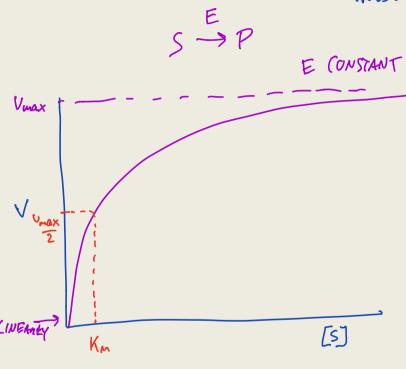

How do mutations affect metabolism?

Imagine this system being at a particular steady-state in WT. A mutation then occurs that doubles the k_{cat} for E_B .

ACTIVITY PER MOLECULE OF AN ENERGY (5⁻¹)

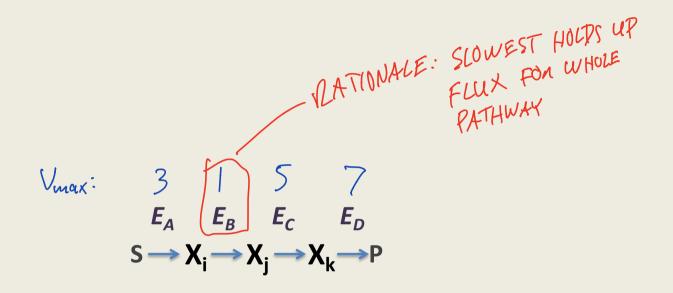


Relative to their initial values, would be the new steady-state values of the following be HIGHER/SAME/LOWER:

	UP	SAME	Down
Flux	(0	フ	Ø
X_i	7	1	C
X_{j}	li	Ø	Ø
X_k	5	2	Ø
	•		L

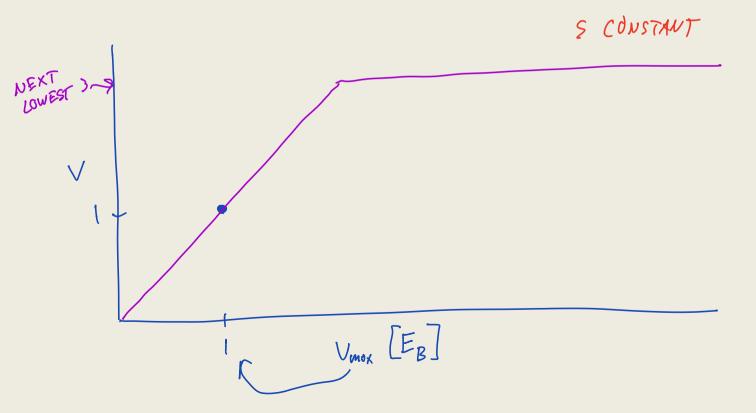
One substrate, MM kinetics

IRREVERSIBLE


ASSUMPTIONS:

- · [S] >>[E], [s] &[P] AME CONSTANT
- . BINDING OF S(ORP) TO E IS MUCH FASTER THAN CATALYSIS

One substrate MM kinetics with P feedback

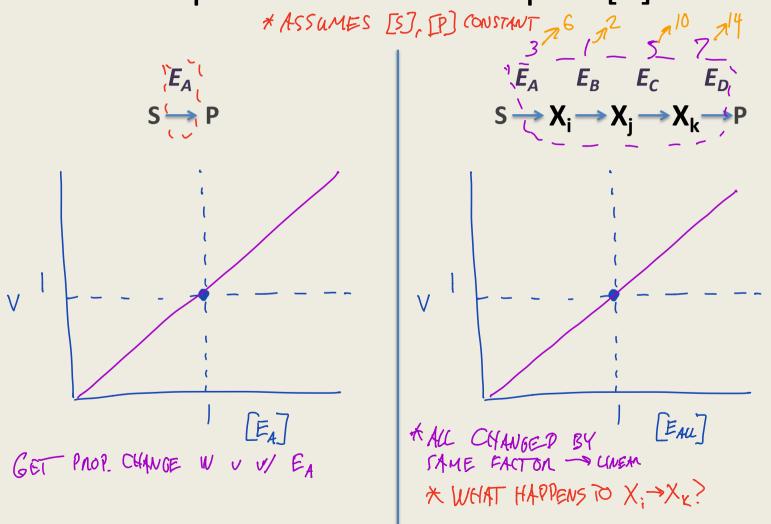

Two substrate MM kinetics

Rate-limiting enzyme

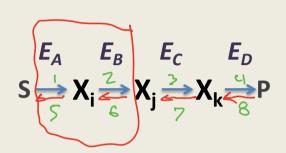
Rate-limiting enzyme

 When a process is conditioned as to its rapidity by a number of separate factors, the rate of the process is limited by the pace of the slowest factor (Blackman, 1905. Annals of Botany)

Single rate-limiting steps can exist



http://www.insidebainbridge.com/2013/12/03/an-unsettling-analysis-of-the-traffic-future-of-highway-305/



http://www.stepneyct.org/history/ht/stop17.html

Dependence of flux upon [E]

Tutorial in R: ODEs of metabolism

Tutorial in R: ODEs of metabolism

```
MM_multi<-function(t,state,parameters.t) {</pre>
     with(as.list(c(state,parameters.t)), {
          #rate of change
          dXi = Ea(t)*(kcat\_af*(S(t)/(S(t)+K\_af))-kcat\_ar*(Xi/(Xi+K\_ar)))+Eb(t)*(-kcat\_bf*(Xi/(Xi+K\_bf))+kcat\_br*(Xj/(Xj+K\_br)))
          dX_j = Eb(t)*(kcat_bf*(X_i/(X_i+K_bf))-kcat_br*(X_j/(X_i+K_br)))+Ec(t)*(-kcat_cf*(X_j/(X_i+K_cf))+kcat_cr*(X_k/(X_k+K_cr)))
          dXk = Ec(t)*(kcat_cf*(Xj/(Xj+K_cf))-kcat_cr*(Xk/(Xk+K_cr))) + Ed(t)*(-kcat_df*(Xk/(Xk+K_df))+kcat_dr*(P(t)/(P(t)+K_dr))) + Ed(t)*(-kcat_df*(Xk/(Xk+K_df))+kcat_dr*(P(t)/(P(t)+K_df))) + Ed(t)*(-kcat_df*(Xk+K_df)) + Ed(t)*(-kcat_df*(
parameters.t <-c(S = function(t)) \{if(t<40)\} \{1\} else if(t<60)\} \{1\} else if(t<80)\} \{1\} else \{1\}\},
                                                   P = function(t) \{ if (t<40) \{0.01\} else if (t<60) \{0.01\} else if (t<80) \{0.01\} else \{0.01\} \}
                                                   Ea = function(t) \{ if (t<40) \{1\} else if (t<60) \{1\} else if (t<80) \{1\} else \{1\} \},
                                                   Eb = function(t) \{ if (t<40) \} \{ 1 \} else if (t<60) \} \{ 1 \} else if (t<80) \} \{ 1 \} else \} \{ 1 \} \}
                                                   Ec = function(t) \{ if (t<40) \{1\} else if (t<60) \{1\} else if (t<80) \{1\} else \{1\} \},
                                                   Ed = function(t) \{ if (t<40) \{1\} else if (t<60) \{1\} else if (t<80) \{1\} else \{1\} \},
                                                   kcat af = 15.
                                                   kcat_ar = 15,
                                                                                                                                                                                                                                                      TIME STEPS
                                                   kcat bf = 20.
                                                   kcat_br = 20,
                                                                                                                                                                                                                                                       CIFLEXIBLITY TO
                                                   kcat_cf = 15,
                                                                                                                                                                                                                                                               DYNAMICALLY
                                                   kcat cr = 10.
                                                                                                                                                                                                                                                               CHANGE [E]
                                                   kcat_df = 15.
                                                                                                                                                                                                                                                              (on (s) [P])
                                                   kcat_dr = 5,
                                                   K_af = 0.2,
                                                  K ar = 0.2.
                                                  K_bf = 2
                                                   K_{br} = 0.2,
                                                  K_cf = 2
```

 $K_{cr} = 0.2,$ $K_{df} = 0.2,$ $K_{dr} = 0.2)$

Try increasing all enzymes by the same factor in R

MCA time dynamics v1 200201.R

Change all four of the E_i from 1 to 2 for the second time period, leaving the other time periods at 1.

What happened to fluxes in the second time period? $\Longrightarrow \mathbb{K}ACTLY \text{ POUBLE}$ What happened to the concentrations at that time? $\Longrightarrow \text{NOTHING!} \qquad \text{NO CHANGES (N Xi,j,K)}$

Which step controls flux?

```
kcat_af = 15,
kcat_ar = 15,
kcat_bf = 20,
kcat_br = 20,
kcat_cf = 15,
kcat_cr = 10,
kcat_df = 15,
kcat_dr = 5,
K_af = 0.2,
K_ar = 0.2
K_bf = 2
K_br = 0.2,
K_cf = 2,
K_{cr} = 0.2,
K_df = 0.2
K_dr = 0.2
```

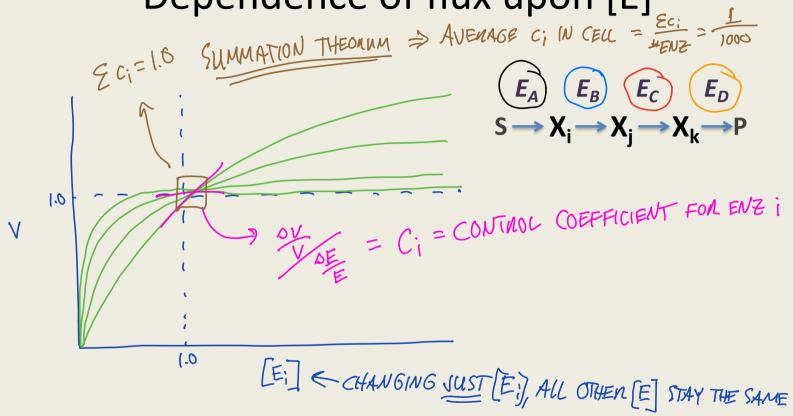
$$E_A$$
 E_B E_C E_D
 $S \longrightarrow X_i \longrightarrow X_j \longrightarrow X_k \longrightarrow P$

Look at the parameters to the left and decide which enzyme has the most control over flux (closest to being "rate-limiting").

Which enzyme has the most control in our system?

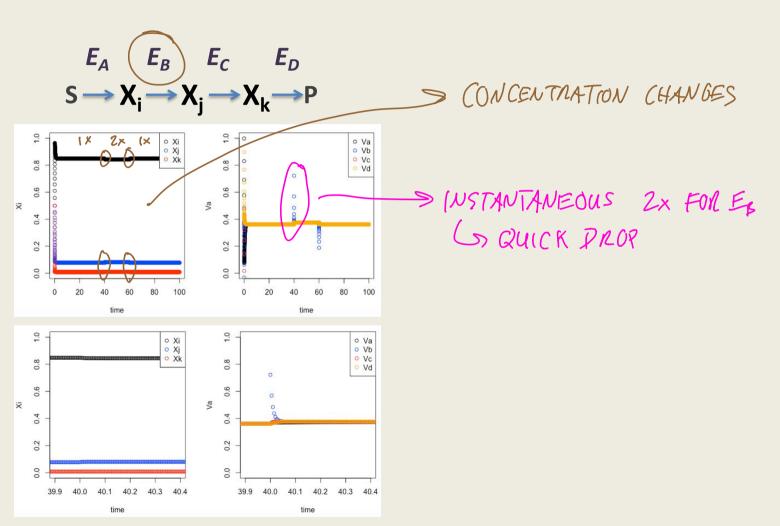
```
kcat_af = 15,
kcat_ar = 15,
kcat_bf = 20,
kcat_br = 20,
kcat_cf = 15,
kcat_cr = 10,
kcat_df = 15,
kcat_dr = 5,
K_af = 0.2,
K_ar = 0.2
K_bf = 2,
K_br = 0.2,
K_cf = 2,
K_{cr} = 0.2,
K_df = 0.2,
K_dr = 0.2
```

$$E_A$$
 E_B E_C E_D
 $S \longrightarrow X_i \longrightarrow X_j \longrightarrow X_k \longrightarrow P$


Run MCA v vs E 200201.R

Look at the figure of v vs. E for each of the four enzymes to see how it behaves with changing each enzyme individually.

each enzyme individually.


L. RUNS LOOP TO EVALUATE V;, [X:] FOR MANY VALUES OF [E;]

Dependence of flux upon [E]

* METABOLIC MONTROL ANALYSIS (MCA)

What happens upon changing an enzyme?

Why so little effect upon changing activities?

$$E_A$$
 E_B E_C E_D
 $S \longrightarrow X_i \longrightarrow X_i \longrightarrow X_k \longrightarrow P$

LEVENSIBILITY

7. SHIFT IN CONC.

Aspect #1: Metabolism flows both ways

$$V_{NET} = \begin{bmatrix} E_B \end{bmatrix} \begin{pmatrix} K_{cat,f} \end{pmatrix} - K_{cat,r} \begin{pmatrix} \end{pmatrix}$$
 $2 \times FON SOTH$

Aspect #2: changes in saturation

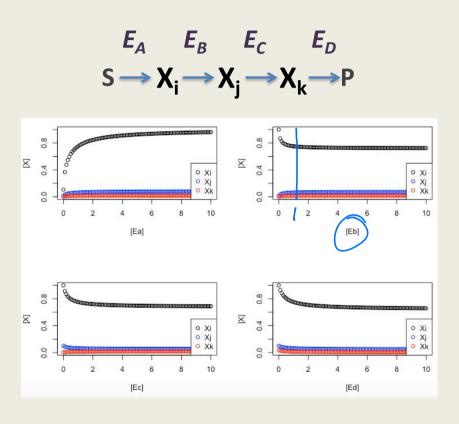
Thought experiment: instantaneous doubling of k_{cat} for E_R

$$E_{A} \xrightarrow{E_{B}} E_{C} E_{D}$$

$$S \xrightarrow{\downarrow} X_{i} \xrightarrow{\downarrow} X_{j} \xrightarrow{\downarrow} X_{k} \xrightarrow{\downarrow} P$$

$$REC. V$$

$$AEC. [X_{i}]$$

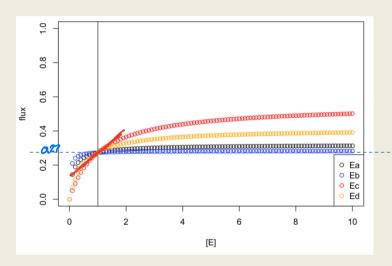

INSTANT AFTER
$$\rightarrow$$
 E_A E_B E_C E_D CHANGE \rightarrow $X_i \rightarrow X_j \rightarrow X_k \rightarrow P$

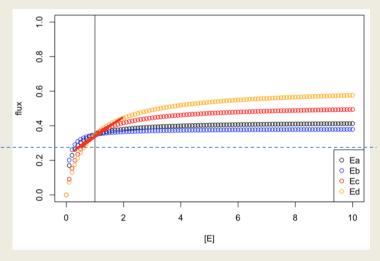
$$E_{A} \quad E_{B} \quad E_{C} \quad E_{D}$$

$$S \underset{1.2}{\rightleftharpoons} X_{i} \underset{1.2}{\rightleftharpoons} X_{j} \underset{1.2}{\rightleftharpoons} X_{k} \underset{1.2}{\rightleftharpoons} P$$

$$0.7 \quad [.3] \quad 1.2$$

What changes with increases to one enzyme?



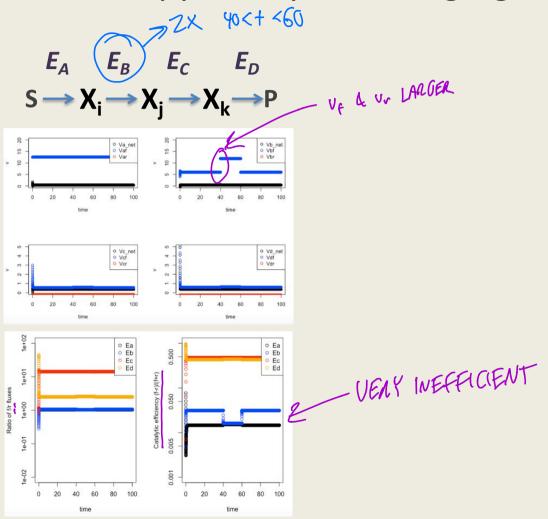

What happens to c_i values if one is changed?

$$E_A$$
 E_B E_C E_D
 $S \longrightarrow X_i \longrightarrow X_j \longrightarrow X_k \longrightarrow P$

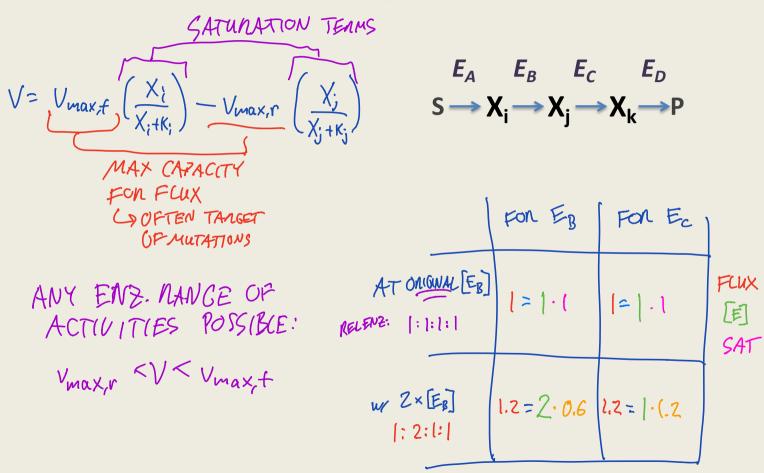
- **1.** First guess: will increasing an enzyme raise or lower its own c_i ? Will it change the other c_i values, and if so, will they go up or down?
- **2.** Use MCA v vs E 200201.R and try this. Run once with original levels, and then pick an enzyme and increase both kcat values (f and r) by the same factor (a decent bit, i.e. 5-10 fold) and then run a second time.

What changes with increases to one enzyme?

- C: OF CHANGED ENZ DOWN; REST UP TO STILL ADD TO 1.0 - MULT. MUT. TO SAME ENZ., DIMINISHING MET. FOR BENEFICIAL I DELETERIOUS


Instantaneous vs. steady-state behavior

$$E_A$$
 E_B E_C E_D
 $S \longrightarrow X_i \longrightarrow X_j \longrightarrow X_k \longrightarrow P$


Go back and use other file: MCA time dynamics v2 200201.R

Pick an enzyme and double it. How did that affect the steady-state behavior? What about the immediate dynamics right around t=40?

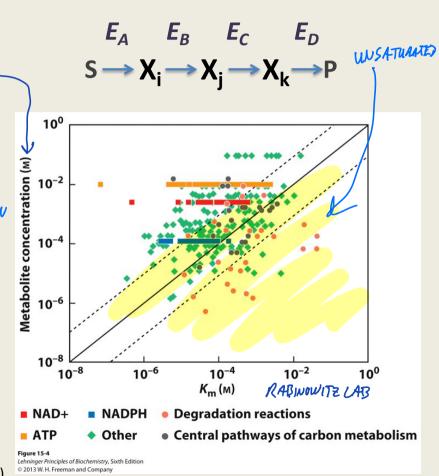
What happens upon changing an enzyme?

Rate and saturation/balance (of fwd vs. rev) in control over flux

What does this suggest about enzyme saturation?

THEONY: IMPOSSIBLE FOR ALL ENZ. TO BE HIGHLY SATURATED

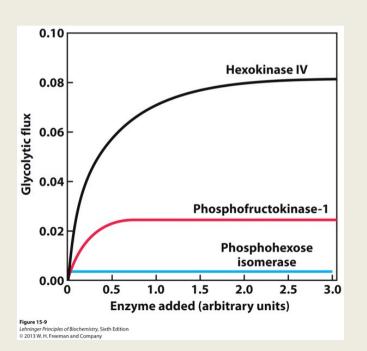
DATA: LC-MS

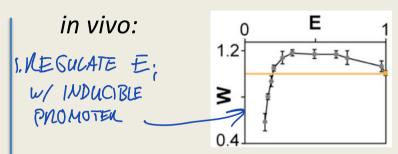

* MOST ENZ. - SUBSTATE PAIRS UNSATURATED

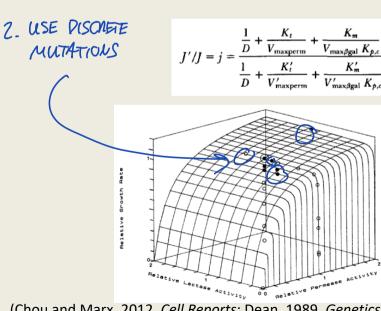
*THOSE W ONE SUBS HIGH, CFTEN HAVE SECOND SUBSTRATE COW

$$r_{2a} = V_{2a} \left(\frac{[\text{me} - \text{H4MPT}]}{Km_{2a} + [\text{me} - \text{H4MPT}]} \right) \left(\frac{[\text{NAD}]}{Km_{2b} + [\text{NAD}]} \right)$$

$$r_{7} = \frac{V_{7} \frac{[\text{me-H4F}][\text{NADP}]}{K m_{7a} K m_{7b}} - V_{7\tau} \frac{[\text{mn-H4F}][\text{NADPH}]}{K m_{7ar} K m_{7b\tau}}}{\left(1 + \frac{[\text{me-H4F}]}{K m_{7a}} + \frac{[\text{NADP}]}{K m_{7b}}\right) \left(1 + \frac{[\text{mn-H4F}]}{K m_{7ar}} + \frac{[\text{NADPH}]}{K m_{7b\tau}}\right)}$$

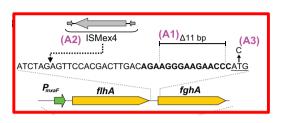

(Marx et al., 2005. PLoS Biology)

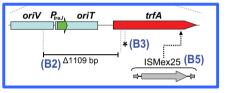


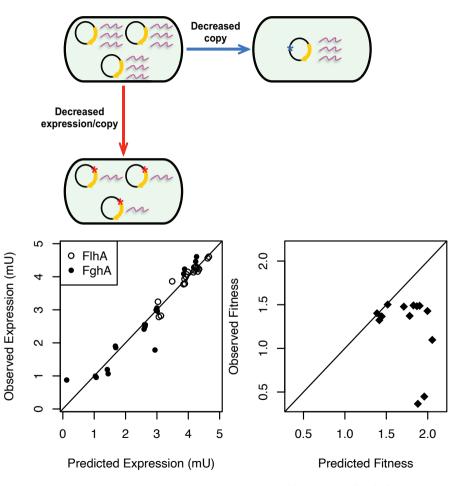

How test MCA experimentally?

in vitro:

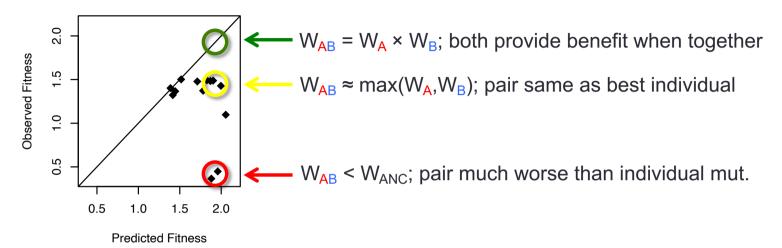
ADD ENZ. TO TEST TUBE

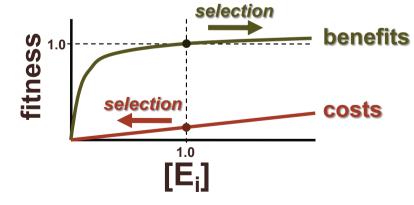




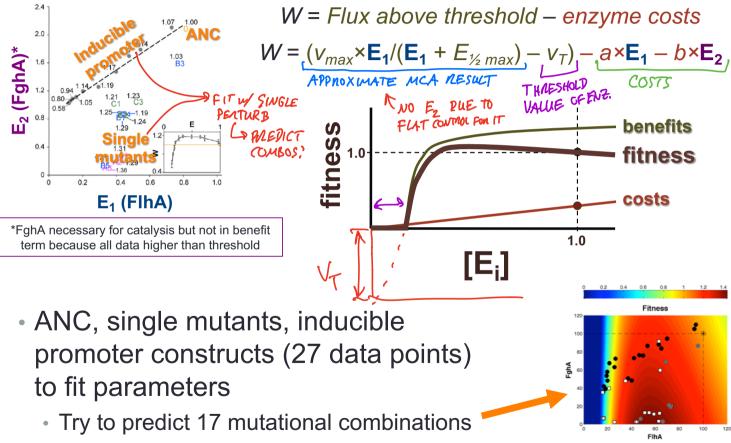

(Chou and Marx, 2012. Cell Reports; Dean, 1989. Genetics)

Independent effects upon expression

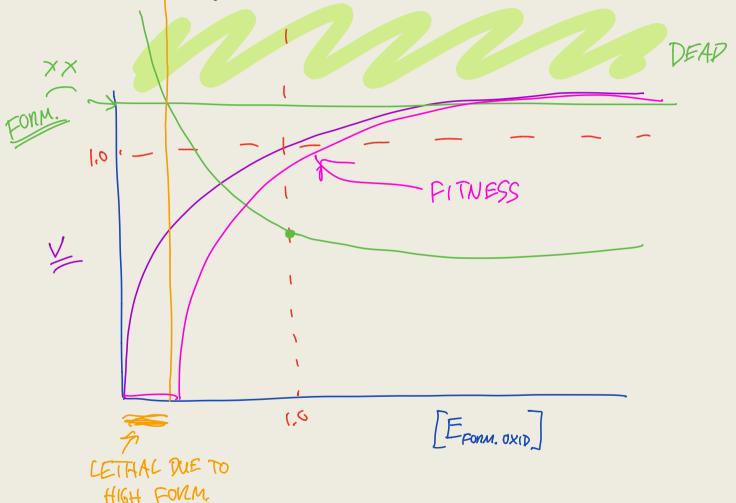



- Two classes should interact independently:
 - $E_{AB} = E_A \times E_B$
 - Yes
- Indep. upon fitness?
 - No.

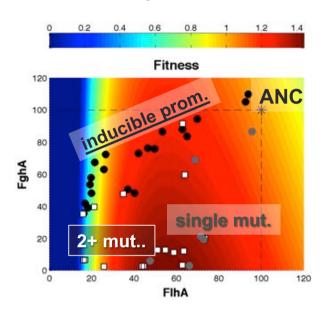
Why antagonism and sign epistasis?

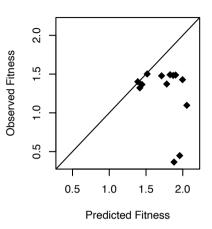


- Caused by tension between benefits and costs?
 - Metabolic Control Analysis (MCA)

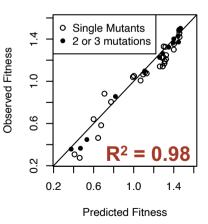


Map expression to fitness via model

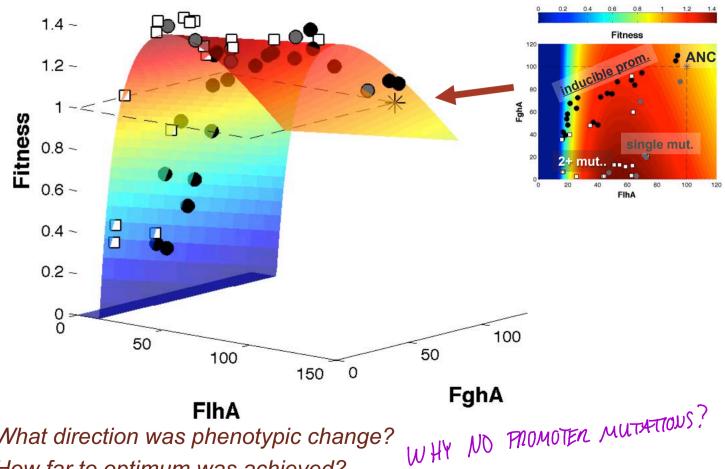



What really causes there to be a threshold?

Model predicts mutational combos



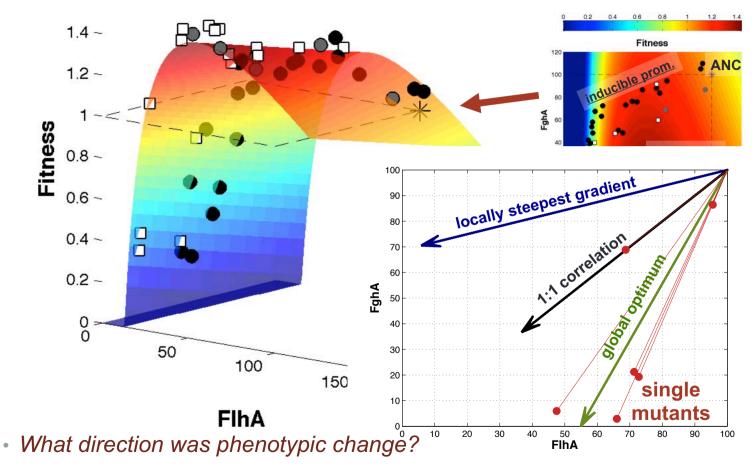
$$W_{AB} = W_A \times W_B$$



$$W = (v_{max} \times \mathbf{E}_1 / (\mathbf{E}_1 + E_{\frac{1}{2} max}) - v_T)$$
$$- a \times \mathbf{E}_1 - b \times \mathbf{E}_2$$

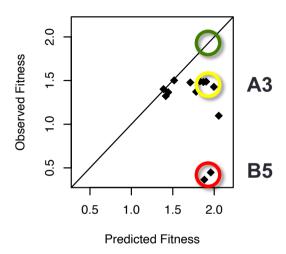
Mechanistic model works quite well

Interpret <u>adaptation</u> in light of model

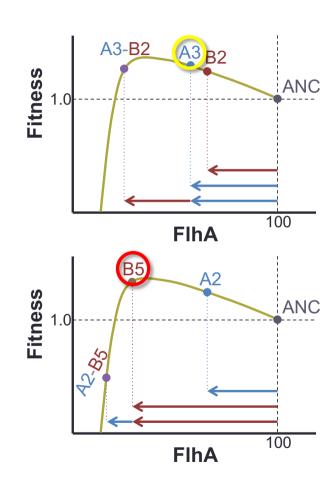


What direction was phenotypic change?

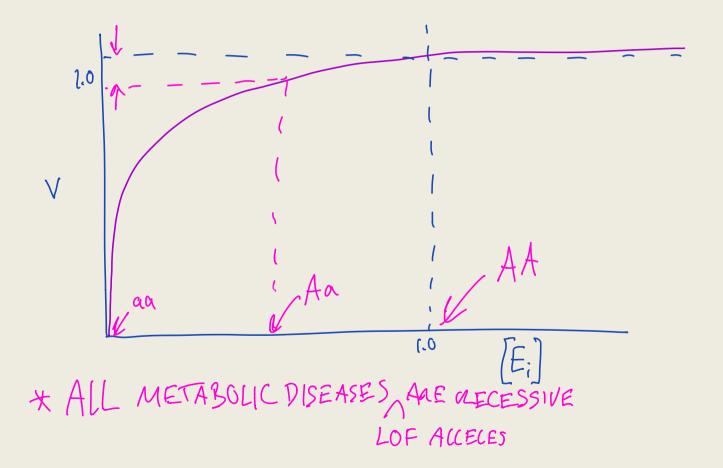
How far to optimum was achieved?

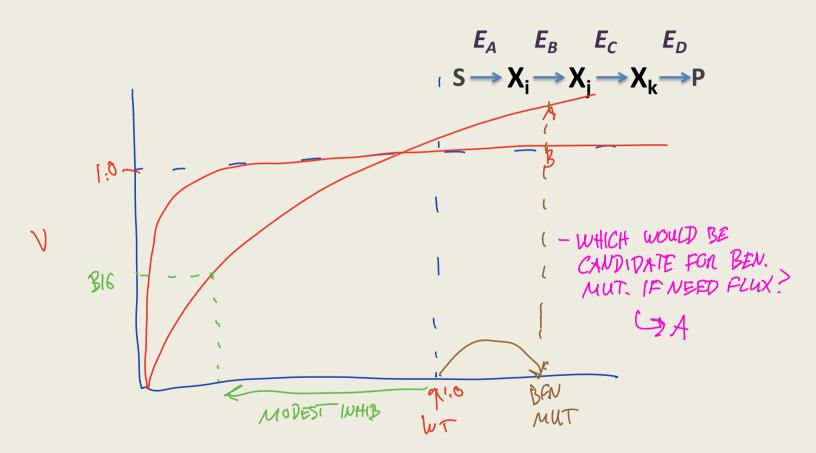

(Chou et al., PLoS Genetics, 2014)

Interpret <u>adaptation</u> in light of model



How far to optimum was achieved?


Interpret interactions in light of model

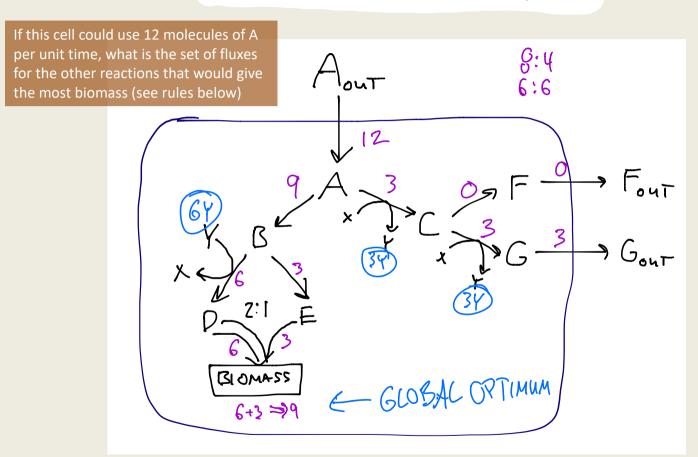

- A3, B5 same benefit (~0.45), but B5 has worse epistasis
- B5 on steep edge of peak…
- Combining expressionchanging mutations may not speed adaptation


Implication of MCA #1: dominance

Implication of MCA #2: where to target drugs

Implications of MCA #3: selection vs. neutrality

MCA: take-home messages


- 1. Because of saturation kinetics, there is not simply a single, rate-limiting enzyme.
- 2. Responsiveness of enzymes to [S] is set just by K_M and [S].
- 3. Flux responds linearly to changes in [E] if just one enzyme, or if all enzymes dialed up and down together.
- 4. Flux responds hyperbolically to changes in a single enzyme, the local slope of which is the "control coefficient", C_i .
- 5. Because $\Sigma C_i = 1$, most C_i are tiny.
- 6. Experimental tests in vitro and in vivo have confirmed MCA predictions.
- 7. Changes in one enzyme affect realized flux at other steps because of changing [Si] at the new SS flux.
- 8. Most enzymes are far from saturated, which is why each flux is responsive to alterations in other parts of the system.

$$E_A$$
 E_B E_C E_D
 $S \longrightarrow X_i \longrightarrow X_j \longrightarrow X_k \longrightarrow P$

MCA explains:

- 1. Why metabolic diseases are recessive.
- 2. Why drugs effective on an enzyme often have little clinical effect.
- 3. Why much variation in populations is neutral.

A NEW CHALLENGE FOR YOU...

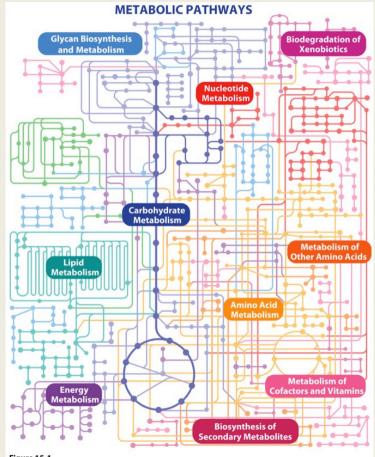
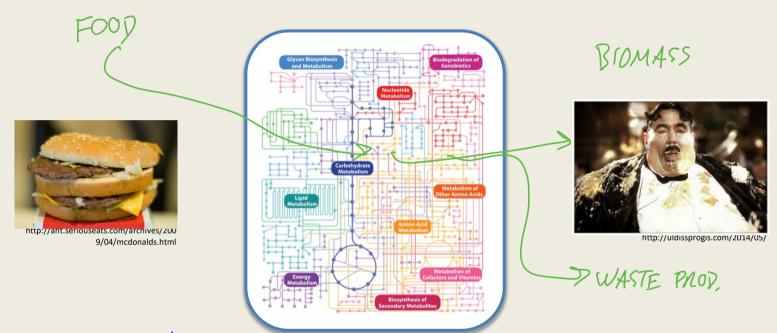
Constraint: use no more than 12 molecules of A

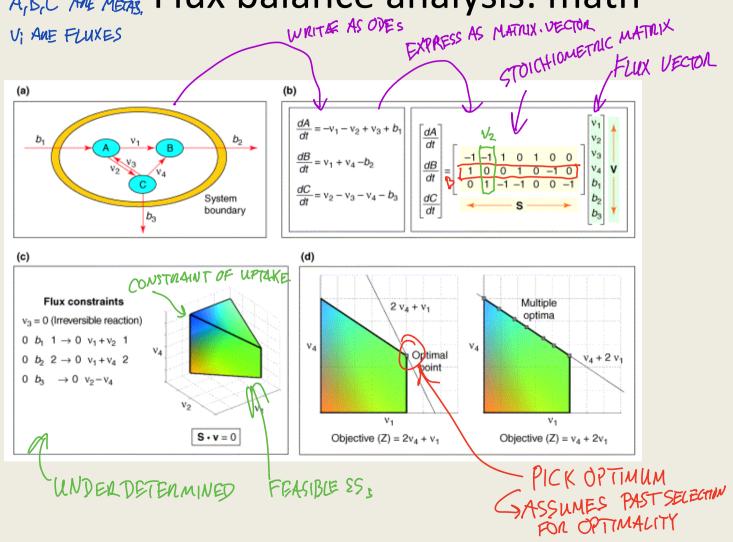
Biomass: a 2:1 ratio of D:E
*Think of Y like ATP (X like ADP)

Flux balance analysis: what it isn't

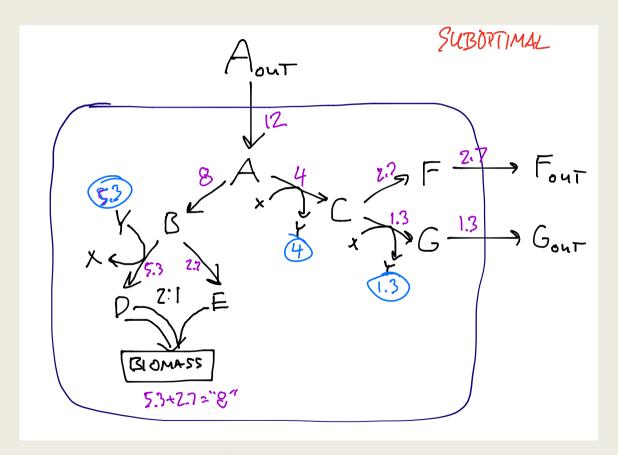
What is ignored in FBA?

- -NO ENZ. ACTIVITIES
- -NO METAB, CONC.
- -ONLY THING IS THE NET FLUXES

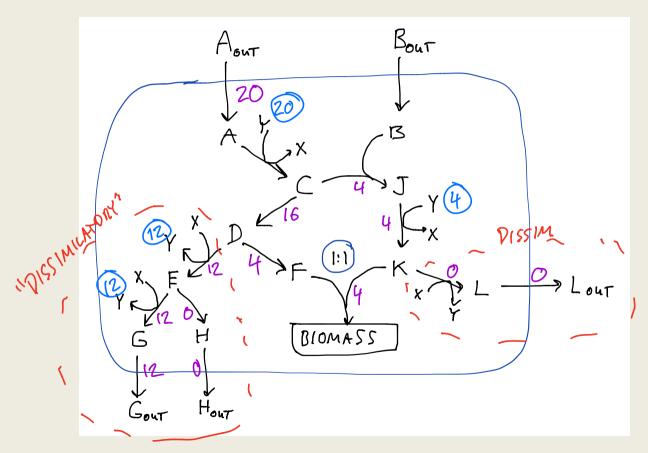

Figure 15-1 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Flux balance analysis in a nutshell



- 1. CONSTRAINTS UPON USE
 - USES KNOWN MET. NXNS -
 - CAP AT LEAST ONE FLUX FOR TRANSPORT (NTO CELL (USUALLY C SUBS.)
- > 2. NETWORK TOPOLOGY
 - BIOMASS COMPOSITION
- 3. OPTIMIZE
 BIOMASS ACCUM.
 W/IN FEASIBLE
 SPACE OF SS

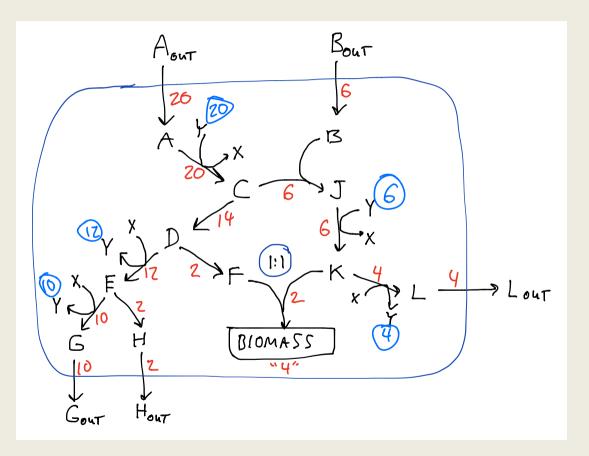
A,B,C ME MEAS, Flux balance analysis: math


Flux balance analysis: example #1

Constraint: use no more than 12 molecules of A

Biomass: a 2:1 ratio of D:E
*Think of Y like ATP (X like ADP)

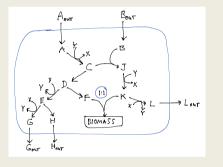
Flux balance analysis: example #2



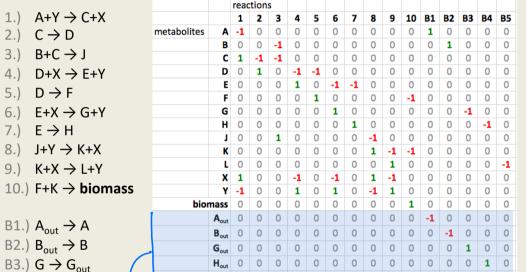
Constraint: use no more than 20 molecules of A; B is unconstrained

Biomass: a 1:1 ratio of F:K

*Think of Y like ATP (X like ADP)


Flux balance analysis: example #2 suboptimal

Constraint: use no more than 20 molecules of A; B is unconstrained Biomass: a 1:1 ratio of F:K

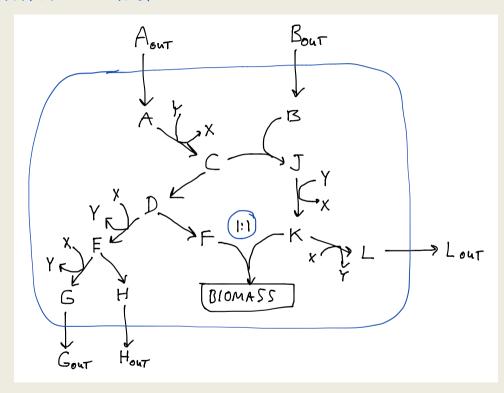

*Think of Y like ATP (X like ADP)

FBA example #2 as stoichiometric network

Reactions:

B4.) $H \rightarrow H_{out}$ B5.) $L \rightarrow L_{out}$

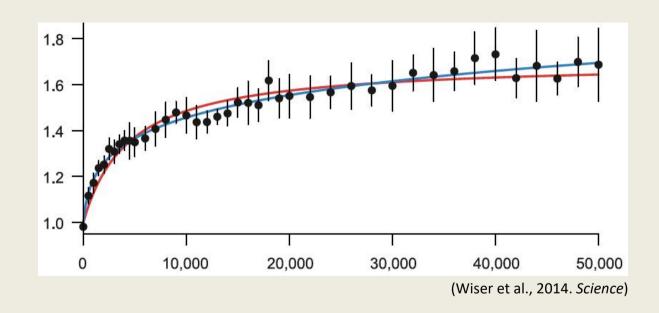
> BOUNDARY FLUXES: TRANSPORT NOT dx: 0 ATSS

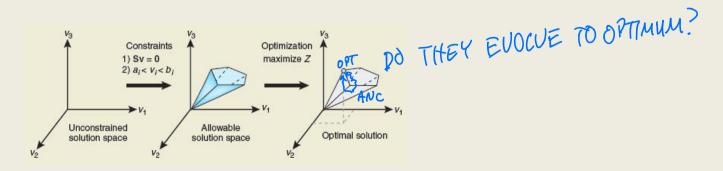

20

16

FBA: test actual flux pattern

* TEST KO MUTATIONS -> VIABILITY


Deleted reaction	flux _{opt}	flux _{sub-opt}
1.) A+Y → C+X	20	20
2.) $C \rightarrow D$	16	14
3.) B+C → J	4	6
4.) D+X → E+Y	12	12
5.) D → F	4	2
6.) E+X → G+Y	12	10
7.) E → H	0	2
8.) J+Y → K+X	4	6
9.) K+X → L+Y	0	4
10.) F+K → biomass	4	2
B1.) $A_{out} \rightarrow A$	20	20
B2.) $B_{out} \rightarrow B$	4	6
B3.) $G \rightarrow G_{out}$	12	10
B4.) $H \rightarrow H_{out}$	0	2
B5.) $L \rightarrow L_{out}$	0	4



FBA: test actual flux pattern

Deleted reaction	flux _{opt}	flux _{sub-opt}		
1.) A+Y → C+X	20	20	50	
2.) C → D	16	14	4	
3.) B+C → J	4	6	<u>/</u>	
4.) D+X \rightarrow E+Y	12	12	172	
5.) D → F	4	2	, <u> </u>	
6.) $E+X \rightarrow G+Y$	12	10	<u> </u>	
7.) E → H	0	2	Observed flux	
8.) J+Y → K+X	4	6	e Z	
9.) K+X → L+Y	0	4	SQ 1	
10.) F+K → biomass	4	2		
$D1 \setminus A \longrightarrow A$	20	20	ιn	
B1.) $A_{out} \rightarrow A$ B2.) $B_{out} \rightarrow B$	4	6	₹ /	
B3.) $G \rightarrow G_{out}$	12	10	1/ *	
B4.) $H \rightarrow H_{out}$	0	2	0	
B5.) L \rightarrow L _{out}	0	4	0 5 10 15 20	
out			Predicted flux	
-NIGHT CNITEMION (BM/s) Predicted flux				
- SELECTION ON THAT SUBS TO NEACH OPT.				
		_	IS OPTIMUM POSSIBLE? (CONSTRAINTS, KINETIC PARAM)	

FBA: tested in *E. coli* evolved for 25 years

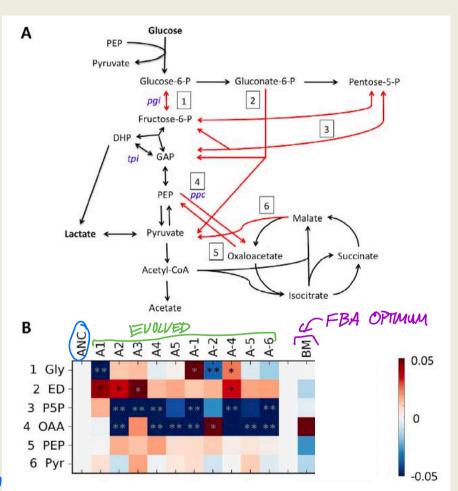
Why might optimizing BM/S be an issue?

-600D CHOICE FOR OPTIMALITY (RITEMON IN BATCH CULTURE?

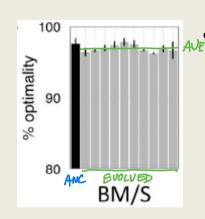
 What FBA optimizes (BM/S, efficiency):

http://www.toyotainthenews.com/the-3rd-generation-prius/

 What batch culture selects for (BM/time, rate):



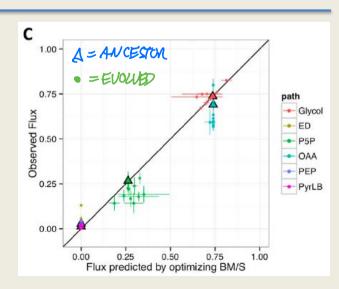
http://flatsixes.com/porsche-motorsports/2010-volume-2/


FBA: tested in *E. coli* evolved for 25 years

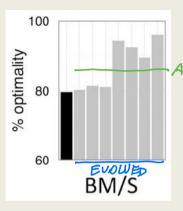
- Rate of glucose use increased in all evolved
- Measured flux ratios throughout central metabolism

- Assayed ancestor (ANC), many evolved strains.
 - 1. WERE SIGNIFICANT CHANGES
 - Z. ISOLATES PISTINCT FROM EACH OTHER
 - 3. PID NOT LOOK LIKE PREDICTION

E. coli evolved on glucose for 50K generations to have lower yield and less like FBA predictions

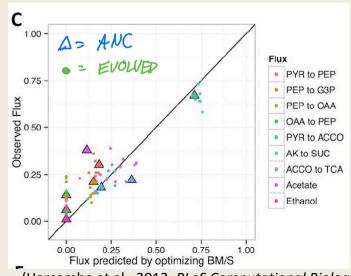

Overall biomass yield:

- . ANCESTON 98% OF OPTIMUM
- EVOLVED 97% OPTIMAL


• Fluxes compared to predictions:

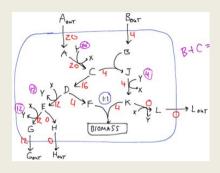
-ANCESTMAL FLUXES WELL-PREDICTED

-EVOLVED TO BE LESS WELL-PREDICTED



E. coli evolved on lactate for <1K generations to have increase yield and less like FBA predictions

- Overall biomass yield:
 - ANCESTON VENT SUB-OPTIMAL
 - EVOLVED STRAWS MORE OPTIMAL (FOR YIELD)


- Fluxes compared to predictions:
 - STRAINS EVOLVED TO BE BETTER PREDICTED

(Harcombe et al., 2013. PLoS Computational Biology)

FBA: take-home messages

- 1. FBA is an optimality model that seeks to predict how cells *should* use metabolism.
- 2. FBA only considers steady-state, balanced fluxes through reactions; there are no enzyme parameters or concentrations.
- 3. FBA first calculates all possible steadystates within uptake constraints, and then asks which of these maximizes biomass (assuming past selection for this).
- 4. FBA uses linear algebra (S matrix x flux vector = 0) to calculate the "feasible space" of steady-states, and then uses linear optimization to find the best solution.
- 5. Cells have to perform this "calculation" to be able to grow at a consistent rate.
- 6. Experimental evolution offers opportunity to test optimality assumption of FBA.

FBA explains:

- 1. Which enzyme deletions are lethal or detrimental.
- 2. Close to the actual use of fluxes in the cell and what is excreted from them.
- Adapted cells may evolve to be more or less well-predicted, but have flux pattern close to suggested optimum.