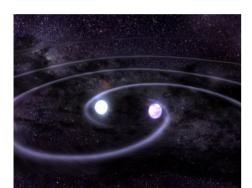
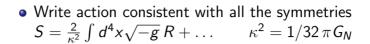
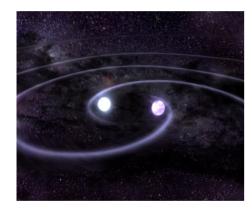
## Classical double copy for the Gravitational Binary

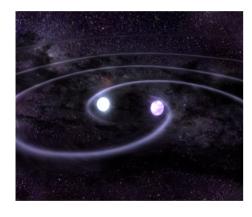
Siddharth Prabhu


ICTS-TIFR

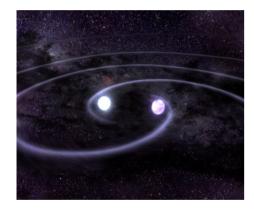

siddharth.prabhu@icts.res.in


19/8/2019

BalaFest ICTS-TIFR, Bengaluru





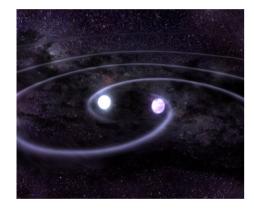






- Write action consistent with all the symmetries  $S = \frac{2}{\kappa^2} \int d^4x \sqrt{-g} R + \dots$   $\kappa^2 = 1/32 \pi G_N$
- Setup perturbative expansion in  $G_N$  $g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$



- Write action consistent with all the symmetries  $S = \frac{2}{\kappa^2} \int d^4x \sqrt{-g} R + \dots$   $\kappa^2 = 1/32 \pi G_N$
- Setup perturbative expansion in  $G_N$  $g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$
- Calculate classical equations of motion, gravitational radiation emitted



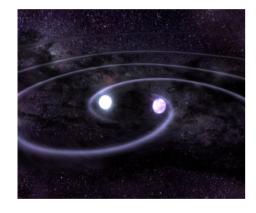

• Write action consistent with all the symmetries 
$$S = \frac{2}{\kappa^2} \int d^4x \sqrt{-g} R + \dots$$
  $\kappa^2 = 1/32 \pi G_N$ 

- Setup perturbative expansion in  $G_N$  $g_{\mu\nu}=\eta_{\mu\nu}+\kappa h_{\mu\nu}$
- Calculate classical equations of motion, gravitational radiation emitted

$$ullet$$
  $\Box h_{\mu
u}(x)=rac{1}{2m_{Pl}^{(d-2)}}\left\{ ilde{T}_{\mu
u}(k)-rac{1}{d-2}\eta_{\mu
u} ilde{T}_{\sigma}^{\sigma}
ight\}$ 

$$oldsymbol{ ilde{T}} ilde{T}^{\mu
u} = ilde{T}^{\mu
u}_{
m pp} + ilde{T}^{\mu
u}_{
m fields}$$




• Write action consistent with all the symmetries 
$$S = \frac{2}{\kappa^2} \int d^4x \sqrt{-g} R + \dots$$
  $\kappa^2 = 1/32 \pi G_N$ 

- Setup perturbative expansion in  $G_N$  $g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$
- Calculate classical equations of motion, gravitational radiation emitted

$$ullet$$
  $\Box h_{\mu
u}(x)=rac{1}{2m_{
u}^{(d-2)}}\left\{ ilde{T}_{\mu
u}(k)-rac{1}{d-2}\eta_{\mu
u} ilde{T}_{\sigma}^{\sigma}
ight\}$ 

$$oldsymbol{ ilde{T}} ilde{T}^{\mu
u} = ilde{T}^{\mu
u}_{
m pp} + ilde{T}^{\mu
u}_{
m fields}$$

• 
$$ilde{\mathcal{T}}^{\mu 
u}_{pp} = \sum_{lpha} \int ds \ p^{\mu}_{lpha}(s) p^{
u}_{lpha}(s) \delta^d(x-x_{lpha}(s))$$



• Write action consistent with all the symmetries 
$$S = \frac{2}{\kappa^2} \int d^4x \sqrt{-g} R + \dots$$
  $\kappa^2 = 1/32 \pi G_N$ 

- Setup perturbative expansion in  $G_N$  $g_{\mu\nu}=\eta_{\mu\nu}+\kappa h_{\mu\nu}$
- Calculate classical equations of motion, gravitational radiation emitted

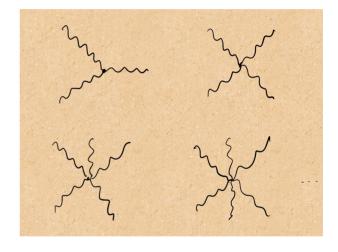
$$ullet$$
  $\Box h_{\mu
u}(x)=rac{1}{2m_{Pl}^{(d-2)}}\left\{ ilde{T}_{\mu
u}(k)-rac{1}{d-2}\eta_{\mu
u} ilde{T}_{\sigma}^{\sigma}
ight\}$ 

$$oldsymbol{ ilde{T}} ilde{T}^{\mu
u} = ilde{T}^{\mu
u}_{
m pp} + ilde{T}^{\mu
u}_{
m fields}$$

• 
$$\tilde{T}^{\mu\nu}_{pp} = \sum_{lpha} \int ds \, p^{\mu}_{lpha}(s) p^{\nu}_{lpha}(s) \delta^d(x - x_{lpha}(s))$$

Declare victory?

### Perturbative gravity is messy


• Write action consistent with all the symmetries

$$S = \frac{2}{\kappa^2} \int d^4x \sqrt{-g} R + \dots \qquad \kappa^2 = 1/32 \pi G_N$$

- Setup perturbative expansion in  $G_N$   $g_{\mu\nu}=\eta_{\mu\nu}+\kappa h_{\mu\nu}$
- Calculate classical equations of motion, gravitational radiation emitted

## Perturbative gravity is messy

- Write action consistent with all the symmetries  $S = \frac{2}{k^2} \int d^4x \sqrt{-g} R + \dots$   $\kappa^2 = 1/32 \pi G_N$
- Setup perturbative expansion in  $G_N$   $g_{\mu\nu}=\eta_{\mu\nu}+\kappa h_{\mu\nu}$
- Calculate classical equations of motion, gravitational radiation emitted
- Run into perturbative mess!



• Write action consistent with all the symmetries  $S = \frac{1}{g^2} \int d^4x \, F^a_{\mu\nu} F^{\mu\nu}_a + \dots$ 

- Write action consistent with all the symmetries  $S = \frac{1}{g^2} \int d^4x \, F^a_{\mu\nu} F^{\mu\nu}_a + \dots$
- Setup perturbative expansion in g

- Write action consistent with all the symmetries  $S = \frac{1}{g^2} \int d^4x \, F_{\mu\nu}^a F_a^{\mu\nu} + \dots$
- Setup perturbative expansion in g
- Calculate classical equations of motion, gluon radiation emitted

$$ullet$$
  $\Box A^{\mu}_{a}= ilde{J}^{\mu}_{a}(x)=J^{\mu}_{a,pp}+J^{\mu}_{a,field}$ 

- Write action consistent with all the symmetries  $S = \frac{1}{g^2} \int d^4x \, F_{\mu\nu}^a F_a^{\mu\nu} + \dots$
- Setup perturbative expansion in g
- Calculate classical equations of motion, gluon radiation emitted

$$ullet$$
  $\Box A^{\mu}_{\mathsf{a}} = ilde{J}^{\mu}_{\mathsf{a}}(x) = J^{\mu}_{\mathsf{a},\mathsf{pp}} + J^{\mu}_{\mathsf{a},\mathsf{field}}$ 

• 
$$J^{\mu}_{a.field}=f^{abc}A^b_{
u}(\partial^{
u}A^{\mu}_c-F^{\mu
u}_c)$$

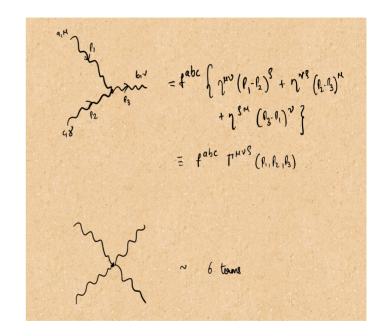
◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q O P

- Write action consistent with all the symmetries  $S = \frac{1}{g^2} \int d^4x \, F^a_{\mu\nu} F^{\mu\nu}_a + \dots$
- Setup perturbative expansion in g
- Calculate classical equations of motion, gluon radiation emitted

$$ullet$$
  $\Box A^{\mu}_{\mathsf{a}} = ilde{J}^{\mu}_{\mathsf{a}}(x) = J^{\mu}_{\mathsf{a},\mathsf{pp}} + J^{\mu}_{\mathsf{a},\mathsf{field}}$ 

• 
$$J^{\mu}_{a.field}=f^{abc}A^b_{
u}(\partial^{
u}A^{\mu}_c-F^{\mu
u}_c)$$

• 
$$J^{\mu}_{a,pp}(x) = \sum_{lpha} \int ds c^a_{lpha}(s) p^{\mu}_{lpha}(s) \delta^d(x - x_{lpha}(s))$$


4□ > 4□ > 4 = > 4 = > = 90

- Write action consistent with all the symmetries  $S = \frac{1}{g^2} \int d^4x \, F_{\mu\nu}^a F_a^{\mu\nu} + \dots$
- Setup perturbative expansion in g
- Calculate classical equations of motion, gluon radiation emitted

$$ullet$$
  $\Box A^{\mu}_{\mathsf{a}} = ilde{J}^{\mu}_{\mathsf{a}}(x) = J^{\mu}_{\mathsf{a},\mathsf{pp}} + J^{\mu}_{\mathsf{a},\mathsf{field}}$ 

• 
$$J^{\mu}_{a.field}=f^{abc}A^b_{
u}(\partial^{
u}A^{\mu}_c-F^{\mu
u}_c)$$

• 
$$J^{\mu}_{a,pp}(x)=\sum_{lpha}\int ds c^a_{lpha}(s)p^{\mu}_{lpha}(s)\delta^d(x-x_{lpha}(s))$$



## Genesis: String Theory (KLT) $\rightarrow$ Quantum Field Theory (BCJ)

 Bern, Carrasco and Johansson(BCJ) discovered an amazing set of relations between perturbative gravity scattering amplitudes, and the corresponding gauge theory scattering amplitudes.
 (Precursor: Kawai-Lewellen-Tye relations (KLT) in String Theory)

## Genesis: String Theory (KLT) $\rightarrow$ Quantum Field Theory (BCJ)

 Bern, Carrasco and Johansson(BCJ) discovered an amazing set of relations between perturbative gravity scattering amplitudes, and the corresponding gauge theory scattering amplitudes.
 (Precursor: Kawai-Lewellen-Tye relations (KLT) in String Theory)

• Example: n-point tree level amplitudes

## Genesis: String Theory (KLT) $\rightarrow$ Quantum Field Theory (BCJ)

 Bern, Carrasco and Johansson(BCJ) discovered an amazing set of relations between perturbative gravity scattering amplitudes, and the corresponding gauge theory scattering amplitudes.
 (Precursor: Kawai-Lewellen-Tye relations (KLT) in String Theory)

• Example: n-point tree level amplitudes

$${\cal A}_{YM}^{ ext{n-point}} = \sum_{lpha} rac{n_{lpha} c_{lpha}}{D_{lpha}} \quad ext{with} \quad c_i \pm c_j \pm c_k = 0 \qquad ext{(Jacobi identity)}$$

## Genesis: String Theory (KLT) → Quantum Field Theory (BCJ)

 Bern, Carrasco and Johansson(BCJ) discovered an amazing set of relations between perturbative gravity scattering amplitudes, and the corresponding gauge theory scattering amplitudes.
 (Precursor: Kawai-Lewellen-Tye relations (KLT) in String Theory)

• Example: n-point tree level amplitudes

$${\cal A}_{YM}^{ ext{n-point}} = \sum_{lpha} rac{n_{lpha} c_{lpha}}{D_{lpha}} \quad ext{with} \quad c_i \pm c_j \pm c_k = 0 \qquad ext{(Jacobi identity)}$$

Remarkably, the numerators also satisfy  $n_i \pm n_i \pm n_k = 0$ .

$$\mathcal{A}_{YM}^{\text{n-point}} = \sum_{\alpha} \frac{n_{\alpha} c_{\alpha}}{D_{\alpha}} \rightarrow \mathcal{A}_{grav}^{\text{n-point}} = \sum_{\alpha} \frac{n_{\alpha} n_{\alpha}}{D_{\alpha}}$$

• BCJ double copy relations proved for all tree level amplitudes. Highly non-trivial evidence for many loop level amplitudes.

• 
$$S = \int d^4x \left( \frac{1}{2} (\partial_\mu \phi^{a\tilde{a}})^2 - \frac{y}{3} f^{abc} \, \tilde{f}^{\tilde{a}\tilde{b}\tilde{c}} \phi_{a\tilde{a}} \, \phi_{b\tilde{b}} \, \phi_{c\tilde{c}} \right)$$

• 
$$S = \int d^4x \left( \frac{1}{2} (\partial_\mu \phi^{a\tilde{a}})^2 - \frac{y}{3} f^{abc} \, \tilde{f}^{\tilde{a}\tilde{b}\tilde{c}} \phi_{a\tilde{a}} \, \phi_{b\tilde{b}} \, \phi_{c\tilde{c}} \right)$$

- Calculate classical equations of motion, scalar radiation emitted

- 4 ロト 4 個 ト 4 注 ト 4 注 ト - 注 - かくで

$$ullet$$
  $\mathcal{S}=\int d^4x \left(rac{1}{2}(\partial_{\mu}\phi^{a ilde{a}})^2-rac{y}{3}f^{abc}\, ilde{f}^{ ilde{a} ilde{b} ilde{c}}\phi_{a ilde{a}}\,\phi_{b ilde{b}}\,\phi_{c ilde{c}}
ight)$ 

Calculate classical equations of motion, scalar radiation emitted

4□ > 4□ > 4 = > 4 = > = 90

• 
$$S = \int d^4x \left( \frac{1}{2} (\partial_\mu \phi^{a\tilde{a}})^2 - \frac{y}{3} f^{abc} \, \tilde{f}^{\tilde{a}\tilde{b}\tilde{c}} \phi_{a\tilde{a}} \, \phi_{b\tilde{b}} \, \phi_{c\tilde{c}} \right)$$

Calculate classical equations of motion, scalar radiation emitted

$$\bullet \ \Box \phi^{a\tilde{a}} = yJ^{a\tilde{a}}(x)$$

$$ullet J_{ ext{field}}^{ ilde{a} ilde{a}} = -f^{abc} ilde{f}^{ ilde{a} ilde{b} ilde{c}} \phi^{b ilde{b}} \phi^{c ilde{c}}$$

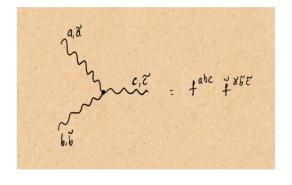
4□ > 4□ > 4 = > 4 = > = 900

• 
$$\mathcal{S}=\int d^4x \left(rac{1}{2}(\partial_{\mu}\phi^{a\tilde{a}})^2-rac{y}{3}f^{abc}\,\tilde{f}^{\tilde{a}\tilde{b}\tilde{c}}\phi_{a\tilde{a}}\,\phi_{b\tilde{b}}\,\phi_{c\tilde{c}}
ight)$$

Calculate classical equations of motion, scalar radiation emitted

• 
$$J_{\text{field}}^{a ilde{a}}=-f^{abc} ilde{f}^{ ilde{a} ilde{b} ilde{c}}\phi^{b ilde{b}}\phi^{c ilde{c}}$$

$$ullet$$
  $J_{pp}^{a ilde{a}}(x)=\sum_{lpha}\int ds\,c_{lpha}^{a}(s) ilde{c}_{lpha}^{ ilde{a}}(s)\delta^{d}(x-x_{lpha}(s))$ 


• 
$$S = \int d^4x \left( \frac{1}{2} (\partial_\mu \phi^{a\tilde{a}})^2 - \frac{y}{3} f^{abc} \, \tilde{f}^{\tilde{a}\tilde{b}\tilde{c}} \phi_{a\tilde{a}} \, \phi_{b\tilde{b}} \, \phi_{c\tilde{c}} \right)$$

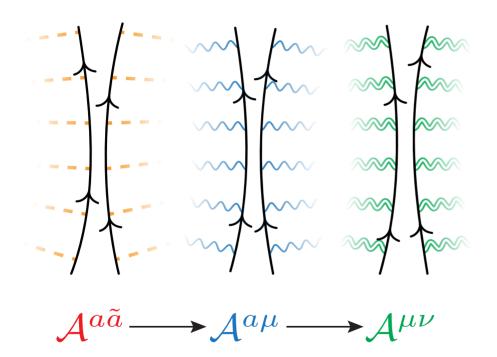
Calculate classical equations of motion, scalar radiation emitted

$$\bullet \ \Box \phi^{a\tilde{a}} = yJ^{a\tilde{a}}(x)$$

• 
$$J_{\text{field}}^{a ilde{a}}=-f^{abc} ilde{f}^{ ilde{a} ilde{b} ilde{c}}\phi^{b ilde{b}}\phi^{c ilde{c}}$$

• 
$$J_{pp}^{a ilde{a}}(x)=\sum_{lpha}\int ds\,c_{lpha}^{a}(s) ilde{c}_{lpha}^{ ilde{a}}(s)\delta^{d}(x-x_{lpha}(s))$$




| Theory | Observe radiation of | Degrees of freedom |
|--------|----------------------|--------------------|
|        |                      |                    |
|        |                      |                    |
|        |                      |                    |

| Theory  | Observe radiation of | Degrees of freedom |
|---------|----------------------|--------------------|
| Gravity | Gravitons (Spin 2)   | Trajectory         |
|         |                      |                    |
|         |                      |                    |

| Theory     | Observe radiation of | Degrees of freedom       |
|------------|----------------------|--------------------------|
| Gravity    | Gravitons (Spin 2)   | Trajectory               |
| Yang-Mills | Gluons (Spin 1)      | Trajectory, color charge |
|            |                      |                          |

| Theory            | Observe radiation of | Degrees of freedom                    |
|-------------------|----------------------|---------------------------------------|
| Gravity           | Gravitons (Spin 2)   | Trajectory                            |
| Yang-Mills        | Gluons (Spin 1)      | Trajectory, color charge              |
| Bi-adjoint scalar | Scalars (Spin 0)     | Trajectory, two kinds of color charge |

## The Classical Double Copy for radiation



Goldberger, Ridgway '16 Goldberger, SP, Thompson '17

Image credits: Rijan Maharjan

• Bound sources : Goldberger, Ridgway '17

- Bound sources: Goldberger, Ridgway '17
- Spinning sources: Goldberger, SP, Li '17; SP, Li '18

9 / 12

- Bound sources: Goldberger, Ridgway '17
- Spinning sources: Goldberger, SP, Li '17; SP, Li '18
- NLO in radiation: Chia-Hsien Shen '18

Siddharth Prabhu (ICTS-TIFR) 19/8/2019 9 / 12

- Bound sources: Goldberger, Ridgway '17
- Spinning sources: Goldberger, SP, Li '17; SP, Li '18
- NLO in radiation: Chia-Hsien Shen '18

Siddharth Prabhu (ICTS-TIFR) 19/8/2019 9 / 12

The Kerr-Schild Double Copy

 $\bullet$  Schwarzschild  $\sim$  (Couloumb) $^2$ : Monteiro, O'Connell, White '14

#### The Kerr-Schild Double Copy

- Schwarzschild  $\sim$  (Couloumb)<sup>2</sup>: Monteiro, O'Connell, White '14
- Various extensions: Luna, R. Monteiro, D. OConnell, C. D. White, '15; A. Luna, R. Monteiro, I. Nicholson, D. OConnell, C. D. White '16; A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. OConnell, N. Westerberg, C. D. White '17; N. Bahjat-Abbas, A.Luna, C. D. White, '17: Adamo, Casali, Mason, Nekovar '17

10 / 12

#### The Kerr-Schild Double Copy

- Schwarzschild  $\sim$  (Couloumb)<sup>2</sup>: Monteiro, O'Connell, White '14
- Various extensions: Luna, R. Monteiro, D. OConnell, C. D. White, '15; A. Luna, R. Monteiro, I. Nicholson, D. OConnell, C. D. White '16; A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. OConnell, N. Westerberg, C. D. White '17; N. Bahjat-Abbas, A.Luna, C. D. White, '17: Adamo, Casali, Mason, Nekovar '17

#### Classical double copy and scattering amplitudes

• Luna, Nicholson, Monteiro, OConnell, White '17; Cheung, Rothstein, Solon 18; Bern, Cheung, Roiban, Shen, Solon, Zeng '19, Bautista, Guevara '19, Kosower, Maybee, OConnell '19

#### The Kerr-Schild Double Copy

- Schwarzschild  $\sim$  (Couloumb)<sup>2</sup>: Monteiro, O'Connell, White '14
- Various extensions: Luna, R. Monteiro, D. OConnell, C. D. White, '15; A. Luna, R. Monteiro, I. Nicholson, D. OConnell, C. D. White '16; A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. OConnell, N. Westerberg, C. D. White '17; N. Bahjat-Abbas, A.Luna, C. D. White, '17: Adamo, Casali, Mason, Nekovar '17

#### Classical double copy and scattering amplitudes

Luna, Nicholson, Monteiro, OConnell, White '17; Cheung, Rothstein, Solon 18; Bern, Cheung, Roiban, Shen,
 Solon, Zeng '19, Bautista, Guevara '19, Kosower, Maybee, OConnell '19

Classical double copy from color-kinematics in the soft limit

• Athira PV, Manu '19

• Can this approach be used to compute for LIGO?

- Can this approach be used to compute for LIGO? Removing the dilaton
  - Luna, Nicholson, Monteiro, OConnell, White '17

- Can this approach be used to compute for LIGO? Removing the dilaton
  - Luna, Nicholson, Monteiro, OConnell, White '17

Go to higher orders

Fruitfully combine various approaches?

• 4 PN potential Cheung, Rothstein, Solon 18;

- Can this approach be used to compute for LIGO? Removing the dilaton
  - Luna, Nicholson, Monteiro, OConnell, White '17

Go to higher orders

Fruitfully combine various approaches?

- 4 PN potential Cheung, Rothstein, Solon 18;
- 3 PM potential Bern, Cheung, Roiban, Shen, Solon, Zeng '19

- Can this approach be used to compute for LIGO? Removing the dilaton
  - Luna, Nicholson, Monteiro, OConnell, White '17

Go to higher orders

Fruitfully combine various approaches?

- 4 PN potential Cheung, Rothstein, Solon 18;
- 3 PM potential Bern, Cheung, Roiban, Shen, Solon, Zeng '19

• Does this work for curved spacetimes? (Ongoing work)

Siddharth Prabhu (ICTS-TIFR) 19/8/2019 11 / 12

# Thank You!