A polynomial-time theory of matrix groups

Ákos Seress
Joint with László Babai, Robert Beals

September 2010

Basics of Computational Group Theory

Basics of Computational Group Theory

Two basic ways to input a group:

1) generators-relators
$G=\left\langle a, b \mid a^{2}=b^{5}=1, b^{a}=b^{-1}\right\rangle$
Is $G=1$? Is G finite?

Computational Group Theory 101

Two basic ways to input a group:

1) generators-relators
$G=\left\langle a, b \mid a^{2}=b^{5}=1, b^{a}=b^{-1}\right\rangle$
Is $G=1$? Is G finite?
2) "concrete" representation, with generating permutations or matrices (over finite fields)
$G=\langle X\rangle$
$|G|=$? Given $g \in S_{n}($ or $g \in \operatorname{GL}(d, q))$, is $g \in G$?
G is too big to list

Key task: Constructive membership problem

1) Find "nice" generators Y for G
2) Procedure to write any $g \in G$ in terms of Y (straight-line program from Y to g)

Key task: Constructive membership problem

1) Find "nice" generators Y for G
2) Procedure to write any $g \in G$ in terms of Y (straight-line program from Y to g)
SLP: sequence of expressions w_{1}, \ldots, w_{m}
w_{i} : symbol for some $y \in Y$ or
$w_{i}=\left(w_{j}, w_{k}\right)$ for some $j, k<i$ or
$w_{i}=\left(w_{j},-1\right)$ for some $j<i$
Evaluation:

$$
\begin{aligned}
& \operatorname{eval}\left(w_{j}, w_{k}\right)=\operatorname{eval}\left(w_{j}\right) \operatorname{eval}\left(w_{k}\right) \\
& \operatorname{eval}\left(w_{j},-1\right)=\operatorname{eval}\left(w_{j}\right)^{-1} \\
& \operatorname{eval}\left(w_{m}\right)=g
\end{aligned}
$$

Key task: Constructive membership problem

1) Find "nice" generators Y for G
2) Procedure to write any $g \in G$ in terms of Y (straight-line program from Y to g)
SLP: sequence of expressions w_{1}, \ldots, w_{m}
w_{i} : symbol for some $y \in Y$ or
$w_{i}=\left(w_{j}, w_{k}\right)$ for some $j, k<i$ or
$w_{i}=\left(w_{j},-1\right)$ for some $j<i$
Evaluation:
$\operatorname{eval}\left(w_{j}, w_{k}\right)=\operatorname{eval}\left(w_{j}\right) \operatorname{eval}\left(w_{k}\right)$
$\operatorname{eval}\left(w_{j},-1\right)=\operatorname{eval}\left(w_{j}\right)^{-1}$
$\operatorname{eval}\left(w_{m}\right)=g$
$Y=\{y\}, \quad g=y^{1024}$
$w_{1}=y, w_{2}=\left(w_{1}, w_{1}\right), w_{3}=\left(w_{2}, w_{2}\right), \ldots, w_{11}=\left(w_{10}, w_{10}\right)$

Permutation groups: under control

Parker-Nikolai (1958)
$G=\langle X\rangle \leq S_{n}$; is $G \geq A_{n}$?
$G \geq A_{n} \Longleftrightarrow G$ transitive, contains p-cycle with $n / 2<p<n-2$ Random sample of elements has good chance to have the order of one of them divisible by such p

Constructive membership (Sims, late 1960's)

$$
\begin{aligned}
& G=\langle X\rangle \leq \operatorname{Sym}(\Omega) \\
& B=\left(\beta_{1}, \ldots, \beta_{m}\right) \text { is base for } G \text { : } \\
& \text { pointwise stabilizer } G_{B}=1 \\
& G=G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[m+1]}=1 \\
& G^{[i]}=G_{\left(\beta_{1}, \ldots, \beta_{i-1}\right)}
\end{aligned}
$$

Constructive membership (Sims, late 1960's)

$$
\begin{aligned}
& G=\langle X\rangle \leq \operatorname{Sym}(\Omega) \\
& B=\left(\beta_{1}, \ldots, \beta_{m}\right) \text { is base for } G:
\end{aligned}
$$

$$
\text { pointwise stabilizer } G_{B}=1
$$

$$
G=G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[m+1]}=1
$$

$$
G^{[i]}=G_{\left(\beta_{1}, \ldots, \beta_{i-1}\right)}
$$

$$
G=\langle(1,5,2,6),(1,2)(3,4)(5,6)\rangle
$$

$$
B=(1,3)
$$

$$
G>G_{1}>G_{13}=1
$$

Constructive membership (Sims, late 1960's)

$G=\langle X\rangle \leq \operatorname{Sym}(\Omega)$
$B=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is base for G : pointwise stabilizer $G_{B}=1$
$G=G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[m+1]}=1$ $G^{[i]}=G_{\left(\beta_{1}, \ldots, \beta_{i-1}\right)}$
Y is strong generating set (SGS):
$G^{[i]}=\left\langle G^{[i]} \cap Y\right\rangle$

Constructive membership (Sims, late 1960's)

$G=\langle X\rangle \leq \operatorname{Sym}(\Omega)$
$B=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is base for G : pointwise stabilizer $G_{B}=1$
$G=G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[m+1]}=1$ $G^{[i]}=G_{\left(\beta_{1}, \ldots, \beta_{i-1}\right)}$
Y is strong generating set (SGS):
$G^{[i]}=\left\langle G^{[i]} \cap Y\right\rangle$
$G=\langle(1,5,2,6),(1,2)(3,4)(5,6)\rangle$
$B=(1,3)$
$G>G_{1}>G_{13}=1$
$Y=\{(1,5,2,6),(1,2)(3,4)(5,6),(3,4)\}$

Constructive membership (Sims, late 1960's)

$G=\langle X\rangle \leq \operatorname{Sym}(\Omega)$
$B=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is base for G : pointwise stabilizer $G_{B}=1$
$G=G^{[1]} \geq G^{[2]} \geq \cdots \geq G^{[m+1]}=1$ $G^{[i]}=G_{\left(\beta_{1}, \ldots, \beta_{i-1}\right)}$
Y is strong generating set (SGS):
$G^{[i]}=\left\langle G^{[i]} \cap Y\right\rangle$
T_{i} : (right) cosetreps $G^{[i]} \bmod G^{[i+1]}$ (easy from SGS) sifting: write any $g \in G$ as $g=r_{m} \cdots r_{1}, r_{i} \in T_{i}$

Parallel (NC) algorithms: polynomially many processors, only polylogarithmic time
sifting is inherently sequential
Luks: divide-and-conquer approach, using normal subgroups instead of point stabilizer chain

Parallel (NC) algorithms: polynomially many processors, only polylogarithmic time
sifting is inherently sequential
Luks: divide-and-conquer approach, using normal subgroups instead of point stabilizer chain

Babai, Luks, Seress (1987): permutation groups in NC
By the time $|G|$ is computed: also composition series of G

Sequential consequence (Babai, Luks, Seress 1988)
$G \leq \operatorname{Sym}(\Omega)$ arbitrary

1) detect large alternating composition factors
2) constructive membership by special methods
3) rest of group: Sims's algorithm
4) put it together

Current status: randomized speedup of Sims, BLS fast (both in practical and theoretical sense) Babai, Beals, Cooperman, Finkelstein, Kantor, Law, LeedhamGreen, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress

Current status: randomized speedup of Sims, BLS fast (both in practical and theoretical sense)
Babai, Beals, Cooperman, Finkelstein, Kantor, Law, LeedhamGreen, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress
Moral: in permutation groups, structural exploration and randomization not unavoidable, but helps

Current status: randomized speedup of Sims, BLS fast (both in practical and theoretical sense)
Babai, Beals, Cooperman, Finkelstein, Kantor, Law, LeedhamGreen, Luks, Niemeyer, Praeger, Seress, Sims

Implementation: Neunhöffer, Seress
Moral: in permutation groups, structural exploration and randomization not unavoidable, but helps

Á. Seress: Permutation Group Algorithms. Cambridge Univ. Press 2003.

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)
2) even for 1×1 matrices:
$G=\langle 25,142,261\rangle \leq \operatorname{GF}(683)^{*},|G|=$?
Discrete log problem: $a, b \in \operatorname{GF}(q)^{*}$
Is $a \in\langle b\rangle$? If yes, ? $x\left(a=b^{x}\right)$

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)
2) even for 1×1 matrices:
$G=\langle 25,142,261\rangle \leq \operatorname{GF}(683)^{*},|G|=$?
Discrete log problem: $a, b \in \operatorname{GF}(q)^{*}$
Is $a \in\langle b\rangle$? If yes, ? $\times\left(a=b^{x}\right)$
3) factorization of large integers
4) great variety of large primitive matrix groups

Matrix groups: much harder

1) no subgroup chain with small indices (no Sims-type approach)
2) even for 1×1 matrices:
$G=\langle 25,142,261\rangle \leq \operatorname{GF}(683)^{*},|G|=$?
Discrete log problem: $a, b \in \operatorname{GF}(q)^{*}$
Is $a \in\langle b\rangle$? If yes, ? $\times\left(a=b^{x}\right)$
3) factorization of large integers
4) great variety of large primitive matrix groups

Randomization, structural exploration (chopping into manageable pieces) are necessary

Luks (1992): In solvable matrix groups, order, constructive membership, composition series in deterministic polynomial time, using discrete \log and factorization oracles

Luks (1992): In solvable matrix groups, order, constructive membership, composition series in deterministic polynomial time, using discrete \log and factorization oracles
randomized algorithm is Monte Carlo: output may be wrong, with probability controlled by user
randomized algorithm is Las Vegas: output is always correct, may report failure with probability controlled by user

Neubüser's question

Given $G=\langle X\rangle \leq \operatorname{GL}(d, q)$; is $G \geq \mathrm{SL}(d, q)$?
Neumann, Praeger (1990): nonconstructive recognition of $\operatorname{SL}(d, q)$ (by Monte Carlo algorithm)

Geometric approach

(suggested by Neumann, Praeger in 1990, led by Leedham-Green and O'Brien)

Aschbacher's classification of matrix groups (1984): nine categories C1-C7: reductive classes natural normal subgroup N associated with the action of G handle $N, G / N$ recursively

C1: G acts reducibly
$G / N, N$: action and kernel of action on invariant subspace $W<V$
C2: imprimitive action
$V=V_{1} \oplus \cdots \oplus V_{k}, G$ permutes the V_{i}
$G / N, N$: permutation action on blocks and its kernel
etc.

Reduction bottoms out:
C8: giants classical groups in natural representation
C9: almost simple modulo scalars, absolutely irreducible action no geometry to exploit

Black-box group approach of matrix groups

Babai, Beals (1993, 1999): find abstract structure
$1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^{*}(G) \leq \operatorname{PKer}(G) \leq G$
$\operatorname{Rad}(G)$: largest solvable normal subgroup
$\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G)$: socle of $G / \operatorname{Rad}(G)$
$\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G) \cong T_{1} \times \cdots \times T_{k}$
T_{i} nonabelian simple, G permutes them by conjugation
$\operatorname{PKer}(G)$: kernel of this permutation action
$\operatorname{PKer}(G) / \operatorname{Soc}^{*}(G) \leq \operatorname{Out}\left(T_{1}\right) \times \cdots \times \operatorname{Out}\left(T_{k}\right)$ solvable (CFSG)

Black-box group:

group elements are represented by $0-1$ strings of uniform length n given $g, h \in G$, oracle to compute (strings representing) $g h, g^{-1}$, and decide $g=1$?

Black-box group:

group elements are represented by $0-1$ strings of uniform length n given $g, h \in G$, oracle to compute (strings representing) $g h, g^{-1}$, and decide $g=1$?

Why lose information?

(i) sometimes we cannot use more info (random element generation, C9 groups)
(ii) permutation group elements as words in strong generators: faster group operation than perm multiplication
(iii) working in factor groups of matrix groups, we lose geometry
G black-box group
Construct $H \leq G$: compute generators for H
Recognize $H \leq G$: able to test membership in H
G black-box group
Construct $H \leq G$: compute generators for H
Recognize $H \leq G$: able to test membership in H
$H=Z(G), \operatorname{Rad}(G)$ are recognizable, but hard to construct
$N \triangleleft G, N$ recognizable: we can consider G / N as black-box group

Black-box group of characteristic $p: G$ is a section (factor group of a subgroup) of $\mathrm{GL}(n, p)$

Babai, Beals work with bb groups of characteristic p

1) Landazuri-Seitz-Zaleskii, Feit-Tits: Lie-type composition factors of characteristic $\neq p$ have small permutation representation
2) some idea about primes occurring in $|G|$

$$
\begin{array}{r}
L=\left\{\text { primes }<n^{9}\right\} \\
\cup\left\{p^{i}-1 \mid 1 \leq i \leq n\right\} \cup\left\{2^{2 t+1} \pm 2^{t+1}+1 \mid 1 \leq t \leq n\right\} \\
\cup\left\{2^{4 t+2}+2^{2 t+1}+1 \pm 2^{t+1}\left(2^{2 t+1}+1\right) \mid 1 \leq t \leq n\right\} \\
\cup\left\{3^{2 t+1} \pm 3^{t+1}+1 \mid 1 \leq t \leq n\right\}
\end{array}
$$

pseudo-primes: refinement of L into pairwise relative prime numbers

New results

Given $G=\langle X\rangle \leq \operatorname{GL}\left(d, p^{e}\right)$,
(1) find $|G / \operatorname{Rad}(G)|$ in Monte Carlo pol. time
(2) if p is odd then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time (3) if $p=2$ and no exceptional Lie-type groups among the T_{i} then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time using discrete log oracles

New results

Given $G=\langle X\rangle \leq \operatorname{GL}\left(d, p^{e}\right)$,
(1) find $|G / \operatorname{Rad}(G)|$ in Monte Carlo pol. time
(2) if p is odd then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time (3) if $p=2$ and no exceptional Lie-type groups among the T_{i} then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time using discrete log oracles
(4) if p is odd then constructive membership in G in Monte Carlo pol. time using discrete log oracles
(5) if $p=2$ and no exceptional Lie-type groups among the T_{i} then constructive membership in G in Monte Carlo pol. time using discrete log oracles

New results

Given $G=\langle X\rangle \leq \operatorname{GL}\left(d, p^{e}\right)$,
(1) find $|G / \operatorname{Rad}(G)|$ in Monte Carlo pol. time
(2) if p is odd then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time (3) if $p=2$ and no exceptional Lie-type groups among the T_{i} then construct $\operatorname{Rad}(G)$ in Monte Carlo pol. time using discrete log oracles
(4) if p is odd then constructive membership in G in Monte Carlo pol. time using discrete log oracles
(5) if $p=2$ and no exceptional Lie-type groups among the T_{i} then constructive membership in G in Monte Carlo pol. time using discrete log oracles
(6) for any p : if no exceptional Lie-type groups among the T_{i} then upgrade the algorithms to Las Vegas
$1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^{*}(G) \leq \operatorname{PKer}(G) \leq G$ $\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G)=T_{1} \times \cdots \times T_{k}$

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to construct perfect $H_{i} \leq G, H_{i} / \operatorname{Rad}\left(H_{i}\right) \cong T_{i}$

```
\(1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^{*}(G) \leq \operatorname{PKer}(G) \leq G\)
\(\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G)=T_{1} \times \cdots \times T_{k}\)
```

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to construct perfect $H_{i} \leq G, H_{i} / \operatorname{Rad}\left(H_{i}\right) \cong T_{i}$
consequences:

1) Construct $G / \operatorname{PKer}(G) \leq S_{k}$ and $\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G)$
2) name the T_{i} (Babai-Kantor-Pálfy-Seress, Altseimer-Borovik)
```
\(1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^{*}(G) \leq \operatorname{PKer}(G) \leq G\)
\(\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G)=T_{1} \times \cdots \times T_{k}\)
```

Babai, Beals (1999): Polynomial-time Monte Carlo algorithm to construct perfect $H_{i} \leq G, H_{i} / \operatorname{Rad}\left(H_{i}\right) \cong T_{i}$
consequences:

1) Construct $G / \operatorname{PKer}(G) \leq S_{k}$ and $\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G)$
2) name the T_{i} (Babai-Kantor-Pálfy-Seress, Altseimer-Borovik)
works with black-box groups of characteristic p

New additions:

(1) construct $\operatorname{PKer}(G) / \operatorname{Soc}^{*}(G)$
(2) construct $\operatorname{Rad}\left(H_{i}\right)$ for $1 \leq i \leq k$
(3) construct the part of $\operatorname{Rad}(G)$ not generated by $\left\langle\operatorname{Rad}\left(H_{i}\right)\right\rangle$

New additions:

(1) construct $\operatorname{PKer}(G) / \operatorname{Soc}^{*}(G)$
(2) construct $\operatorname{Rad}\left(H_{i}\right)$ for $1 \leq i \leq k$
(3) construct the part of $\operatorname{Rad}(G)$ not generated by $\left\langle\operatorname{Rad}\left(H_{i}\right)\right\rangle$
(1), (3): in Monte Carlo polynomial time for odd p, (2) in Monte Carlo polynomial time works with black-box groups of characteristic p

New additions:

(1) construct $\operatorname{PKer}(G) / \operatorname{Soc}^{*}(G)$
(2) construct $\operatorname{Rad}\left(H_{i}\right)$ for $1 \leq i \leq k$
(3) construct the part of $\operatorname{Rad}(G)$ not generated by $\left\langle\operatorname{Rad}\left(H_{i}\right)\right\rangle$
(1), (3): in Monte Carlo polynomial time for odd p, (2) in Monte Carlo polynomial time works with black-box groups of characteristic p
for $p=2$, (2) in Monte Carlo polynomial time using discrete log oracles if no T_{i} is exceptional
works only for matrix groups
(1) construct $\operatorname{PKer}(G) / \operatorname{Soc}^{*}(G) \leq \operatorname{Out}\left(T_{1}\right) \times \cdots \times \operatorname{Out}\left(T_{k}\right)$

Leedham-Green trick: T simple, $g \in \operatorname{Aut}(T)$; is $g \in T$?
multiply g by random $h \in T$
gcd of $\{|g h|\}$ is $1: g \in T$
gcd >1 : with high probability, $g \notin T$
Justification by Babai-Pálfy-Saxl:
there is absolute constant c such that for all prime r, all simple T, proportion of elements of order not divisible by r is at least $c / \operatorname{rank}(T)$
(1) construct $\operatorname{PKer}(G) / \operatorname{Soc}^{*}(G) \leq \operatorname{Out}\left(T_{1}\right) \times \cdots \times \operatorname{Out}\left(T_{k}\right)$

Leedham-Green trick: T simple, $g \in \operatorname{Aut}(T)$; is $g \in T$?
multiply g by random $h \in T$
gcd of $\{|g h|\}$ is $1: g \in T$
gcd >1 : with high probability, $g \notin T$
Justification by Babai-Pálfy-Saxl:
there is absolute constant c such that for all prime r, all simple T, proportion of elements of order not divisible by r is at least $c / \operatorname{rank}(T)$

Solution of (1): generalization of LG-trick to product of simples for each $i \leq k$, construct regular permutation representation of projection of $\operatorname{PKer}(G) / \operatorname{Soc}^{*}(G)$ into $\operatorname{Out}\left(T_{i}\right)$
(2) $H=\operatorname{Rad}(H) \cdot T$ perfect, construct $\operatorname{Rad}(H)$
T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time (Beals-Leedham-Green-Niemeyer-Praeger-Seress)
(2) $H=\operatorname{Rad}(H) \cdot T$ perfect, construct $\operatorname{Rad}(H)$
T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time (Beals-Leedham-Green-Niemeyer-Praeger-Seress)
T Lie-type of characteristic $\neq p$: construct permutation representation (Babai-Beals)
T Lie-type of characteristic p, acting nontrivially on a non- p chief layer of $\operatorname{Rad}(H)$: construct permutation representation
(2) $H=\operatorname{Rad}(H) \cdot T$ perfect, construct $\operatorname{Rad}(H)$
T sporadic: brute force
T alternating: constructive recognition in Monte Carlo pol. time (Beals-Leedham-Green-Niemeyer-Praeger-Seress)
T Lie-type of characteristic $\neq p$: construct permutation representation (Babai-Beals)
T Lie-type of characteristic p, acting nontrivially on a non- p chief layer of $\operatorname{Rad}(H)$: construct permutation representation

Remains: T Lie-type of characteristic p, acting trivially on non- p chief layers of $\operatorname{Rad}(H)$

Two base cases

$H=Z_{p}^{d} . T$
Parker-Wilson, Yalcinkaya: in Monte Carlo pol. time, construct $h \in$ Z_{p}^{d}
works only for odd p (uses centralizer of involution computations)

Two base cases

$H=Z_{p}^{d} . T$
Parker-Wilson, Yalcinkaya: in Monte Carlo pol. time, construct $h \in$ Z_{p}^{d}
works only for odd p (uses centralizer of involution computations)
$H=Z_{r}^{d} . T, r \neq p, Z(H)=Z_{r}^{d}$
Babai-Shalev: in Monte Carlo pol. time, construct $h \in Z_{r}^{d}$ easy, based on Babai-Pálfy-Saxl
both algorithms work for black-box groups
$H=\operatorname{Rad}(H) . T, S \triangleleft \operatorname{Rad}(H)$ is the already constructed part of $\operatorname{Rad}(H)$
if $S \neq \operatorname{Rad}(H)$: there is $S \leq N$ char $\operatorname{Rad}(H), \operatorname{Rad}(H) / N$ elementary abelian, H / N one of the base cases
S, N not recognizable
How to apply the base case algorithms?
$H=\operatorname{Rad}(H) . T, S \triangleleft \operatorname{Rad}(H)$ is the already constructed part of $\operatorname{Rad}(H)$
if $S \neq \operatorname{Rad}(H)$: there is $S \leq N$ char $\operatorname{Rad}(H), \operatorname{Rad}(H) / N$ elementary abelian, H / N one of the base cases
S, N not recognizable
How to apply the base case algorithms?
Adaptation principle
run the base case algorithms for H / N
at queries $h=1$? (i.e., $h \in N$?)
if $h \in \operatorname{Rad}(H)$ then answer yes, store h
$H=\operatorname{Rad}(H) \cdot T, S \triangleleft \operatorname{Rad}(H)$ is the already constructed part of $\operatorname{Rad}(H)$
if $S \neq \operatorname{Rad}(H)$: there is $S \leq N$ char $\operatorname{Rad}(H), \operatorname{Rad}(H) / N$ elementary abelian, H / N one of the base cases
S, N not recognizable
How to apply the base case algorithms?
Adaptation principle
run the base case algorithms for H / N
at queries $h=1$? (i.e., $h \in N$?)
if $h \in \operatorname{Rad}(H)$ then answer yes, store h
if all answers are correct: with high probability, one of the algorithms constructs $h \in \operatorname{Rad}(H) \backslash N$
if one of the answers is incorrect: stored $h \in \operatorname{Rad}(H) \backslash N$

$p=2, H=\operatorname{Rad}(H) \cdot T$

Kantor-Seress: construct quasisimple matrix representation $M=Z . T, Z=Z(M)$ for T
uses that H is a matrix group
Brooksbank, Kantor: for T classical, constructive recognition of M in Monte Carlo pol. time, using $\operatorname{PSL}(2, q)$ oracles

Conder-Leedham-Green-O'Brien: constructive recognition of any quasisimple matrix representation of $\operatorname{PSL}(2, q)$, using discrete logs
(3) construct the part of $\operatorname{Rad}(G)$ not generated by $\left\langle\operatorname{Rad}\left(H_{i}\right)\right\rangle$
easy, based on Babai-Pálfy-Saxl and adaptation principle

constructive membership (construct SLP to given $g \in G$)

Holmes-Linton-O'Brien-Ryba-Wilson:
given T simple Lie-type and $g \in T$ as bb group of odd char. p
Monte Carlo pol. time algorithm to construct involutions $x_{1}, x_{2}, x_{3} \in$ T so that SLP to g is reduced to constructive membership in $C_{T}\left(x_{i}\right)$
if T is classical of large rank then the x_{i} can be chosen to be balanced (± 1-eigenspaces are roughly half dimensional)

constructive membership (construct SLP to given $g \in G$)

Holmes-Linton-O'Brien-Ryba-Wilson:
given T simple Lie-type and $g \in T$ as bb group of odd char. p
Monte Carlo pol. time algorithm to construct involutions $x_{1}, x_{2}, x_{3} \in$ T so that SLP to g is reduced to constructive membership in $C_{T}\left(x_{i}\right)$
if T is classical of large rank then the x_{i} can be chosen to be balanced (± 1-eigenspaces are roughly half dimensional)

Theorem (*) Constructive membership in T in Monte Carlo polynomial time
$C_{T}\left(x_{i}\right)$ are not quasisimple; recursive steps use full machinery

constructive membership in arbitrary G of odd char.

$1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^{*}(G) \leq \operatorname{PKer}(G) \leq G$
given $g \in G$, construct SLP to $h \in G$ with $\operatorname{Soc}^{*}(G) g=\operatorname{Soc}^{*}(G) h$ by permutation group methods

constructive membership in arbitrary G of odd char.

$1 \leq \operatorname{Rad}(G) \leq \operatorname{Soc}^{*}(G) \leq \operatorname{PKer}(G) \leq G$
given $g \in G$, construct SLP to $h \in G$ with $\operatorname{Soc}^{*}(G) g=\operatorname{Soc}^{*}(G) h$ by permutation group methods
use Theorem (*) to construct SLP to $k \in \operatorname{Soc}^{*}(G)$ with $\operatorname{Rad}(G) g h^{-1}=\operatorname{Rad}(G) k$
use Luks to construct SLP to $\mathrm{gh}^{-1} \mathrm{k}^{-1} \in \operatorname{Rad}(G)$

constructive membership in G of even char., no exceptional factors

as above, just use constructive recognition in $\operatorname{Soc}^{*}(G) / \operatorname{Rad}(G)$ level

