


Molecular Dynamics

The Basis:

Fi=miai

i=1,2,...,N



N-body problem. Can only be solved numerically

(except in very special cases)

How?
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...at least, in principle.
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Naive approach: truncate Taylor expansion.

ABSOLUTELY FORBIDDEN!



The naive “forward Euler” algorithm

• is not time reversible

• does not conserve volume in phase space

• suffers from energy drift

Better approach: “Verlet” algorithm
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Verlet algorithm

• is time reversible

• does  conserve volume in phase space

• (is “symplectic”)

• does not suffer from energy drift



...but is it a good algorithm?

i.e. does it predict the time evolution of the system
correctly???



Dynamics of “well-behaved” classical many-body system is
chaotic.

Consequence:

Trajectories that differ very slightly in their initial conditions
DIVERGE EXPONENTIALLY (“Lyapunov instability”)

t=0

t = τ



The Lyapunov disaster in action...



Any small error in the numerical
integration of the equations of motion,
will blow up exponentially....

always...

...and for any algorithm!!



SO:

Why should anyone believe
Molecular Dynamics

simulations ???



Answers:

1. In fact, one should not...

exit Molecular Dynamics...



Answers:

1. In fact, one should not...

2. Good MD algorithms (e.g. Verlet) can also be considered as
good Monte Carlo algorithms – they therefore yield reliable
STATIC properties (“Hybrid Monte Carlo”)

What is the point of simulating dynamics, if we cannot
trust the resulting time-evolution???



Answers:

1. In fact, one should not...

2. Good MD algorithms (e.g. Verlet) can also be considered as
good Monte Carlo algorithms – they therefore yield reliable
STATIC properties (“Hybrid Monte Carlo”)

3. All is well (probably), because of...

The Shadow Theorem....The Shadow Theorem....



For any realistic many-body system, the shadow theorem is
merely a hypothesis.

It states that (my words):

Good algorithms generate numerical trajectories that are
“close to” a REAL trajectory of the many-body system.



Question:

Does the Verlet algorithm indeed
generate “shadow” trajectories?



Take a different look at the problem.

Do not discretize NEWTON’s equation of motion...

...but discretize the ACTION



Intermezzo:

Classical mechanics – the Lagrangian approach.

Newton:

Lagrange:
Consider a system that is at a
point r0 at time t=0 and at point
rt at time t=t, then:

The system follows a
trajectory r(t) such that:



is an extremum.

Where the Lagrangian is defined as:

For example, if we use cartesian coordinates:

“Action”

“Lagrangian”



What does this mean?

Consider the “true” path R(t), with R(0)=r0 andR(t)=rt.

Now, consider a path close to the true path:

Then the action S is an extremum if

(what does this equation mean??)
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and hence the discretized action is
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Now do the standard thing:

Find the extremum for small variations in the path, i.e. for
small variations in all Xi.
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This will generate a discretized trajectory that starts at time t0
at X0 ,  and ends at time t1  at X1.

Discretized trajectory

“true” trajectory
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VERLET!!!



The Verlet algorithm generates
trajectory that satisfies the

boundary conditions of a REAL
trajectory – both at the beginning

and at the endpoint.



Hence, if we are interested in statistical information about the
dynamics (e.g. time-correlation functions, transport
coefficients, power spectra...)

...then a “good” MD algorithm (e.g. Verlet) is fine.

However...



But Professor Verlet! You said that your
calculations showed that the asteroid would

MISS the earth!!!



Not at all!
I just said that that would be close to a

POSSIBLE scenario!!!



Practical issues:

1. Boundary conditions

2. Reduced units

3. Time-saving devices



In small systems, boundary effects are always large.

1000 atoms in a simple cubic crystal – 488 boundary
atoms.

1000000  atoms in a simple cubic crystal – still 6%
boundary atoms…



“Solution” : Periodic boundary conditions



The most time-consuming part of any simulation is
the evaulation of all the interactions between the
molecules.

In general: N(N-1)/2  = O(N2)

But often, intermolecular forces have a short range:

Therefore, we do not have to consider interactions
with far-away atoms…



Link list



New decomposition : “Neutral Territory” method
(Bowers, Dror & Shaw: J. Chem. Phys, 124: 184109 (2006)).

The black box maps onto one processor.

Each processor handles interaction between all particles i
that are within the xy coordinates of the box and with its z-
range,  with all particles j that are within the z coordinates of
the box and within its xy range.

Conventional
Link list

“Neutral Territory”



NOTE:

Long-ranged forces require special techniques.

1. Coulomb interaction (1/r in 3D)

2. Dipolar interaction (1/r3 in 3D)

…and, in a different context:

1. Interactions through elastic stresses (1/r in 3D)

2. Hydrodynamic interactions (1/r in 3D)

3. …



Beyond Newtonian dynamics:

1. Langevin dynamics

2. Brownian dynamics

3. Stokesian dynamics

4. Dissipative particle dynamics

5. Stochastic rotation dynamics

6. Etc. etc.



Reduced units

Example: Particles with mass m and pair
potential:

Unit of length: σ

Unit of energy: ε

Unit of time:





Saving time.

These algorithms are often used
to simulate molecular motion in a
viscous medium, without solving
the equations of motion for the
solvent particles.



First, consider motion with friction  alone:

After a short while, all particles will stop moving, due to
the friction..

Better:

Friction force
Conservative

force

“random” force



There is a relation between the correlation function of
the random force and the friction coefficient:

The derivation is straightforward, but beyond the
scope of this lecture. The KEY point is that the friction
force and the random force ARE RELATED.



Generalizsed
Langevin Equation

Laplace transform

Fluctuation-
Dissipation



Limiting case of Langevin dynamics:

No inertial effects (m=0)

Becomes:

“Brownian Dynamics”

(But still the friction force and the random force are
related)



What is missing in Langevin dynamics and Brownian
dynamics?

1. Momentum conservation

2. Hydrodynamics

(1 implies 2).



Is this serious?

Not always: it depends on the time scales.

Momentum “diffuses” away in a time L2/ν. After
that time, a “Brownian” picture is OK.

However: hydrodynamics makes that the
friction constant depends on the positions of
all particles (and so do the random forces…).



Momentum conserving, coarse-grained schemes:

Dissipative particle dynamics

Stochastic Rotation Dynamics

Lattice-Boltzmann simulations

These schemes represent the solvent explicitly (i.e. as
particles), but in a highly simplified way.




