CP violation results from the quark sector

\mathbb{CP} – A prelude

- Today's universe is matter dominated
- Where did all the antimatter go that were created in equal amounts at the beginning?
 - (antiproton/proton) ~10⁻⁴ in the cosmic ray
 - ➤ There is no evidence for annihilation photons with the baryon-to-photon ratio ≈ 6×10⁻¹⁰ in intergalactic clouds
- Cosmological generation of asymmetry: Sakharov's three conditions (1967)
 - Baryon number violation, e.g., proton decay,
 - Thermal nonequilibrium, and
 - Violation of charge conjugation (C) and parity (P) symmetries

CP in the Standard Model

• The CKM paradigm in the charged vector-boson (W) decays provides the framework for CP violation in the quark sector of the SM

Hierarchical expansion of V_{CKM}

A triangle is at the heart

- Check consistency of the CKM framework by precisely measuring the sides and angles of the unitarity triangle
- Possible inconsistency between various measurements could be interpreted as potential new physics contribution

B meson: A threefold way

- CP violation in decay: <u>direct</u>
 - can occur in both neutral and charged B mesons
- $\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right| \neq 1 \implies A_{f} = \bar{A}_{\bar{f}} = \bar{$

$$A_{f} = A(B \to f)$$

$$\bar{A}_{\bar{f}} = A(\bar{B} \to \bar{f})$$

$$|\lambda| \neq 1, \text{ where } \lambda = \left(\frac{q}{p}\right) \left(\frac{\bar{A}_{\bar{f}}}{\bar{A}_{f}}\right)$$

۵ ۸

- can have time-dependent and -independent manifestations
- need two competing diagrams of different weak as well as strong phases
- CP violation in mixing: **indirect**
 - only neutral B mesons are possibly affected
 - SM predicts a very small effect
- CP violation from **mixing/decay interference**:
 - > only neutral B mesons could be affected
 - purely a time-dependent effect
 - arises due to interference between decays with and without mixing

$$\frac{q}{p} \neq 1 \implies |B_{H,L}\rangle = p |B^0\rangle \pm q |\bar{B}^0\rangle$$
$$\left|\frac{q}{p}\right|_{SM} - 1 \simeq 4\pi \frac{m_b^2}{m_t^2} \sin \phi_1 \simeq 5 \times 10^{-4}$$

$$\mathbf{Im} \lambda_{CP} \neq \mathbf{0}, \ \left| \lambda_{CP} \right| = \mathbf{1}$$

$$\mathbf{B}^{0} \qquad \mathbf{A}_{f} \qquad \mathbf{A}_{f} \qquad \mathbf{A}_{CP} = \eta_{CP} \frac{q}{p} \frac{\bar{A}_{\bar{f}}}{\bar{A}_{f}}$$

$$f \equiv \mathsf{CP} \text{ eigen-state}$$

Major actors on our play

Where do they stand now?

e⁺e⁻ flavor factories

- ➢ BaBar stopped taking data since 2008; most of their results are finalized
- ▶ Belle is terminated w.e.f. June 2010; still finalizing some of their analyses
- > Belle II experiment is on track to start taking data in the early 2016

Hadron colliders

- \succ CDF and DØ have just stopped to take data
- > ATLAS and CMS have an active B program but can't compete with...

Data recorded by LHCb

▶ LHCb is the main player since 2010 and will continue to be so till 2016

	•	
Year	Lum (fb ⁻¹)	√s (TeV)
2010	0.04	7
2011	1.1	7
2012	2.2	8

B factories: performance to behold

How to measure mixing induced CP violation?

 $\succ \text{ Reconstruct the B} \rightarrow f_{CP} \text{ decay}$

A brilliant idea from P. Oddone

> Measure the proper time difference (t) between the two B mesons

> Determine the flavor of B_{tag} (whether B^0 or \overline{B}^0) and then evaluate

$$A_{CP}(t) = \frac{N[\overline{B}^0(t) \to f_{CP}] - N[B^0(t) \to f_{CP}]}{N[\overline{B}^0(t) \to f_{CP}] + N[B^0(t) \to f_{CP}]}$$

 $S_f \sin(\Delta m t) + A_f \cos(\Delta m t)$

 \succ S_f and A_f are measures of mixing-induced and direct CP violation, respectively

Measurement of $sin(2\phi_1) \equiv sin(2\beta)$ in $b \rightarrow c\bar{c}s$

Golden mode for CP
 violation study with
 very small theoretical
 uncertainty

- Experimentally easy to identify
- ► CP-odd eigenstates $J/\psi K_S, \psi(2S)K_S$ and $\chi_{c1}K_S$, and CP-even eigenstate $J/\psi K_L$

Decay mode	ξ_f	$N_{ m sig}$	Purity (%)
$J/\psi K_S^0$	-1	12649 ± 114	97
$\psi(2S)(\ell^+\ell^-)K_S^0$	-1	904 ± 31	92
$\psi(2S)(J/\psi\pi^+\pi^-)K_S^0$	-1	$1067 \pm\ 33$	90
$\chi_{c1}K^0_S$	-1	$940\pm~33$	86
$J/\psi K_L^0$	+1	$10040{\pm}154$	63

Results on $sin(2\phi_1) \equiv sin(2\beta)$ in $b \rightarrow c\bar{c}s$

 $\sin 2\phi_1$

- Most precise measurement of the mixing-induced CP violation in B-meson decay
- Asymmetry pattern in line with the CP eigenvalue of the decay final states

Direct CP asymmetry is consistent with zero, as expected a negligible height difference between B⁰ and B⁰ tagged decays

PRL 108 (2012) 171802

 $0.667 \pm 0.023(\text{stat}) \pm 0.012(\text{syst})$

Indeed, a great achievement

0.2

0

-0.2

0

0.2

0.4 0.6 0.8

ρ

What is the source for CP violation in the SM? the Kobayashi-Maskawa phase is the source

Determination of $\phi_2 \equiv \alpha$

- Additional complication arises due to possible $b \rightarrow d$ penguin contributions
- The sine coefficient (S_f) accessed in the time-dependent CP study here is not just $\sin(2\phi_2)$ rather $\sqrt{1-A_f^2}\sin(2\phi_2^{\text{eff}})$

Considering relative penguin-to-tree contribution (r = |P|/|T|) and strong phase difference between the two diagrams (δ):

$$S_{\pi\pi} = \sin(2\phi_2) + 2r\cos\delta\sin(\phi_1 + \phi_2)\cos(2\phi_2) + \mathcal{O}(r^2)$$

BaBar notation:

$$C_f = -A_f$$

> additional inputs required to determine the penguin pollution

• Employ an isospin analysis $\begin{array}{l}
A_{+-} = A(B^{0} \to \pi^{+}\pi^{-}) = e^{-i\phi_{2}}T^{+-} + P \\
\sqrt{2}A_{00} = A(B^{0} \to \pi^{0}\pi^{0}) = e^{-i\phi_{2}}T^{00} + P \\
\sqrt{2}A_{+0} = A(B^{+} \to \pi^{+}\pi^{0}) = e^{-i\phi_{2}}(T^{+-} + T^{00}) \\
A_{+-} + \sqrt{2}A_{00} = \sqrt{2}A_{+0} \\
\bar{A}_{+-} + \sqrt{2}\bar{A}_{00} = \sqrt{2}\bar{A}_{+0}
\end{array}$ Gronau and London PRL 65 (1990) 3381

 ϕ_2 can be resolved up to an 8-fold ambiguity $\phi_2 \in [0,\pi]$

Results from the $\pi\pi$ system

World average of $\phi_2 \equiv \alpha$

Almost a precision measurement

★ $\bigcap_{B \in LE}$ final results on $B \to \rho\rho$, especially $B^+ \to \rho^+ \rho^0$, are eagerly awaited for \longrightarrow nine times more data compared to its last result on $\rho^+ \rho^0$

Measurement of the angle $\phi_3 \equiv \gamma$

- Interference between the two amplitudes where both D⁰ and D
 ⁰, coming from B⁺ or B⁻, decay to a common final state
- Relative magnitude of the suppressed amplitude

$$r_B = \frac{|\mathcal{A}_{sup}|}{|\mathcal{A}_{fav}|} \sim \frac{|V_{ub}V_{cs}^*|}{|V_{cb}V_{us}^*|} \times \text{[color supp]} = 0.1-0.2$$

 \blacktriangleright Relative weak phase is ϕ_3 and relative strong phase δ_B

Three proposals depending on the D final state

- ✓ $D \equiv D_{CP}$: CP eigenstates such as K⁺K⁻, $\pi^{+}\pi^{-}$, K_S π^{0} Gronau-London-Wyler (GLW) method
 - ✓ $D \equiv D_{DCS}$: doubly Cabibbo suppressed decays such as $K\pi$
 - Atwood-Dunietz-Soni (ADS) method $\checkmark D \equiv D_{\text{Dalitz}}$: three-body decays such as $K_S K^+ K^-$, $K_S \pi^+ \pi^-$

Giri-Grossman-Soffer-Zupan (GGSZ) method

> Different B decays (DK, D^{*}K, DK^{*}) come with different (r_B, δ_B)

Going by the conventional method

Combining both B modes, Belle obtains: φ₃ = (78.4^{+10.8}_{-11.6} ± 3.6 ± 8.9)°
 Accuracy in the DP model description (last error in above results) is the second largest contributor to φ₃ after the statistical uncertainty

► It would *call the shot* in the precise determination of φ_3 at the next-generation flavor factory is look for a suitable alternative

ϕ_3 from a model independent Dalitz-plot fit

LHCb is rapidly catching up...

First measurement of GGSZ (D $\rightarrow K_s KK$, $K_s \pi \pi$ and model independent)

φ_3 using GLW and ADS methods

Two complementary approaches where D mesons decay to

- 1) CP states, e.g., K^+K^- , $\pi^+\pi^-$ (CP+) & $K_S\pi^0$, $K_S\eta$ (CP-) GLW PLB 265, 172 (1991)
- 2) doubly CKM suppressed final state ADS **PRL 78, 3257 (1997) PRD 63, 036005 (1991)**

PLB 253, 483 (1991)

ADS results from LHCb

1st observation (5.8 σ significance) of the suppressed mode $B^{\pm} \rightarrow [\pi^{\pm} K^{\mp}]_{D} K^{\pm}$

Combined measurement of $\phi_3 \equiv \gamma$

➢ From the old horses (Belle and BaBar):

Overall picture

CKMfitter Group, J. Charles et al., EPJ C41 (2005) 1

- Confirmation of the CKM paradigm as the lone source for CP violation in the SM > not sufficient enough to explain the matter-antimatter asymmetry observed in the universe
- Need additional source(s) beyond the realm of the SM

$sin(2\phi_1)$ in $b \rightarrow q\bar{q}s$ transitions

• Need to pin down the experimental error on each of these measurements before we can draw any solid conclusion here (LHCb and Belle II would play a decisive role)

- Naïve average of $sin(2\phi_1^{eff})$ obtained in various $b \rightarrow q\bar{q}s$ processes is consistent with the value obtained in $b \rightarrow c\bar{c}s$
- However, we need to be very careful here because of

What about CP violation in B mixing?

Semileptonic asymmetries in both B_d and B_s systems are expected to be small in the SM

Different stories from LHCb and B factory

- Semileptonic asymmetries in both B_d and B_s systems are expected to be small in the SM
- DØ reported an inclusive dimuon asymmetry 3.9σ away from SM prediction
- ► Including results on a_{sl}^{d} and a_{sl}^{s} individually $\theta_{0.01}$ (from $D^{(*)+}\mu^{-}\nu X$ samples) puts combination d^{*} at 2.9 σ from the SM
- Further adding B-factory a_{sl}^d and LHCb a_{sl}^s results brings the average down to 2.4σ

 $a_{\sf SI}^{\sf S} = (-0.24 \pm 0.54 \pm 0.33)\%$

Direct CP violation from $B \rightarrow K\pi$

- □ Direct CP asymmetry $A_{CP} \equiv \frac{\Gamma(\bar{B} \to \bar{f}) \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)} \propto \sin \Delta \phi \sin \Delta \delta$ where $\Delta \phi$ ($\Delta \delta$) is the weak (strong) phase difference between two diagrams that mostly contribute to $B^0 \to K^+\pi^-$ and $B^+ \to K^+\pi^0$
- □ Now since strong and weak phases are same for these diagrams, we expect A_{CP} to be same $\implies \Delta A_{CP}$ should be zero

But results are quite different!!!

□ LHCb is a new player in the field

□ WA value $\Delta A_{K\pi} = 0.127 \pm 0.022$ (5.5 σ significance) → New physics?

We are one of the principal authors for this paper (accepted to PRD-RC)

Before concluding anything concrete...

□ Model-independent sum rule proposed by Gronau, Atwood and Soni:

$$\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+}) \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0}) \frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0}) \frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$
PRD 58 (1998) 036005
$$A_{CP}(K^{0}\pi^{0})$$

$$A_{CP}(K^{0}\pi^{$$

Test the same with much more data

□ Model-independent sum rule proposed by Gronau, Atwood and Soni:

- □ In the above extrapolation, we have used current central values with the statistical uncertainties properly scaled up
- □ Although systematics are treated as non-scaling, the main $B^0 \rightarrow K^0 \pi^0$ systematics (tag-side interference) can be reduced by measuring Δt in semileptonic B_{sig} decays

First evidence of CPV in the charm sector

LHCb leads the show...

- \Box ΔA_{CP} related to mainly to direct CP violation as contributions from indirect CP is suppressed by the difference in mean decay time
- □ However, we need results from other related $\pi\pi$ and KK modes before interpreting the result as evidence for new physics or not
- → We are involved with the search for CPV in the decay $D^0 \rightarrow \pi^0 \pi^0$ at Belle

Conclusions and future prospect

- Results obtained on CP violation in the quark sector is consistent with the SM, except for
 - 1) Direct CP violation difference in $B \rightarrow K\pi$ decays
 - 2) Mixing-induced CP violation in $b \rightarrow q\bar{q}s$ transitions
 - 3) Very recently, CP violation in the charm sector
 - 4) and few more not described in this talk
- > All these anomalies [especially 2)] beg for a more precise measurement
- ➢ Good motivation for Belle II as well as for the upgrade of LHCb

Thanks for your kind attention

Bonus slides

Some interesting non-CPV results (2) $\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{\tau} \mathbf{v}$

