Fundamental physics with gravitational waves Chris Van Den Broeck

The Future of Gravitational Wave Astronomy ICTS, Bengaluru, 19-22 August 2019

Fundamental physics with gravitational waves (from coalescing binaries)

- 1. The nature of gravity
- 2. The nature of compact objects
- 3. The nature of dark matter

[In part based on work by the GWIC 3G Science Case Team]

1. The nature of gravity

 $10_{-1} \, 10_{-2} \, 10_{-3}$] $10_{-4} \, \text{mk}[10_{-5} \, 10_{-6}) \, \text{L/M}(=_{R} 1010101010_{-10} \, -11_{-9} \, -7_{-8} \, \text{Lunar Laser Ranging})$

Double Binary Pulsar

 $10_{-12} \ 10_{-13} \ 10^{-14} \ 10^{-12} \ 10^{-11} \ 10^{-10} \ 10^{-9} \ 10^{-8} \ 10^{-7} \ \Phi = M/L$ $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 10^{0}$ 2G/3G
(Orbital Decay)

Double Binary Pulsar (Shapiro Delay)EHT

LAGEOS Cassini

GRAVITY Perihelion Precession of Mercury

Pulsar Timing Arrays
Courtesy N. Yunes

M, L characteristic mass and size of a system >> In the case of binaries: M/L ∝ v²/c² >> Accessing strong-curvature and highly dynamical regime
 The nature of gravity

➤ Lovelock's theorem:

"In four spacetime dimensions the only divergence-free symmetric rank-2 tensor constructed solely from the metric $g_{\mu\nu}$ and its derivatives up to second differential order, and preserving diffeomorphism invariance, is the Einstein tensor plus a cosmological term."

>> Relaxing one or more of the assumptions allows for a plethora of alternative theories:

- >> Most alternative theories: no full inspiral-mergerringdown waveforms known
- Most current tests are model-independent
 Berti et al., CQG 32, 243001 (2015)
- >> Inspiral-merger-ringdown process Post-

Newtonian description of inspiral phase

• Merger-ringdown governed by additional parameters $\beta_n,\,\alpha_n \gg \text{Place bounds on deviations in these parameters}$ with Advanced LIGO/Virgo:

> 3G detectors will improve on this because of higher SNR and many more sources

1. The nature of gravity: binary dynamics

LIGO + Virgo, arXiv:1903.04467

1. The nature of gravity: *GW* propagation

>> Allow for anomalous GW dispersion:

$$E^2 = p^2c^2 + Ap^{\alpha}c^{\alpha}$$

Lorentz invariance

- Case α = 0 corresponds A = m c to massive graviton α = 0 (A = m²_g C₄):
- $m_g \square 5.0 \rightarrow 10^{-23} \, eV/c^2$
- For $\alpha = 0$ one has violation of local

LIGO + Virgo, arXiv:1903.04467

> 3G detectors will improve on this because of higher red reach

2. The nature of compact objects

How certain are we that the massive compact objects we are observing are the "standard" black holes of general relativity?

Alternatives ("black hole mimickers"):

- ➤ Boson stars
- > Dark matter stars
- ➤ Gravastars
- >> Wormholes
- >> Firewalls, fuzzballs

➤ The unknown

2. The nature of compact objects: inspiral

- > Tidal deformability during inspiral
- Finite size effects cause tidal deformations in the phase starting at
- 3G will distinguish neutron stars from boson stars even for th compact models
- Spin-induced quadrupole moment

during inspiral

- 2PN effect, quadratic in spins
- K_s = 1 for ordinary black holes, but not for black hole mimickers
- Hard to access with 2G, while 3G measurements to few percei
- > Tidal heating
- Absorption of radiation
- 2.5^(I)PN but linear in spin

2. The nature of compact objects: no hair conjecture

➤ Black hole "no hair" conjecture:

Stationary, vacuum black hole completely determined by mass

spin

- Black hole ringdown: quasi-normal mode frequencies and date
 times sall determined by mass and spin s-es
- Linearized Einstein equations around Kerr background forces
 dependences:
- However, amplitudes depend on how the black hole came into (masses and spins of the progenitor binary)
- Modeling with input from NR simulations form

$$h(t) = \sum_{\text{nlm}} A_{\text{nlm}} e^{t/\tau_{\text{nlm}}} \cos(\omega_{\text{nlm}} t + \phi_{\text{nlm}}). (1)$$

For black holes in GR, all frequencies! 🗵

ω and damp-
$$! \boxtimes !_{nlm} = !_{nlm}(M_{f,af}) \boxtimes_{nlm} = \boxtimes (M,a_{f}) \boxtimes_{nlm} = \boxtimes (M,a_{f})$$

Anlm

2. The nature of compact objects: no hair conjecture

- > Indirect test of the no-hair conjecture:
- Allow for deviations in dependences of frequencies, damping on mass, spin:
- $! \square \boxtimes_{Imn} (M_{Imn} (M = 16M))$

 $f,af,af) f) \rightarrow \hat{}! (1 (1 + + \hat{}!lmn)!lmn(Mf,af) \hat{} \boxtimes lmn(Mf,af) \bullet Let the$

and the other parameters ^ Imn

in the vary problem

in turn, and measure them together with all

- Advanced LIGO/Virgo at design sensitivity, and 6 sources ^! similar to GW150914
- ^!₂₂₀ measurable measurable ^⋉₂₂₀

to O(2%) to O(10%)

> Going beyond the linearized regime

```
0.15
probability density
E.g. Del Pozzo & Nagar, PRD 95, 12034 (2017)
0.10
0.05 ^!
0.00

-0.05 ^!220 ^ × 220

-0.10
-0.15
1 2 3 4 5 6 Nevents
Carulllo et al., PRD 98, 104020 (2018) Brito et al., PRD 98, 084038 (2018)
```

2. The nature of compact objects: no

hair conjecture

➤ Advantage of 3G: ability to separate the modes >

two of the !Imn, XImn

are independent; check for consistency between any threatherm

Adapted from Brito et al., PRD 98, 084038 (2018)

2. The nature of compact objects: echoes

0.15servable

Eq. (6), a

Exotic objects with corrections near horizon: inner potential by where M The pi

• After formation/ringdown: continuing barrier is in Fig. 2

bursts of radiation called echoes the echo slow leak ergy than effect is s to the "o peak of t

If horizon modification

-50 -40 -30 -20 -10 0 10 20 30 40 50 r-/M is model- mildly on rier, whic

then time between successive echo

where *n* set by nature of object:

- n = 8 for wormholes
- n = 6 for thin-shell gravastars
- n = 4 for empty shell

-200 0 200 400 600 800 t/M

• For GW150914 ($M = 65 \text{ M}_{sun}$), taking $I = I_{Planck}$, and n = 4:

0.10

0.0-0.4 ^{-0.1} 200 400 600 800

```
0.05
outgoing at infinity ingoing at horizon
                                                            0.15
M) r(voutgoing at infinity
trapped outgoing at infinity star-like ECO
0.10
0.05
                                                            0.00 0.15
is the location of the minimum
0.10
0.05
Fig. 1. If we consider a micro
outgoing at infinity rizon scale \Delta t (\hat{} = \boxtimes \Delta t M), \Gamma then 1 e delay comes near t
radius the c m
'2Γ
, \Delta t ' nM logCardoso et al., PRL 116, 171101 (2016) Cardoso et al., PRD 94, 084031 (
(<sub>MI</sub>
Scattering 0.2
т! т/\Gamma^{2+2\alpha}
```

3. The nature of dark matter

- > Can black holes themselves contribute to dark matter?
- Primordial black holes with masses 0.1 100 M_{sun} Excess in the mass dis

in certain ranges?

(benefit from 3G accuracy)

- Black holes at very high redshift would almost have to be primordial (benefit to distance reach)
- > Can dark matter particles be detected with binary compact of
- Accumulation of dark matter particles around compact objects: gravitational d cumulative effect over many orbits
- Joint LISA-ET observations of the same sources
- Accumulation of dark matter particles in the centers of neutron stars
- Collapse to a black hole: abundance of light black holes could be indicative of process
- > New light particles
- Bosons with mass 10⁻²¹ 10⁻¹⁰ eV may extract rotational energy from BH to for condensates
- Impact on binary dynamics, continuous waves from annihilation, stochastic ba

[See e.g. references in Sathyaprakash et al., arXiv:1903.09221]

Summary

Questions that can be addressed by studying compact binary coalescences:

1. What is the nature of gravity? 2. What is the nature of compact objects? 3. What is the nature of dark matter?

Future detectors can probe qualitatively new aspects:

- Similar sources as seen with 2G will appear louder and better resolved
- Information from many more sources can be combined
- Access to much larger redshifts/distances