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1. Generation of Quasisimple Groups

Let G be a finite group. How can we tell whether or not {x1, . . . , xr−1} is a generating set for G?

Example: {(1, 2), (1, 2, 3, 4, 5)} is a generating set for S5.

This example is needed to show that there exists f(x) ∈ Q[x] with Galois group S5 and is a special

case of the following

Theorem. 1. A primitive subgroup of Sn containing a 2-cycle resp. a 3-cycle contains Sn resp.

An.

We remark that stronger versions of this theorem exist. The main point of the theorem is

to guarantee generation of the primitive subgroup provided it contains elements from a certain

conjugacy class of Sn.

Another other well known results is this type are

Theorem. 2. If G = SL2(q), then every pair of elements (x, y), with |x| = q − 1 and |y| = q + 1,

is a generating set for G.

Theorem. 3. If G = SLn(q), then every pair of elements (x, y), with x a transvection and y an

element of order (qn − 1)/(q − 1) (the norm 1 part of a Singer cycle), is a generating set for G.

Along the same lines as the theorem above is the result by McLaughlin on linear groups of

characteristic two containing transvections.

Using the classification of the finite simple groups and the O’Nan Scott Theorem from Jürgen

Müller’s lectures, the theorem above generalizes considerably. For example

Theorem. 4. (Guralnick-Magaard, 1995) Let G be a primitive permutation group acting on a set

Ω of size n. If x ∈ G has the property that f(x,Ω)G ≥ 1
2 then one of the following holds:

(1) G is an affine group with regular normal subgroup N . N is elementary abelian of order 2k

and x acts as a transvection on N . In this case f(x,Ω)G = 1
2 .
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(2) F ∗(G) = Ar
m and G ≤ Sm o Sr, (m ≥ 5), where the wreath product acts on Ω = ∆r and

Sm acts on ∆; either ∆ is the set of k-subsets of {1, . . . ,m}, (k < m
2 ) and n =

(
m
k

)r, or

m = |∆| = 6 and n = 6r.

(3) F ∗(G) = Lr and G ≤ L1 oSr, where L1 is an almost simple group of type Om(2) with m ≥ 7

or m = 4, 6 and we have O−
4 (2) respectively O−

6 (2), L = soc(L1), and Ω = ∆r where ∆ and

x ∈ L1 are one of the following:

(a) L1 = O2k+1(2), k ≥ 3, ∆ is the right cosets of O−
2k(2), and x is a transvection. In this

case |∆| = 2k−1(2k − 1) and

f(x,∆)L1 =
1
2

+
1

2(2k − 1)
.

(b) L1 = O+
2k(2), k/geq4, ∆ is the set of nonsingular points in the natural module and x is

a transvection. In this case |∆| = 2k−1(2k − 1) and

f(x,∆)L1 =
1
2

+
1

2(2k − 1)
.

(c) L1 = O−
2k(2), k ≥ 2, ∆ is the set of right cosets of the stabilizer of a singular point of the

natural module V of L1, and x is a transvection. In this case |∆| = (2k + 1)(2k−1 − 1)

and

f(x,∆)L1 =
1
2

+
1

2(2k + 1)
.

(d) L1 = O+
8 (2) , ∆ is the set of right cosets of a conjugate of Spin7(2) = Sp6(2) acting

irreducibly on the natural module of L1, and x is conjugate via an outer automorphism

of order 3 to a transvection. In this case |∆| = 23(16− 1) = 120 and

f(x,∆)L1 =
1
2

+
1

2(24 − 1)
=

16
30

=
8
15

.

Modern versions of theorems concerning the generation of classical groups, which generalize the

results on SLn(q) stated above, are based on the Aschbacher’s characterization of the maximal

subgroups of classical groups as we well as the classification of the finite simple groups. We mention

here that Aschbacher’s characterization of maximal subgroups and the classification of the finite

simple groups form the basis for the constructive recognition algorithms that were mentioned to

during the conference. The following is an example. For a linear group G acting on a vector space

V = Fd
q define νG(V ) to be the minimum over all for g ∈ G \ Z(G) and λ ∈ Fq of dim([λg, V ]).

Theorem. 5. If G is a linear group acting primitively and tensor indecomposably on a vector space

V = Fd
q , then either νG(V ) > max{2,

√
d/2} or

(1) G is classical,

(2) G is an alternating or symmetric group and V is the reduced permutation module,

(3) F ∗(G) = U5(2), dim(V ) = 10 and (q, 2) = 1.
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Another example is a the theorem of Guralnick, Penttila, Praeger and Saxl, on linear groups with

orders having certain large prime divisors, [14]. If V = Fd
q , then GL(V ) contains a unique conjugacy

class of elements σG
e of order qe − 1 and dim(CV (σe)) = d− e. By Zsigmondy’s theorem there exist

a prime divisor of qe − 1 which does not divide qe−i for any 0 < i < e (unless q = 2 and e = 6).

In their main theorem they classify the maximal subgroups of classical groups containing elements

of Zsigmondy prime order qe − 1 and dim(CV (σe)) = d − e and e > d/2.. Their theorem was later

strengthened by Bereczky [6], however the statement of both theorems is too long to be presented

here. The main point of the theorems is that the set of overgroups of elements with large prime

divisors is limited and can be described.

2. Riemann Surfaces, Automorphisms and Triangle Groups

In his lecture series Prof. Jones explained how equivalence classes of homomorphic images of

Fuchsian groups are in one to one correspondence with covers on Riemann surfaces. In this section

we adopt a slightly different, perhaps a more topological point of view.

Let X is a compact Riemann surface of genus g(X). A meromorphic map φ : X → P1 = C∪{∞}

is called a cover of the Riemann sphere. The degree of φ is the number of preimages of a general point

p0 ∈ P1 The branch points of φ are p1, . . . , pr ∈ P1 are points p ∈ P1 such that |φ−1(p)| < deg(φ).

As p0 moves around pi, the pre-images of p0 are permuted via some xi ∈ Sn. This yields the

following branching data x1, . . . , xr ∈ Sn satisfying

(1)
∏r

i=1 xi = 1.

(2) G = 〈x1, . . . , xr〉 is a transitive subgroup of Sn, the monodromy group of φ.

(3) Riemann-Hurwitz formula

2(n + g(X)− 1) =
r∑

i=1

ind(xi),

where ind(xi) = n− # cycles xi.

Conversely whenever we encounter branching data as above then we have

Theorem. 6 (Riemann’s Existence Theorem). If σ1, . . . , σr ∈ Sn satisfy

(1)
∏r

i=1 σi = 1.

(2) G = 〈σ1, . . . , σr〉 is a transitive subgroup of Sn.

(3)

2(n + g − 1) =
r∑

i=1

ind(σi),

then there exists a Riemann surface Y of genus g and a covering map Σ : Y → P1 whose branching

data is given by σ1, . . . , σr.
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If in the setup above r = 3 then the resulting monodromy group is a homomorphic image of a

triangle group.

We note that Riemann’s existence theorem does not imply the uniqueness of Y or the covering

map. In fact the moduli space of equivalence classes of G-covers Y → P1 with branching data

(σ1, . . . , σr), usually called a Hurwitz space and denoted by H((σ1, . . . , σr)), is a quasi-projective

variety of dimension r− 3. Fried and Völklein showed that G occurs as a Galois group over Q with

branching data (σ1, . . . , σr) if and only if the corresponding Hurwitz space has a rational point. See

for example Völklein’s book [16] and the references therein. While it is generally not known how

to find rational points in Hurwitz spaces we note that when r = 3 then H((σ1, . . . , σ3)) is a finite

set. So when |H((σ1, . . . , σ3))| = 1 then the corresponding cover Y → P1 is defined over Q and

if also the tuple (σ1, . . . , σ3) is rational in the sense that χ(si) ∈ Q for all χ ∈ Irr(G), then there

exists an extension field of Q with Galois group isomorphic to G. This a special case of Thompson’s

celebrated rigidity criterion.

Theorem. 7 (Thompson). If G is a finite group with Z(G) = 1 and there exists rational elements

g1, . . . , gr ∈ G which generate G such that g1g2 . . . gr = 1 and that whenever h1 . . . hr ∈ G generate

G, h1h2 . . . hr = 1 and for all i we have hi ∈ gG
i , then there exists an extension field of Q with Galois

group isomorphic to G.

To check the product one condition in Riemann’s Existence Theorem the following result of Gow

is extremely valuable. For G a finite simple group of Lie type of characteristic p, an element is

semisimple if its order is relatively prime to p and is regular semisimple element if its centralizer in

G has order relatively prime to p.

Theorem. 8 (Gow). Let G be a finite simple group of Lie type of characteristic p, and let s be a

non-central semisimple element in G. Assume that R1 and R2 are conjugacy classes of G consisting

of regular semisimple elements of G. Then there exist x ∈ R1 and y ∈ R2 such that s = xy.

In [FMP] we extend Gow’s result to quasisimple groups. The proof is almost identical to that

presented by Gow in [12].This yields:

Corollary. 9. For every finite quasisimple group of Lie type and and every integer r ≥ 3 we have:

For every r − 1-tuple of conjugacy classes C1, . . . Cr−1 of regular semisimple elements and every

semisimple class Cr, there exist xi ∈ Ci, such that
∏

i xi = 1.

3. Beauville Surfaces

Bauer, Catanese and Grunewald [1, 2, 4] have recently initiated the study of Beauville surfaces.

Such surfaces are 2-dimensional complex algebraic varieties which are rigid, in the sense of admitting
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no deformations. These surfaces are defined over the field Q of algebraic numbers, and provide

a geometric action of the absolute Galois group Gal(Q̄/Q). By generalizing Beauville’s original

example [3, p.159], such surfaces can be constructed from finite groups acting on suitable pairs of

algebraic curves.

Definition. 10. Suppose that a finite group G acts by holomorphic transformations on two algebraic

curves C1 and C2 of genus at least 2. Let G act diagonally on C1 × C2 and assume that

(a) G acts effectively on C1 and C2 so that both C1/G and C2/G are isomorphic to the projective

line and the coverings Ci → Ci/G. i = 1, 2, are ramified over at most three points; and

(b) G acts freely on C1 × C2.

Then the surface (C1 × C2)/G is a Beauville surface of unmixed type.

Definition. 11. Let G be a group. An unmixed Beauville structure, or simply a Beauville structure

of G is a pair triples (x1, y1, z1), (x2, y2, z2) ∈ G×G×G such that for i = 1, 2 the following hold.

(1) G = 〈xi, yi, zi〉 and xiyizi = 1;

(2) 1/o(xi) + 1/o(yi) + 1/o(zi) < 1; and

(3) no non-identity power of x1, y1 or z1 is conjugate in G to a power of x2, y2 or z2.

The Beauville structure then has type ((o(x1), o(y1), o(z1)), (o(x2), o(y2), o(z2))). We call a group

possessing a Beauville structure a Beauville group.

Property (i) is equivalent to condition (a), with xi, yi and zi representing the ramification over

the three points, property (ii) is equivalent to each of the curves Ci having genus at least 2 (arising

as a smooth quotient of the hyperbolic plane), and property (iii) is equivalent to G acting freely on

the product C1×C2. Note that this last condition is always satisfied if l1m1n1 is coprime to l2m2n2.

A number of special cases of the conjecture were verified in [2]. Since then there have been a

number of contributions towards a proof of the conjecture. The primary contributions are as follows.

• The alternating groups Alt(n) for n ≥ 6 (and the symmetric groups Sym(n) for n ≥ 5) were

shown to be Beauville groups by Fuertes and González-Diez in [7].

• The groups PSL2(q) were shown to be Beauville groups by Fuertes and Jones in [8, Section

2] (who also considered the groups SL2(q)) and using very different methods by Garion and

Penegini in [11, Section 3.3].

• The Suzuki groups 2B2(22n+1) as well as the small Ree groups 2G2(32n+1) were shown to

be Beauville groups by Fuertes and Jones in [8, Section 6].

• The groups G2(q), 3D4(q), PSL3(q) and PSU3(q) were shown to be Beauville groups when

q is sufficiently large by Garion and Penegini in [11, Section 3.4].

We also mention a recent article by Garion, Larsen and Lubotzky [10] in which they prove the

conjecture for sufficiently large groups and a preprint by Guralnick and Malle, dated September 30,
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2010, which gives an alternative proof that every non-abelian finite simple group other than A5 is a

Beauville group. We prove

Theorem. 12. (Fairbairn, M. , Parker) With the exception of SL2(5) and A5 every finite qua-

sisimple finite group is a Beauville group.

We conclude with some examples of generating systems for some classes of simple groups.

The group E8(q) possesses hyperbolic triples (x1, x2, x3) and (y1, y2, y3) such that the order of all

xi is φ30(q) and the order of all yi is φ15(q). To see this one checks that elements of orders φ15(q)

and φ30(q) lie in a unique maximal subgroup. Next we verify the hypothesis of the lemma below to

show that E8(q) has generating systems (x1, x2, x3) and (y1, y2, y3). These generating systems are

easily seen to be a Beauville structure as (φ30(q), φ15(q)) = 1.

Lemma. 13. Suppose that G is a group, x ∈ G, Z = 〈x〉 and N = NG(Z). Assume that

(1) N is the unique maximal subgroup of G containing Z;

(2) |N/CG(Z)| = k, |Z \ Z(G)| >
(

k+1
2

)
;

(3) xG ∩N ⊂ Z; and

(4) for all non-trivial z ∈ Z \ Z(G), the (xG, xG, zG) structure constant is non-zero.

Then there exists z ∈ Z, such that there is a hyperbolic triple for G in xG × xG × zG.

To find Beauville structures for SLd(q) we recall that if V = Fd
q , then GL(V ) contains a unique

conjugacy class of elements σG
e of order qe − 1 and dim(CV (σe)) = d − e. Now define τe to be the

generator of 〈σg
e 〉 ∩ SLe(q). Let xe be the element tetd−e where [te, V ] = CV (td−e) and [td−e, V ] =

CV (te). Using [14], [15] and our generalization of Gows theorem we prove a version of the following

Lemma. 14. The triple xa, xb, τc is a hyperbolic generating system for SLd(q), d > 8, provided

a, b > d/2 and c <
√

d/2.

Thus we produce roughly d5/2/8 classes of hyperbolic generating systems. In fact we actually

produce more as we can replace τe by elements of orders divisible by a Zsigmondy prime for qe − 1.

It is now easy to select two triples which form a Beauville structure. For example (xd, x
2
d−2, τ

2
2 ) and

(xd−1, xd−3, y
2) where y is an element of order q− 1 such that dim([y, V ]) = 2 will do and there are

many others. For classical groups not equal to SLd(q) we prove similar results.

Complications arise however when d is small. One such case is Sp4(q) where one triple consists

of semisimple elements whereas the second triple consists of a semisimple and regular unipotent

elements.

References

[1] I.C Bauer, F. Catanese and F. Grunewald, Beauville surfaces without real structures, in Geometric Methods in

Algebra and Number Theory, Progr. Math. 235, Birkhäuser Boston, Boston, 2005, 1–42.
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