Overview of gravitational-wave cosmology

Archisman Ghosh Nikhef, Amsterdam

The Future of Gravitational-Wave Astronomy International Centre for Theoretical Sciences 2019 Aug 20

Plan of this talk

Standard sirens

 H_0 from current / upcoming detections

Prospects with 3G / LISA

Other ideas

Compact binaries as standard sirens

Schutz (1986), Holz & Hughes (2005)

GW from compact binaries give us a direct access to luminosity distance.

Independent measurement of phase evolution and amplitude

Phase evolution $\Rightarrow \mathcal{M}^z \equiv \mathcal{M}(1+z)$

"redshifted chirp mass"

Amplitude $\sim \frac{\mathcal{M}^z}{d_I} \times \text{fn.(angles)} \Rightarrow d_L$

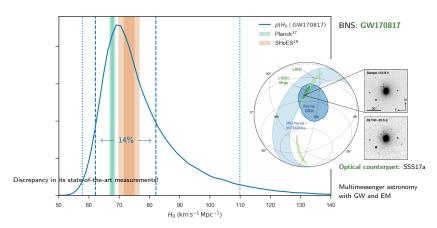
"luminosity distance" (degenerate with inclination)

Independent of other measurements, in particular, the distance ladder.

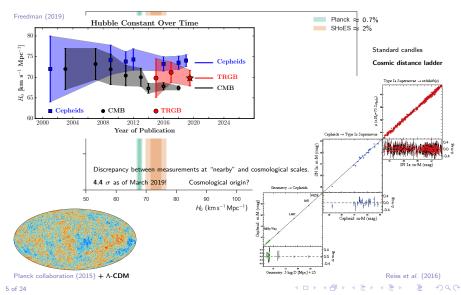
Redshift-distance relation:

$$d_L = c(1+z) \int^z \frac{dz'}{H(z')} , \ H(z') = H_0 \sqrt{\Omega_m (1+z')^3 + \Omega_{\Lambda}}$$

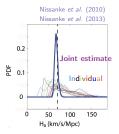
GW redshift (largely) degenerate with total mass


Where does the redshift come from?

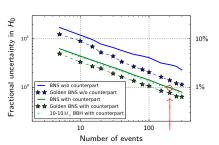
EM for most of this talk . . .


A gravitational-wave standard siren measurement of the Hubble constant

The LIGO Scientific Collaboration and The Virgo Collaboration*, The IM2H Collaboration*, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration*, The DLT40 Collaboration*, The Las Cumbres Observatory Collaboration*, The VINROUGE Collaboration* & The MASTER Collaboration*


Discrepancy in state-of-the-art measurements of $H_0!$

Two contrasting methods applied on nearby and very distant cosmological scales



Better with more detections

Combine information from multiple similar detections.

Precision: $\sigma_{H_0}/H_0 \sim 1/\sqrt{N}$

Chen et al. (2018)

see also: Feeney et al. (2019)

Better with more detections

Careful of systematic effects!

GW selection effects

threshold SNR ightarrow interferometer horizon only nearby signals detected

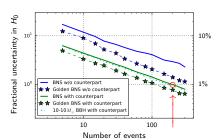
Nissanke et al. (2010)
Nissanke et al. (2013)

Joint estimate

Individual

0 50 100 150

H, (km/s/Mpc)

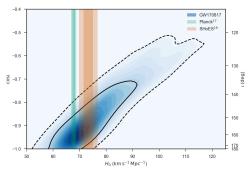

Detection efficiency (selection function):

$$\mathcal{N}_{\mathsf{eff}}(\Omega) = \int_{\mathcal{E}_{\mathsf{clat}}} \, \mathsf{d}\mathcal{E} \int \, \mathsf{d}\theta \; p(\mathcal{E} \,|\, \theta \,,\, \Omega,\, \mathcal{H},\, \mathcal{I}) \, p(\theta \,|\, \Omega,\, \mathcal{H},\, \mathcal{I})$$

Integrate over all detectable data sets

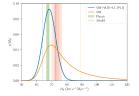
Abbott et al. Nature 551 #7678, 85-88 (2017)

Mandel, Farr, Gair (2018); Chen et al. (2018); Mortlock et al. (2018)



Chen et al. (2018)

see also: Feeney et al. (2019)


4 D > 4 D > 4 D > 4 D > 5 9 9

Degeneracy with inclination

Distance-inclination degeneracy: GW amplitude from by a distant binary viewed face-on (or face-off) is similar to that of a closer binary viewed edge-on.

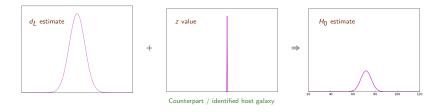
Abbott et al. Nature 551 #7678, 85-88 (2017)

Hotokezaka et al. (2018): jet \rightarrow inclination \rightarrow H_0

H_0 with galaxy catalogues: Schutz method

Idea in Schutz (1986).

MacLeod and Hogan (2008) in context of LISA.

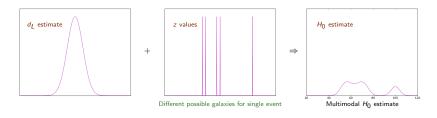

Del Pozzo (2012) Bayesian method in context of Adv-LIGO.

aLIGO-Virgo; 30 CBCs to $z=0.1+SDSS \Rightarrow H_0$ to $\sim 5\%$

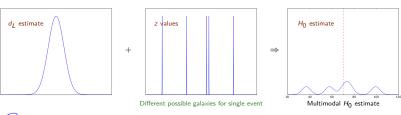
Nair et al. (2018)

Chen et al. (2018); Fishbach et al (2018); Gray et al. (2019)

Independent events



Schutz method


galaxy catalogues in absence of transient EM counterparts

applicable also for binary black holes

Schutz (1986)

Independent events

H_0 with galaxy catalogues: the complete story

GW selection effects

threshold SNR ightarrow interferometer horizon only nearby signals detected

EM selection effects

depth of telescope incomplete galaxy catalogues

$$\rho(x_{\text{GW}}|D_{\text{GW}},H_0) = \frac{\rho(x_{\text{GW}}|G,H_0)}{\rho(D_{\text{GW}}|G,H_0)} \rho(G|D_{\text{GW}},H_0) + \frac{\rho(x_{\text{GW}}|\bar{G},H_0)}{\rho(D_{\text{GW}}|\bar{G},H_0)} \rho(\bar{G}|D_{\text{GW}},H_0)$$

in-catalogue

out-of-catalogue

galaxies missing from catalogue

Detection efficiency (selection function):

Integrate over all detectable data sets

$$\mathcal{N}_{\mathsf{eff}}(\Omega) = \int_{\mathcal{E}_{\mathsf{def}}} \mathsf{d}\mathcal{E} \int \mathsf{d}\theta \, \mathit{p}(\mathcal{E} \,|\, \theta \,, \Omega, \, \mathcal{H}, \, \mathcal{I}) \, \mathit{p}(\theta \,|\, \Omega, \, \mathcal{H}, \, \mathcal{I})$$

Integrated method of taking into account both effects.

Correct for / take into account possible contribution of

Abbott et al. Nature 551 #7678, 85-88 (2017)

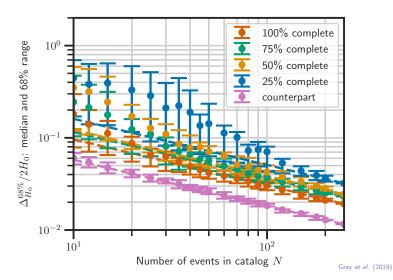
Mandel, Farr, Gair (2018); Chen et al. (2018); Mortlock et al. (2018)

Messenger & Veitch (2013); Gray et al. (2019)

H_0 with galaxy catalogues: simulations

Gray et al. (2019)

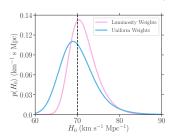
A few key features from the "mock data challenge":


Performed at BNS distances

• With galaxy catalogs about 35 times sparse / 3 times dense

• $\mathcal{O}(10-100)$ galaxies per event

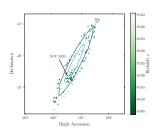
· Redshift uncertainties, clustering ignored


H_0 with galaxy catalogues: results on simulations

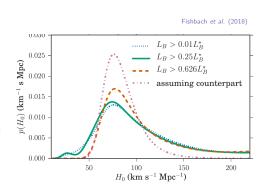
H_0 with galaxy catalogues: results on simulations

Luminosity weighting of galaxies:

Gray et al. (2019)

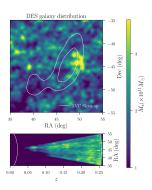

B-band: star formation rate

K-band: total mass

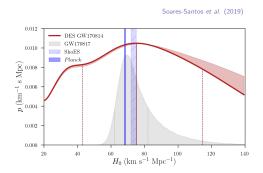

Clustering of galaxies: improves by ~ 2.5 Chen et al. (2018)

H₀ from GW170817 with GLADE catalogue

• GW170817 assuming no counterpart:

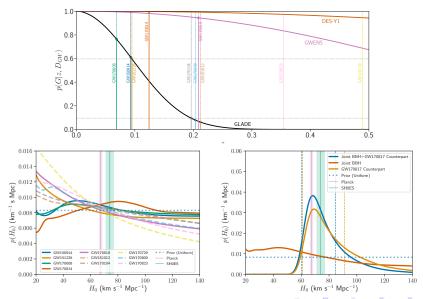


- Correcting for catalogue incompleteness
- Luminosity weighting



H₀ from GW170814 with DES catalogue

• DES Y3 "gold" catalogue: thoroughly surveyed GW170814 sky region.



First realistic application

H_0 from O1 & O2 detections

Abbott et al. arXiv:1908.06060

Towards a precise and accurate GW measurement of H_0

Thorough understanding of systematic effects is crucial

- Peculiar velocity flows (EM)
- Uncertainties in galaxy catalogues (EM)

Photometric measurements of redshifts

Estimates of luminosities for weighting

Selection effects (GW and EM)

Population properties: mass distribution, rate evolution, . . .

Catalogue completeness

- Waveform systematic effects (GW)
- Detector calibration uncertainties (GW)

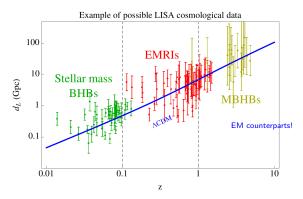
ampl. < 4%

systematic?

Other cosmological parameters?

$$\{\Omega_m, \Omega_{\Lambda}, w_0, w_a\}, \ldots$$

Ground-based 3G / LISA


Sathyaprakash et al. (2010)

Simultaneous tests of modified gravity!

Belgacem et al. (2018)

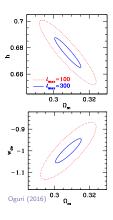
LISA sources

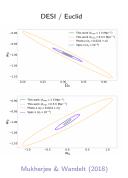
Courtsey: Nicola Tamanini

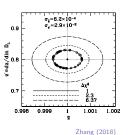
- StMBHBs: Del Pozzo et al. (2017); Kyutoku & Seto (2016)
- EMRIs: MacLeod & Hogan (2007)
- MBHBs: Tamanini et al. (2016); Petiteau et al. (2011)

LISA projections

Tamanini et al. (2016)


Model	N2A5M5L6						N2A2M5L4					
	P(%)	$\Delta\Omega_M$	$\Delta\Omega_{\Lambda}$	Δh	Δw_0	Δw_a	P(%)	$\Delta\Omega_M$	$\Delta\Omega_{\Lambda}$	Δh	Δw_0	Δw_a
5	100	4.31	7.16	1.58	13.2	92.3	67.8	320	799	47.7	344	5530
param.	100	18.0	24.9	9.95	88.6	392	2.54	$\gg 10^{4}$	$\gg 10^{4}$	$\gg 10^{4}$	$\gg 10^{4}$	$\gg 10^{4}$
	100	2.80	5.15	0.681	4.66	55.7	68.6	138	306	13.3	127	2400
ΛCDM + curv.	100	0.0819	0.281	0.0521			91.5	0.471	2.66	0.429		
	100	0.220	0.541	0.136			12.7	$\gg 10^{4}$	$\gg 10^{4}$	$\gg 10^{4}$		
	100	0.0473	0.207	0.0316			90.7	0.174	1.26	0.145		
ACDM	100	0.0473	0.0473	0.0210			97.5	0.275	0.275	0.0910		
	100	0.0917	0.0917	0.0480			32.2	0.543	0.543	0.220		
	100	0.0371	0.0371	0.0146			99.2	0.126	0.126	0.0400		
DDE	100				0.253	1.32	97.5				1.03	6.36
	100				0.584	2.78	37.3				4.96	26.1
	100				0.176	1.00	95.8				0.427	2.87
Accel.	100	0.0190	0.0735				99.2	0.211	0.396			
& curv.	100	0.0280	0.105				37.3	0.977	1.30			
test	100	0.0213	0.0631				94.1	0.116	0.202			
Error on Ω_M	100	0.0173					100	0.0670				
	100	0.0238					53.4	0.0755				
	100	0.0172					100	0.0437				
Error on h	100			0.00712			100			0.0146		
	100			0.00996			53.4			0.0175		
	100			0.00531			100			0.00853		
Error on w_0	100				0.0590		100				0.121	
	100				0.0786		53.4				0.146	
	100				0.0467		100				0.0734	


Correlations of GW/EM distributions


Angular / 3D correlation functions

GW distributions with cluster catalogues / LSS

 $\mathsf{BBO} + \mathsf{Euclid} \ / \ \mathsf{SKA}$

9()

Vijaykumar+ (in progress)

Cosmology without EM

Information from physics of NS:

EΤ

Mass-function

Taylor et al. (2012); Taylor & Gair (2012)

Tidal deformations

Messenger & Read (2011); Del Pozzo et al. (2017)

Multiband: BBO/DECIGO

• Effect of cosmological constant over evolution of binary!

Nishizawa (2012)

Outlook

• Short-term: H₀ measurement jointly with EM observations.

Systematic effects in EM and GW!

More interaction between bi/multimessenger communities!

Cosmology from kilonova models?

• GW sources as rungs of the distant ladder: nearby and distant.

Standard candles, sirens, rulers, ...

Gupta $\it et al.$ (2019): GW as SNe calibrators