use Luks to construct SLP to gh*k~! € Rad(G)



constructive membership in G of even char., no
exceptional factors

as above, just use constructive recognition in Soc*(G)/Rad(G)
level



