A polynomial-time theory of matrix groups

Ákos Seress Joint with László Babai, Robert Beals

September 2010

Basics of Computational Group Theory

Basics of Computational Group Theory

・ロト・日本・モート モー もくの

Two basic ways to input a group: 1) generators-relators $G = \langle a, b \mid a^2 = b^5 = 1, b^a = b^{-1} \rangle$ Is G = 1? Is G finite?

Computational Group Theory 101

Two basic ways to input a group:

1) generators-relators $G = \langle a, b \mid a^2 = b^5 = 1, b^a = b^{-1} \rangle$ Is G = 1? Is G finite?

2) "concrete" representation, with generating permutations or matrices (over finite fields) $G = \langle X \rangle$ |G| =? Given $g \in S_n$ (or $g \in GL(d,q)$), is $g \in G$? G is too big to list

Key task: Constructive membership problem 1) Find "nice" generators Y for G 2) Procedure to write any $g \in G$ in terms of Y (straight-line program from Y to g)

Key task: Constructive membership problem 1) Find "nice" generators Y for G2) Procedure to write any $g \in G$ in terms of Y(straight-line program from Y to g)

SLP: sequence of expressions w_1, \ldots, w_m w_i : symbol for some $y \in Y$ or $w_i = (w_j, w_k)$ for some j, k < i or $w_i = (w_j, -1)$ for some j < i

Evaluation:

 $eval(w_j, w_k) = eval(w_j)eval(w_k)$ $eval(w_j, -1) = eval(w_j)^{-1}$ $eval(w_m) = g$ Key task: Constructive membership problem 1) Find "nice" generators Y for G2) Procedure to write any $g \in G$ in terms of Y(straight-line program from Y to g)

SLP: sequence of expressions w_1, \ldots, w_m w_i : symbol for some $y \in Y$ or $w_i = (w_j, w_k)$ for some j, k < i or $w_i = (w_j, -1)$ for some j < i

Evaluation:

 $\begin{aligned} \operatorname{eval}(w_j, w_k) &= \operatorname{eval}(w_j) \operatorname{eval}(w_k) \\ \operatorname{eval}(w_j, -1) &= \operatorname{eval}(w_j)^{-1} \\ \operatorname{eval}(w_m) &= g \end{aligned}$ $Y &= \{y\}, \quad g = y^{1024} \\ w_1 &= y, \quad w_2 = (w_1, w_1), \quad w_3 = (w_2, w_2), \dots, w_{11} = (w_{10}, w_{10}) \end{aligned}$

Permutation groups: under control

Parker–Nikolai (1958) $G = \langle X \rangle \leq S_n$; is $G \geq A_n$?

 $G \ge A_n \iff G$ transitive, contains *p*-cycle with n/2Random sample of elements has good chance to have the order ofone of them divisible by such*p*

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$\begin{split} G &= \langle X \rangle \leq \operatorname{Sym}(\Omega) \\ B &= (\beta_1, \dots, \beta_m) \text{ is base for } G: \\ \text{pointwise stabilizer } G_B &= 1 \\ G &= G^{[1]} \geq G^{[2]} \geq \dots \geq G^{[m+1]} = 1 \\ G^{[i]} &= G_{(\beta_1, \dots, \beta_{i-1})} \end{split}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$\begin{split} G &= \langle X \rangle \leq \operatorname{Sym}(\Omega) \\ B &= (\beta_1, \dots, \beta_m) \text{ is base for } G: \\ \text{pointwise stabilizer } G_B &= 1 \\ G &= G^{[1]} \geq G^{[2]} \geq \dots \geq G^{[m+1]} = 1 \\ G^{[i]} &= G_{(\beta_1, \dots, \beta_{i-1})} \end{split}$$

$$egin{aligned} G &= \langle (1,5,2,6), (1,2)(3,4)(5,6)
angle \ B &= (1,3) \ G &> G_1 > G_{13} = 1 \end{aligned}$$

$$\begin{split} G &= \langle X \rangle \leq \operatorname{Sym}(\Omega) \\ B &= (\beta_1, \dots, \beta_m) \text{ is base for } G: \\ \text{pointwise stabilizer } G_B &= 1 \\ G &= G^{[1]} \geq G^{[2]} \geq \dots \geq G^{[m+1]} = 1 \\ G^{[i]} &= G_{(\beta_1, \dots, \beta_{i-1})} \end{split}$$

Y is strong generating set (SGS): $G^{[i]} = \langle G^{[i]} \cap Y \rangle$

$$\begin{split} G &= \langle X \rangle \leq \operatorname{Sym}(\Omega) \\ B &= (\beta_1, \dots, \beta_m) \text{ is base for } G: \\ \text{pointwise stabilizer } G_B &= 1 \\ G &= G^{[1]} \geq G^{[2]} \geq \dots \geq G^{[m+1]} = 1 \\ G^{[i]} &= G_{(\beta_1, \dots, \beta_{i-1})} \end{split}$$

Y is strong generating set (SGS): $G^{[i]} = \langle G^{[i]} \cap Y \rangle$

$$G = \langle (1,5,2,6), (1,2)(3,4)(5,6) \rangle$$

$$B = (1,3)$$

$$G > G_1 > G_{13} = 1$$

$$Y = \{ (1,5,2,6), (1,2)(3,4)(5,6), (3,4) \}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ クタマ

$$\begin{split} G &= \langle X \rangle \leq \operatorname{Sym}(\Omega) \\ B &= (\beta_1, \dots, \beta_m) \text{ is base for } G: \\ \text{pointwise stabilizer } G_B &= 1 \\ G &= G^{[1]} \geq G^{[2]} \geq \dots \geq G^{[m+1]} = 1 \\ G^{[i]} &= G_{(\beta_1, \dots, \beta_{i-1})} \end{split}$$

Y is strong generating set (SGS): $G^{[i]} = \langle G^{[i]} \cap Y \rangle$ T_i : (right) cosetreps $G^{[i]} \mod G^{[i+1]}$ (easy from SGS) sifting: write any $g \in G$ as $g = r_m \cdots r_1$, $r_i \in T_i$

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

Parallel (NC) algorithms: polynomially many processors, only polylogarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead of point stabilizer chain

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ クタマ

Parallel (NC) algorithms: polynomially many processors, only polylogarithmic time

sifting is inherently sequential

Luks: divide-and-conquer approach, using normal subgroups instead of point stabilizer chain

Babai, Luks, Seress (1987): permutation groups in NC

By the time |G| is computed: also composition series of G

Sequential consequence (Babai, Luks, Seress 1988)

- $G \leq \operatorname{Sym}(\Omega)$ arbitrary
- 1) detect large alternating composition factors
- 2) constructive membership by special methods

- 3) rest of group: Sims's algorithm
- 4) put it together

Current status: randomized speedup of Sims, BLS fast (both in practical and theoretical sense) Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Current status: randomized speedup of Sims, BLS fast (both in practical and theoretical sense) Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Moral: in permutation groups, structural exploration and randomization not unavoidable, but helps

Current status: randomized speedup of Sims, BLS fast (both in practical and theoretical sense) Babai, Beals, Cooperman, Finkelstein, Kantor, Law, Leedham-Green, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Moral: in permutation groups, structural exploration and randomization not unavoidable, but helps

Á. Seress: Permutation Group Algorithms. Cambridge Univ. Press 2003.

1) no subgroup chain with small indices (no Sims-type approach)

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices: $G = \langle 25, 142, 261 \rangle \leq GF(683)^*, |G| = ?$ Discrete log problem: $a, b \in GF(q)^*$ Is $a \in \langle b \rangle$? If yes, $?x (a = b^x)$

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices: $G = \langle 25, 142, 261 \rangle \leq GF(683)^*$, |G| = ?Discrete log problem: $a, b \in GF(q)^*$ Is $a \in \langle b \rangle$? If yes, $?x (a = b^x)$

3) factorization of large integers

4) great variety of large primitive matrix groups

1) no subgroup chain with small indices (no Sims-type approach)

2) even for 1x1 matrices: $G = \langle 25, 142, 261 \rangle \leq GF(683)^*$, |G| = ?Discrete log problem: $a, b \in GF(q)^*$ Is $a \in \langle b \rangle$? If yes, $?x (a = b^x)$

- 3) factorization of large integers
- 4) great variety of large primitive matrix groups

Randomization, structural exploration (chopping into manageable pieces) are necessary

・ロト ・ 同 ・ ・ ミ ト ・ ミ ・ うへの

Luks (1992): In solvable matrix groups, order, constructive membership, composition series in deterministic polynomial time, using discrete log and factorization oracles

Luks (1992): In solvable matrix groups, order, constructive membership, composition series in deterministic polynomial time, using discrete log and factorization oracles

randomized algorithm is Monte Carlo: output may be wrong, with probability controlled by user

randomized algorithm is Las Vegas: output is always correct, may report failure with probability controlled by user

Neubüser's question

Given $G = \langle X \rangle \leq \operatorname{GL}(d, q)$; is $G \geq \operatorname{SL}(d, q)$?

Neumann, Praeger (1990): nonconstructive recognition of SL(d, q) (by Monte Carlo algorithm)

(suggested by Neumann, Praeger in 1990, led by Leedham-Green and O'Brien)

Aschbacher's classification of matrix groups (1984): nine categories C1–C7: reductive classes natural normal subgroup N associated with the action of G handle N, G/N recursively

C1: G acts reducibly G/N, N: action and kernel of action on invariant subspace W < V

C2: imprimitive action $V = V_1 \oplus \cdots \oplus V_k$, *G* permutes the V_i G/N, *N*: permutation action on blocks and its kernel

etc.

Reduction bottoms out:

C8: giants classical groups in natural representation

C9: almost simple modulo scalars, absolutely irreducible action no geometry to exploit

Black-box group approach of matrix groups

Babai, Beals (1993, 1999): find abstract structure

 $1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^*(G) \leq \operatorname{PKer}(G) \leq G$

 $\operatorname{Rad}(G)$: largest solvable normal subgroup

 $Soc^*(G)/Rad(G)$: socle of G/Rad(G) $Soc^*(G)/Rad(G) \cong T_1 \times \cdots \times T_k$ T_i nonabelian simple, G permutes them by conjugation

 $\frac{\operatorname{PKer}(G)}{\operatorname{PKer}(G)/\operatorname{Soc}^*(G)} \leq \operatorname{Out}(T_1) \times \cdots \times \operatorname{Out}(T_k) \text{ solvable (CFSG)}$

Black-box group:

group elements are represented by 0-1 strings of uniform length n given $g, h \in G$, oracle to compute (strings representing) gh, g^{-1} , and decide g = 1?

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ

group elements are represented by 0-1 strings of uniform length n given $g, h \in G$, oracle to compute (strings representing) gh, g^{-1} , and decide g = 1?

Why lose information?

(i) sometimes we cannot use more info (random element generation, C9 groups)

(ii) permutation group elements as words in strong generators: faster group operation than perm multiplication

(iii) working in factor groups of matrix groups, we lose geometry

G black-box group

Construct $H \leq G$: compute generators for H

Recognize $H \leq G$: able to test membership in H

G black-box group

Construct $H \leq G$: compute generators for H

Recognize $H \leq G$: able to test membership in H

H = Z(G), Rad(G) are recognizable, but hard to construct

 $N \lhd G$, N recognizable: we can consider G/N as black-box group

Black-box group of characteristic p: G is a section (factor group of a subgroup) of GL(n, p)

Babai, Beals work with bb groups of characteristic *p*

1) Landazuri–Seitz–Zaleskii, Feit–Tits: Lie-type composition factors of characteristic $\neq p$ have small permutation representation

2) some idea about primes occurring in |G|

$$L = \{ \text{primes} < n^9 \}$$

$$\cup \ \{ p^i - 1 \mid 1 \le i \le n \} \cup \{ 2^{2t+1} \pm 2^{t+1} + 1 \mid 1 \le t \le n \}$$

$$\cup \ \{ 2^{4t+2} + 2^{2t+1} + 1 \pm 2^{t+1} (2^{2t+1} + 1) \mid 1 \le t \le n \}$$

$$\cup \ \{ 3^{2t+1} \pm 3^{t+1} + 1 \mid 1 \le t \le n \}$$

pseudo-primes: refinement of *L* into pairwise relative prime numbers

New results

Given $G = \langle X \rangle \leq \operatorname{GL}(d, p^e)$, (1) find $|G/\operatorname{Rad}(G)|$ in Monte Carlo pol. time (2) if p is odd then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time (3) if p = 2 and no exceptional Lie-type groups among the T_i then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time using discrete log oracles

New results

Given $G = \langle X \rangle \leq \operatorname{GL}(d, p^e)$,

(1) find |G/Rad(G)| in Monte Carlo pol. time

(2) if p is odd then construct Rad(G) in Monte Carlo pol. time

(3) if p = 2 and no exceptional Lie-type groups among the T_i then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time using discrete log oracles

(4) if p is odd then constructive membership in G in Monte Carlo pol. time using discrete log oracles

(5) if p = 2 and no exceptional Lie-type groups among the T_i then constructive membership in G in Monte Carlo pol. time using discrete log oracles

New results

Given $G = \langle X \rangle \leq \operatorname{GL}(d, p^e)$,

(1) find |G/Rad(G)| in Monte Carlo pol. time

(2) if p is odd then construct Rad(G) in Monte Carlo pol. time

(3) if p = 2 and no exceptional Lie-type groups among the T_i then construct Rad(G) in Monte Carlo pol. time using discrete log oracles

(4) if p is odd then constructive membership in G in Monte Carlo pol. time using discrete log oracles (5) if p = 2 and no exceptional Lie-type groups among the T_i then constructive membership in G in Monte Carlo pol. time using

discrete log oracles

(6) for any p: if no exceptional Lie-type groups among the T_i then upgrade the algorithms to Las Vegas

$$1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^*(G) \leq \operatorname{PKer}(G) \leq G$$

 $\operatorname{Soc}^*(G)/\operatorname{Rad}(G) = \mathcal{T}_1 \times \cdots \times \mathcal{T}_k$

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to construct perfect $H_i \leq G$, $H_i/\text{Rad}(H_i) \cong T_i$

$$1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^*(G) \leq \operatorname{PKer}(G) \leq G$$

 $\operatorname{Soc}^*(G)/\operatorname{Rad}(G) = \mathcal{T}_1 \times \cdots \times \mathcal{T}_k$

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to construct perfect $H_i \leq G$, $H_i/\text{Rad}(H_i) \cong T_i$

consequences:

- 1) Construct $G/\operatorname{PKer}(G) \leq S_k$ and $\operatorname{Soc}^*(G)/\operatorname{Rad}(G)$
- 2) name the T_i (Babai-Kantor-Pálfy-Seress, Altseimer-Borovik)

$$1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^*(G) \leq \operatorname{PKer}(G) \leq G$$

 $\operatorname{Soc}^*(G)/\operatorname{Rad}(G) = \mathcal{T}_1 \times \cdots \times \mathcal{T}_k$

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to construct perfect $H_i \leq G$, $H_i/\text{Rad}(H_i) \cong T_i$

consequences:

- 1) Construct $G/\operatorname{PKer}(G) \leq S_k$ and $\operatorname{Soc}^*(G)/\operatorname{Rad}(G)$
- 2) name the T_i (Babai-Kantor-Pálfy-Seress, Altseimer-Borovik)

works with black-box groups of characteristic p

New additions:

- (1) construct $PKer(G)/Soc^*(G)$
- (2) construct $\operatorname{Rad}(H_i)$ for $1 \le i \le k$
- (3) construct the part of $\operatorname{Rad}(G)$ not generated by $\langle \operatorname{Rad}(H_i) \rangle$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ クタマ

New additions:

- (1) construct $PKer(G)/Soc^*(G)$
- (2) construct $\operatorname{Rad}(H_i)$ for $1 \le i \le k$
- (3) construct the part of $\operatorname{Rad}(G)$ not generated by $\langle \operatorname{Rad}(H_i) \rangle$

(1), (3): in Monte Carlo polynomial time for odd p, (2) in Monte Carlo polynomial time works with black-box groups of characteristic p

New additions:

- (1) construct $PKer(G)/Soc^*(G)$
- (2) construct $\operatorname{Rad}(H_i)$ for $1 \le i \le k$
- (3) construct the part of $\operatorname{Rad}(G)$ not generated by $\langle \operatorname{Rad}(H_i) \rangle$

(1), (3): in Monte Carlo polynomial time for odd p, (2) in Monte Carlo polynomial time works with black-box groups of characteristic p

for p = 2, (2) in Monte Carlo polynomial time using discrete log oracles if no T_i is exceptional works only for matrix groups

(1) construct $\operatorname{PKer}(G)/\operatorname{Soc}^*(G) \leq \operatorname{Out}(T_1) \times \cdots \times \operatorname{Out}(T_k)$

```
Leedham-Green trick: T simple, g \in Aut(T); is g \in T?
```

```
multiply g by random h \in T
gcd of \{|gh|\} is 1: g \in T
gcd > 1: with high probability, g \notin T
```

```
Justification by Babai–Pálfy–Saxl:
```

there is absolute constant c such that for all prime r, all simple T, proportion of elements of order not divisible by r is at least c/rank(T)

(1) construct $\operatorname{PKer}(G)/\operatorname{Soc}^*(G) \leq \operatorname{Out}(T_1) \times \cdots \times \operatorname{Out}(T_k)$

Leedham-Green trick: T simple, $g \in Aut(T)$; is $g \in T$?

```
multiply g by random h \in T
gcd of \{|gh|\} is 1: g \in T
gcd > 1: with high probability, g \notin T
```

Justification by Babai–Pálfy–SaxI:

there is absolute constant c such that for all prime r, all simple T, proportion of elements of order not divisible by r is at least c/rank(T)

Solution of (1): generalization of LG-trick to product of simples

for each $i \leq k$, construct regular permutation representation of projection of $PKer(G)/Soc^*(G)$ into $Out(T_i)$ (2) $H = \operatorname{Rad}(H)$. *T* perfect, construct $\operatorname{Rad}(H)$

T sporadic: brute force

T alternating: constructive recognition in Monte Carlo pol. time (Beals–Leedham-Green–Niemeyer–Praeger–Seress)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ クタマ

(2) $H = \operatorname{Rad}(H)$. *T* perfect, construct $\operatorname{Rad}(H)$

T **sporadic**: brute force

T alternating: constructive recognition in Monte Carlo pol. time (Beals–Leedham-Green–Niemeyer–Praeger–Seress)

T Lie-type of characteristic $\neq p$: construct permutation representation (Babai–Beals)

T Lie-type of characteristic p, acting nontrivially on a non-p chief layer of Rad(H): construct permutation representation

(2) $H = \operatorname{Rad}(H)$. *T* perfect, construct $\operatorname{Rad}(H)$

T sporadic: brute force

T alternating: constructive recognition in Monte Carlo pol. time (Beals–Leedham-Green–Niemeyer–Praeger–Seress)

T Lie-type of characteristic $\neq p$: construct permutation representation (Babai–Beals)

T Lie-type of characteristic p, acting nontrivially on a non-p chief layer of Rad(H): construct permutation representation

Remains: T Lie-type of characteristic p, acting trivially on non-p chief layers of Rad(H)

Two base cases

 $H = Z_p^d \cdot T$ Parker–Wilson, Yalcinkaya: in Monte Carlo pol. time, construct $h \in Z_p^d$ works only for odd p (uses centralizer of involution computations)

Two base cases

 $H = Z_p^d \cdot T$ Parker–Wilson, Yalcinkaya: in Monte Carlo pol. time, construct $h \in Z_p^d$ works only for odd p (uses centralizer of involution computations)

 $H = Z_r^d \cdot T$, $r \neq p$, $Z(H) = Z_r^d$ Babai–Shalev: in Monte Carlo pol. time, construct $h \in Z_r^d$ easy, based on Babai–Pálfy–Saxl

both algorithms work for black-box groups

 $H = \operatorname{Rad}(H)$. T, $S \lhd \operatorname{Rad}(H)$ is the already constructed part of $\operatorname{Rad}(H)$

if $S \neq \operatorname{Rad}(H)$: there is $S \leq N \operatorname{char} \operatorname{Rad}(H)$, $\operatorname{Rad}(H)/N$ elementary abelian, H/N one of the base cases *S*, *N* not recognizable How to apply the base case algorithms?

- ロト - 4 日 - 4 日 - 4 日 - 9 9 9 9

 $H = \operatorname{Rad}(H)$. T, $S \lhd \operatorname{Rad}(H)$ is the already constructed part of $\operatorname{Rad}(H)$

if $S \neq \operatorname{Rad}(H)$: there is $S \leq N \operatorname{char} \operatorname{Rad}(H)$, $\operatorname{Rad}(H)/N$ elementary abelian, H/N one of the base cases S, N not recognizable How to apply the base case algorithms?

Adaptation principle run the base case algorithms for H/Nat queries h = 1? (i.e., $h \in N$?) if $h \in Rad(H)$ then answer yes, store h $H = \operatorname{Rad}(H)$. T, $S \lhd \operatorname{Rad}(H)$ is the already constructed part of $\operatorname{Rad}(H)$

if $S \neq \operatorname{Rad}(H)$: there is $S \leq N \operatorname{char} \operatorname{Rad}(H)$, $\operatorname{Rad}(H)/N$ elementary abelian, H/N one of the base cases S, N not recognizable How to apply the base case algorithms?

Adaptation principle run the base case algorithms for H/Nat queries h = 1? (i.e., $h \in N$?) if $h \in Rad(H)$ then answer yes, store h

if all answers are correct: with high probability, one of the algorithms constructs $h \in \operatorname{Rad}(H) \setminus N$

if one of the answers is incorrect: stored $h \in \operatorname{Rad}(H) \setminus N$

 $p = 2, H = \operatorname{Rad}(H).T$

Kantor–Seress: construct quasisimple matrix representation M = Z.T, Z = Z(M) for T uses that H is a matrix group

Brooksbank, Kantor: for T classical, constructive recognition of M in Monte Carlo pol. time, using PSL(2, q) oracles

Conder–Leedham-Green–O'Brien: constructive recognition of any quasisimple matrix representation of PSL(2, q), using discrete logs

(3) construct the part of Rad(G) not generated by $(Rad(H_i))$ easy, based on Babai–Pálfy–Saxl and adaptation principle

constructive membership (construct SLP to given $g \in G$)

Holmes-Linton-O'Brien-Ryba-Wilson:

given T simple Lie-type and $g \in T$ as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions $x_1, x_2, x_3 \in T$ so that SLP to g is reduced to constructive membership in $C_T(x_i)$

if T is classical of large rank then the x_i can be chosen to be balanced (±1-eigenspaces are roughly half dimensional)

constructive membership (construct SLP to given $g \in G$)

Holmes-Linton-O'Brien-Ryba-Wilson:

given T simple Lie-type and $g \in T$ as bb group of odd char. p

Monte Carlo pol. time algorithm to construct involutions $x_1, x_2, x_3 \in T$ so that SLP to g is reduced to constructive membership in $C_T(x_i)$

if T is classical of large rank then the x_i can be chosen to be balanced (±1-eigenspaces are roughly half dimensional)

Theorem (*) Constructive membership in T in Monte Carlo polynomial time $C_T(x_i)$ are not quasisimple; recursive steps use full machinery

constructive membership in arbitrary G of odd char.

 $1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^*(G) \leq \operatorname{PKer}(G) \leq G$

given $g \in G$, construct SLP to $h \in G$ with $Soc^*(G)g = Soc^*(G)h$ by permutation group methods

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ クタマ

constructive membership in arbitrary G of odd char.

 $1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^*(G) \leq \operatorname{PKer}(G) \leq G$

given $g \in G$, construct SLP to $h \in G$ with $Soc^*(G)g = Soc^*(G)h$ by permutation group methods

use Theorem (*) to construct SLP to $k \in \operatorname{Soc}^*(G)$ with $\operatorname{Rad}(G)gh^{-1} = \operatorname{Rad}(G)k$

use Luks to construct SLP to $gh^{-1}k^{-1} \in \operatorname{Rad}(G)$

constructive membership in G of even char., no exceptional factors

as above, just use constructive recognition in $\operatorname{Soc}^*(G)/\operatorname{Rad}(G)$ level

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ