
GW Burst searches in ground based detectors

Archana Pai IIT Bombay

The Future of Gravitational Wave Astronomy 21st August 2019

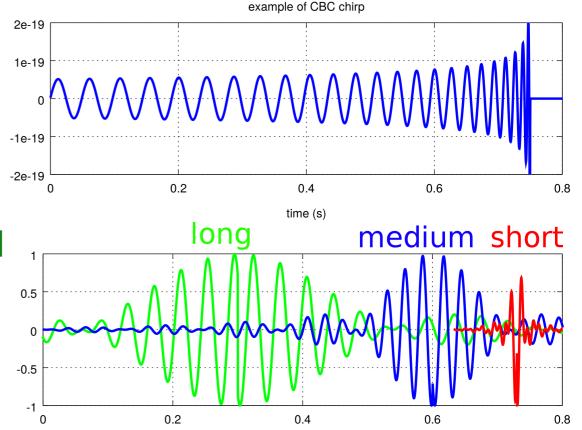
GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

O1-O2 LIGO-Virgo compact binaries

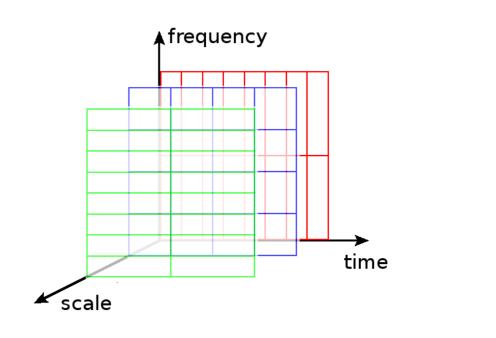
Total mass 18.5-85.1 Msun

LVC, GWTC-1 Catalog arXiv:1811.12907

Main features of burst search


- Search does not assume any signal model.
- Minimal assumptions about the signal morphology
- Maps the multi-detector data in the time-frequency representation
- Obtain energetic pixels
- Scheme to cluster pixels either seed-based or seedless
- Veto methods to remove the noisy transients

Coherent WaveBurst [Klimenko etal PRD 2016]
Omicron-LALInferenceBurst (OLIB) Littenberg et.al. PRD 2017
BayesWave: Cornish and Littenberg, CQG 2015


Coherent Wave-Burst

- Project the data on the wavelet domain characterised by (time,freq,scale).
- Combine the time-frequency energy from detectors (incorporating possible delays) and obtain pixel energy for each scale.
- Obtain energetic pixels.
- Clustering scheme combines the TF pixels from different scales which constructs clusters.
- Maximum likelihood ratio statistic is used for each cluster to obtain multi-detector statistic.
- Detection Statistic incorporates the correlation between the detectors.

[Klimenko etal PRD 2016]

time (s)

Network pixel-wise data

$$w[p] = \left[\frac{x_1[p, \tau_1(\theta, \phi)]}{\sqrt{S_1[p]}}, ..., \frac{x_k[p, \tau_k(\theta, \phi)]}{\sqrt{S_k[p]}}, ..., \frac{x_K[p, \tau_K(\theta, \phi)]}{\sqrt{S_K[p]}} \right].$$

Maximum likelihood statistic

$$L_{max} = \frac{\langle w[p] \mid f_{+}[p] \rangle^{2}}{\langle f_{+}[p] \mid f_{+}[p] \rangle^{2}} + \frac{\langle w[p] \mid f_{\times}[p] \rangle^{2}}{\langle f_{\times}[p] \mid f_{\times}[p] \rangle^{2}},$$

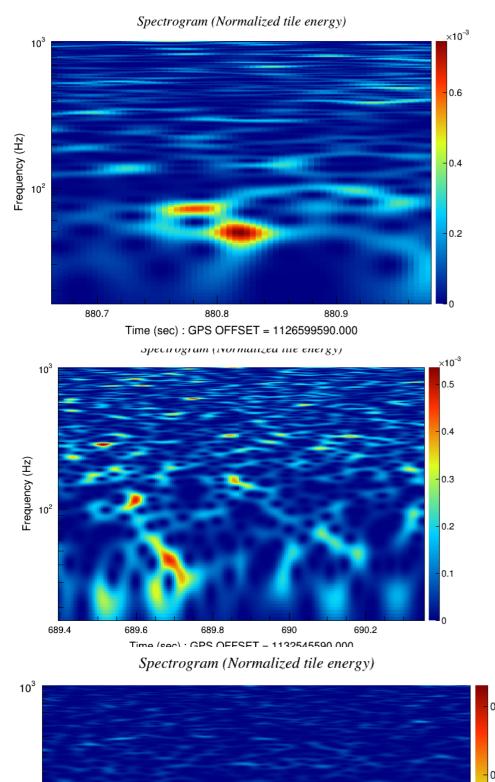
$$= \sum_{nm} [(w_{m}[p]e_{+m}[p]w_{n}[p]e_{+n}[p]) + (w_{m}[p]e_{\times m}[p]w_{n}[p]e_{\times n}[p])],$$

$$L_{max} = \sum_{p \in C} w^{T}[p] P[p] w[p].$$

with $P_{nm}[p] = e_{n+}[p]e_{m+}[p] + e_{m\times}[p]e_{m\times}[p]$.

Incoherent energy

$$E_{in} = \sum_{p \in C} \sum_{n} w_{n}[p] P_{nn}[p] w_{n}[p],$$

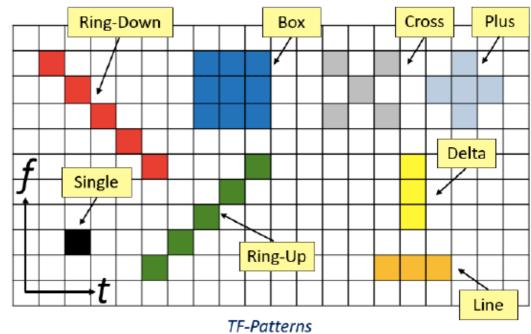

Coherent Energy

$$E_{coh} = \sum_{p \in C} \sum_{n \neq m} w_n[p] P_{nm}[p] w_m[p].$$

Network correlation

Statistic:

$$c_c = E_{coh}/(|E_{coh}| + E_{null}).$$
 $\eta_c = (c_c E_{coh} K/(K-1))^{1/2}.$


Variety of noisy transients

Different class of Noisy transients have distinct representation in the TF map.

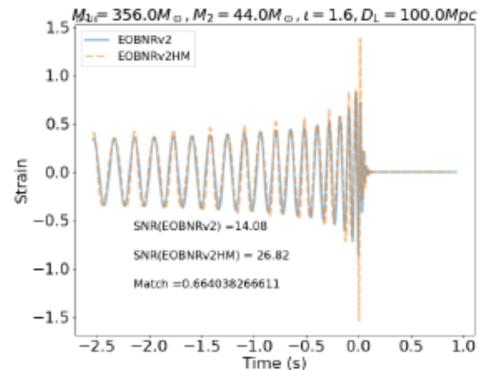
Noise vetos use this information

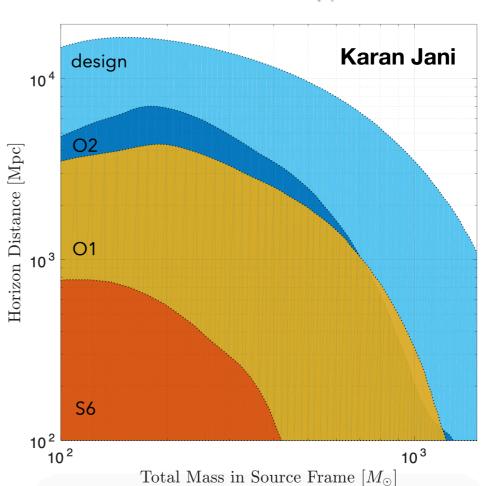
- Fraction of the event energy in the secondary TF pixels Qveto
- 2. Distribution of energy in TF plane as opposed to the time domain: Norm
 - 3. Chi-square based on average residual energy
- 4. ...
- 5.

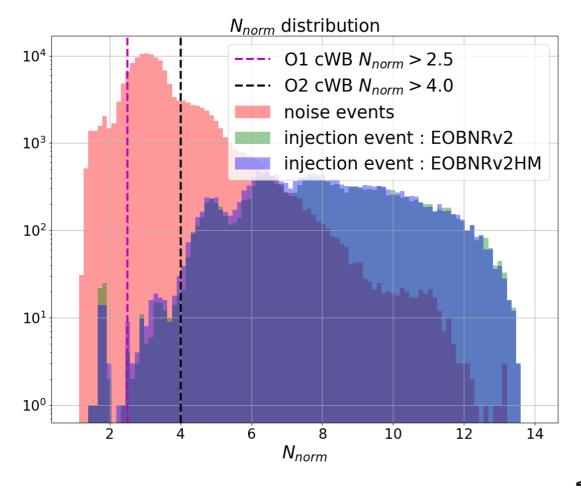
Tune the search based on the signal one is looking for.....

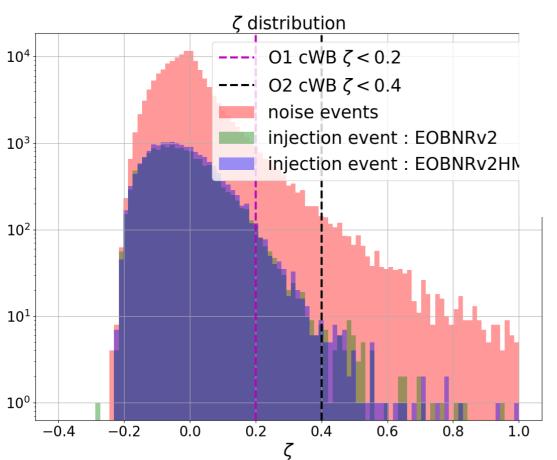
			FAR [y-1]		Network SNR			
Event	UTC Time	PyCBC	GstLAL	cWB	PyCBC	GstLAL.	cWB	
GW 150914	09:50:45.4	< 1.53× 10 ⁻³	< 1.00 × 10 ⁻⁷	< 1.63 × 10 ⁻⁴	23.6	24.4	25.2	
GW 151012	09:54:43.4	0.17	7.92×10^{-3}	_	9.5	10.0	_	
GW 151226	03:38:53.6	< 1.69× 10 ⁻⁵	$< 1.00 \times 10^{-7}$	0.02	13.1	13.1	11.9	
GW 170104	10:11:58.6	< 1.37 × 10 ⁻⁵	$< 1.00 \times 10^{-7}$	2.91×10^{-4}	13.0	13.0	13.0	
GW 170608	02:01:16.5	< 3.09× 10 ⁻⁴	< 1.00 × 10 ⁻⁷	1.44 × 10 ⁻⁴	15.4	14.9	14.1	
GW 170729	18:56:29.3	1.36	0.18	0.02	9.8	10.8	10.2	
GW 170809	08:28:21.8	1.45×10^{-4}	$< 1.00 \times 10^{-7}$		12.2	12.4		
GW 170814	10:30:43.5	< 1.25 × 10 ⁻⁵	$< 1.00 \times 10^{-7}$	< 2.08 × 10 ⁻⁴	16.3	15.9	17.2	
GW 170817	12:41:04.4	< 1.25 × 10 ⁻⁵	$< 1.00 \times 10^{-7}$	_	30.9	33.0	_	
GW 170818	02:25:09.1	_	4.20×10^{-5}	_	_	11.3		
GW 170823	13:13:58.5	$< 3.29 \times 10^{-5}$	$< 1.00 \times 10^{-7}$	2.14×10^{-3}	11.1	11.5	10.8	

O1-O2 Compact binaries

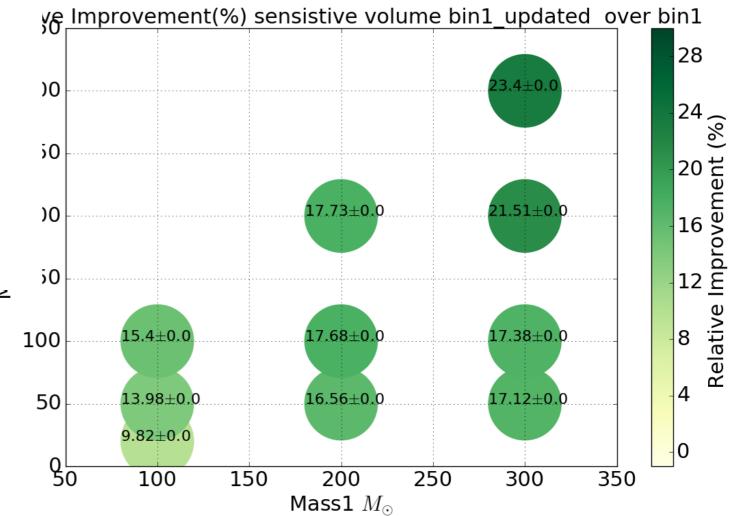

GWTC-1, LVC 2019


- cWB shows sensitivity to loud and massive binary BH events.
- It does not assume any signal morphology. Can capture complexities of the signal.

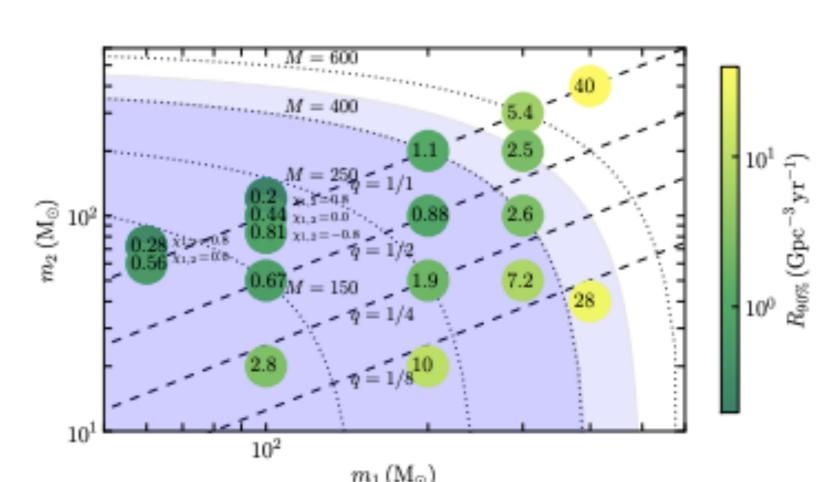

Tune the search based on the signal one is looking for.....


- Current detectors are sensitive to IMBHB (BH> 100 Msun in a binary)
- IMBHB Detection challenges
 - signal is dominated by merger and ringdown
 - existing templates are not accurate they do not contain either precession or higher order modes
 - Noisy transients appear like a signal

O1-O2 IMBHB search — With special tuning of cWB, the burst search outperformed the template based search [1906.08000, O1O2 IMBHB LVC, 2019]

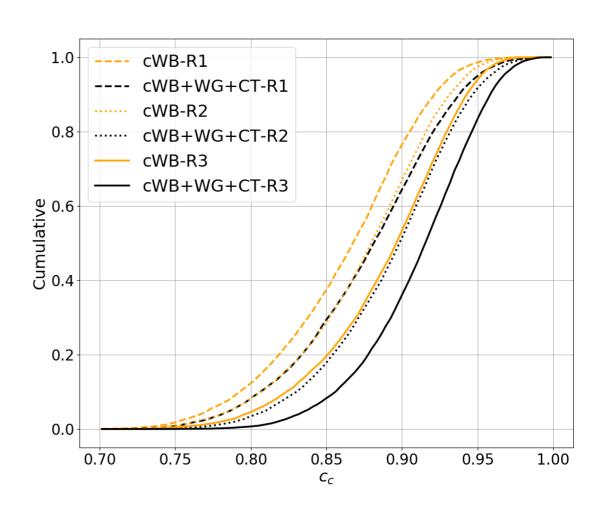


Reduce background without loosing events


Increase events without increasing background

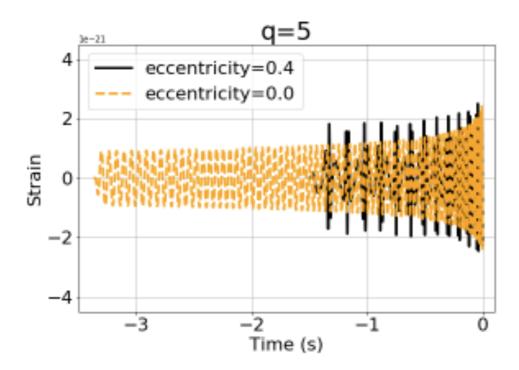
m	1	m_2	spin	M	NR-simulation		$D_{\langle VT \rangle_{\text{sen}}}$ (Gpc)			
M		${\rm M}_{\odot}$	$\chi_{1,2}$	${\rm M}_{\odot}$		$_{ m cWB}$	GstLAL	PyCBC	combined	
6	0	60	0	120	SXS:BBH:0180, RIT:BBH:0198:n140, GT:0905	1.2	1.2	1.2	1.3	
6	0	60	0.8	120	$SXS:BBH:0230,\;RIT:BBH:0063:n100,\;GT:0424$	1.6	1.0	1.5	1.6	
10	00	20	0	120	SXS:BBH:0056, RIT:BBH0120:n140, GT:0906	0.72	0.69	0.70	0.76	
10	00	50	0	150	$SXS:BBH:0169,\;RIT:BBH:0117:n140,\;GT:0446$	1.2	0.79	1.1	1.2	
10	00	100	-0.8	200	SXS:BBH:0154, RIT:BBH:0068:n100	1.1	1.0	0.99	1.2	
10	00	100	0	200	SXS:BBH:0180, RIT:BBH:0198:n140,GT:0905	1.4	0.90	1.3	1.4	
10	00	100	0.8	200	$SXS:BBH:0230,\;RIT:BBH:0063:n100,\;GT:0424$	1.8	1.2	1.7	1.8	
20	00	20	0	220	RIT:BBH:Q10:n173, GT:0568	0.48	0.30	0.36	0.49	
20	00	50	0	250	$SXS:BBH:0182,\;RIT:BBH:0119:n140,\;GT:0454$	0.85	0.48	0.67	0.87	
20	00	100	0	300	SXS:BBH:0169, RIT:BBH:0117:n140, GT:0446	1.1	0.59	0.86	1.1	
30	00	50	0	350	$SXS:BBH:0181,\;RIT:BBH:0121:n140,\;GT:0604$	0.55	0.18	0.27	0.56	
20	00	200	0	400	$SXS:BBH:0180,\;RIT:BBH:0198:n140,\;GT:0905$	1.0	0.47	0.72	1.0	
30	00	100	0	400	SXS:BBH:0030, RIT:BBH:0102:n140, GT:0453	0.78	0.23	0.34	0.78	
40	00	40	0	440	RIT:BBH:Q10:n173, GT:0568	0.35	0.10	0.16	0.35	
30	00	200	0	500	RIT:BBH:0115:n140, GT:0477	0.79	0.16	0.14	0.79	
30	00	300	0	600	SXS:BBH:0180, RIT:BBH:0198:n140, GT:0905	0.61	0.09	0.18	0.61	
40	00	400	0	800	$SXS:BBH:0180,\;RIT:BBH:0198:n140,\;GT:0905$	0.31	0.10	0.23	0.31	

cWB outperforms in all the masses


O1-O2 Rate upper limit on 100-100 aligned spin of 0.8 IMBHB is 0.2 per Gpc^3 per yr

> [1906.08000, O1O2 IMBHB LVC, 2019]

Astrophysical model at the clustering stage

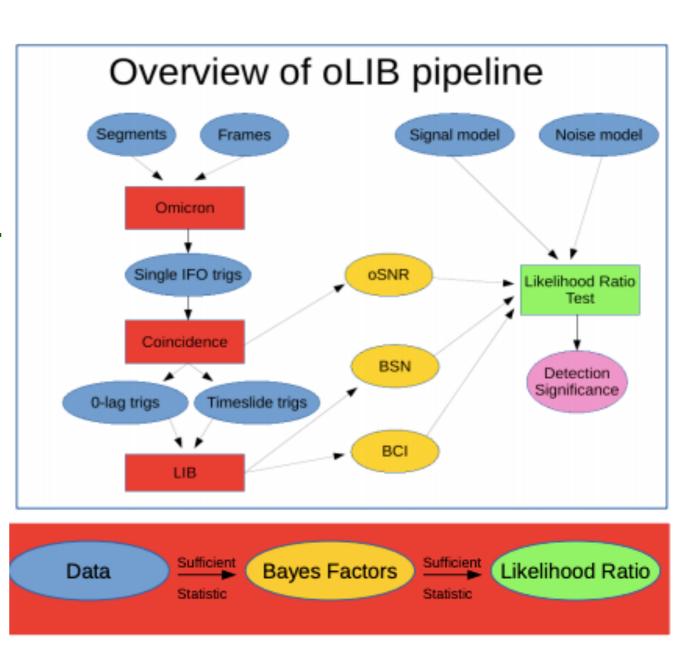

- cWB works well for short duration bursts.
- Improve the cWB sensitivity by incorporating signal model
- Fold in the phase modulation in terms of the signal path
- Path=connections and ancestors ingredients of the mathematical graph
- Use graph to construct events.
- Nominally applied for simulated BBH systems in O1 noise
 - Recovered events with high network correlation.
 - Additional 20% events can be recovered

Gayathri, Bacon, AP, Chassande-Mottin, Salemi, Vedovato, arXiv:1907.10851

Future extension

[50-10]Msun

- Eccentric binary black hole systems
- Possibility of eccentric systems exists in the dense environment.
- No templates are available for the eBBH search.
- eBBH search with O1-O2 data shows that cWB based search is not sensitive to the eccentricity [LVC, 1907.09384]
- Need clustering scheme which captures the long duration more efficiently.

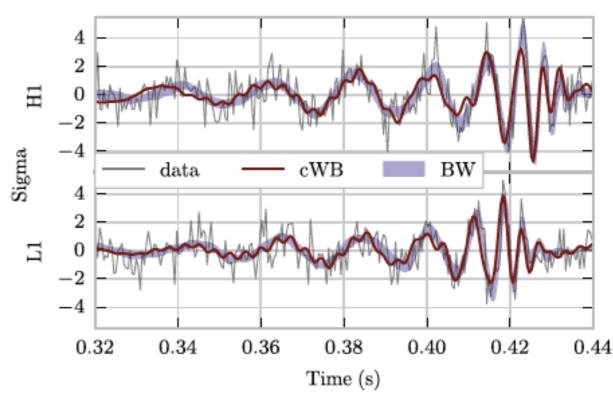

GW transient burst sources

- Short duration burst (millisecond to one sec.)
 - BBH systems with total mass > 90 Msun (Massive BBH and IMBHBs)
 - Core-collapse supernovae [Fryer and New, Liv. Rev. in Rel, (2011)]
 - Pulsar glitches [Anderson and Comer, PRL (2001)]
- Long duration burst (one sec to hundreds of seconds)
 - Accretion driven instability and inspiraling of the stellar material [van Putten, ApJ 2001, ApJ 2008]
 - Fallback accretion of ejected material on newborn NS [Piro and Ott, ApJ 2011, Piro and Thrane, ApJ 2012]
 - Highly eccentric BBH coalescence [Huerta et.al, PRD 2018]

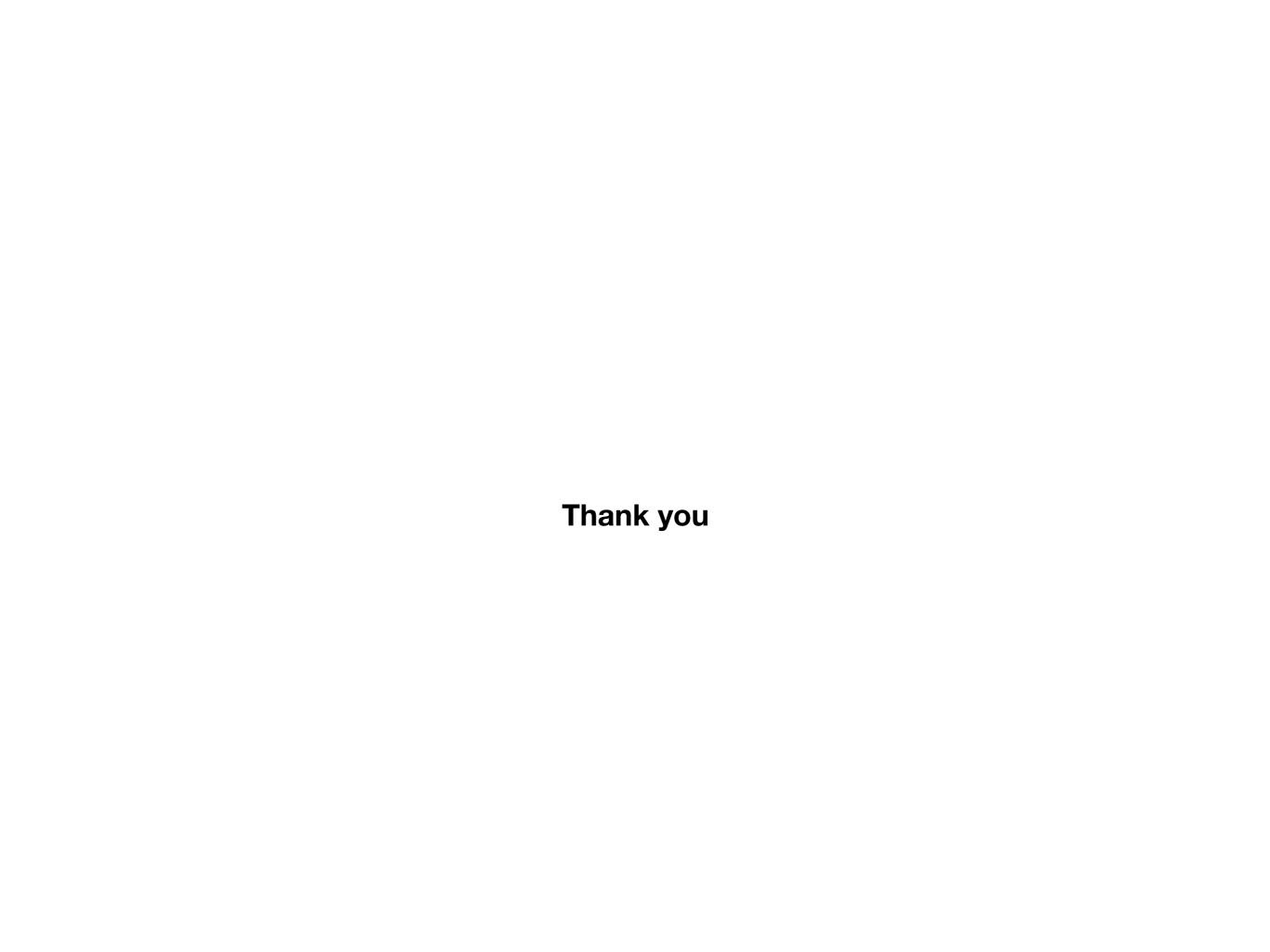
Burst algorithms for Short duration

Minimal assumption about the signal morphology

- Hierarchical scheme coincident triggers followed up by fully coherent MCMC Bayesian analysis
- Data is projected by the Omicron (Qtransform), triggers are clustered to form an event. Coincident events between the detectors are obtained.
- Bayes factor by LIB: Model selection algorithm
 Coherent signal vs Gaussian noise
 Coherent signal vs incoherent glitch
- Statistic ~ Product of the bayes factor

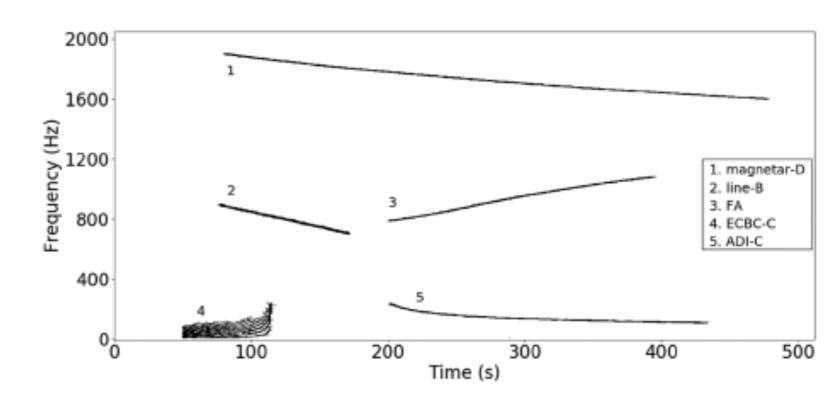

Omicron-LALInferenceBurst (OLIB) Littenberg et.al. PRD 2017

Burst algorithms for Short duration


Minimal assumption about the signal morphology

- BayesWave is a Bayesian algorithm used to distinguish between the GW signal and the noisy glitch.
- Models signals and glitches as a linear combination of sine-Gaussian wavelets.
- Folds in the detector location, location dependent detector response to compute the Bayes factor.
- cWB events are followed up by BayesWave. Signal reconstruction between the two are compared.

GW150914 Reconstruction


BayesWave
Cornish and Littenberg,
CQG 2015

Burst algorithms for Long duration

Minimal assumption about the signal morphology

- Stochastic Transient Analysis Multi-detector Pipeline (STAMP)
- Cross-power SNR between the two detectors.
- Clustering algorithm seed based as well as seedless

