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Migration of organisms (or cells) is typically an adaptive response to
spatiotemporal variation in resources that requires individuals to
detect and respond to long-range and noisy environmental gra-
dients. Many organisms, from wildebeest to bacteria, migrate en
masse in a process that can involve a vast number of individuals.
Despite the ubiquity of collective migration, and the key function it
plays in the ecology ofmany species, it is still unclearwhat role social
interactions play in the evolution of migratory strategies. Here, we
explore the evolution of migratory behavior using an individual-
based spatially explicit model that incorporates the costs and
benefits of obtaining directional cues from the environment and
evolvable social interactions among migrating individuals. We
demonstrate that collectivemigratory strategies evolveunder awide
range of ecological scenarios, even when social encounters are rare.
Although collective migration appears to be a shared navigational
process, populations typically consist of small proportions of indi-
viduals actively acquiring directional information from their environ-
ment, whereas the majorities use a socially facilitated movement
behavior. Because many migratory species face severe threat
through anthropogenic influences, we also explore the microevolu-
tionary response ofmigratory strategies to environmental pressures.
We predict a gradual decline of migration due to increasing habitat
destruction and argue that much greater restoration is required to
recover lost behaviors (i.e., a strong hysteresis effect). Our results
provide insights into both the proximate and ultimate factors that
underlie evolved migratory behavior in nature.
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Migration is often an adaptive response to changes in resource
availability, to escape from competition, and/or to reach

newer habitats, etc. (1–8). To migrate, both uni- and multicellular
organisms have evolved the ability to detect and respond to di-
rectional cues in the environment. This ability, in species such as
passerine birds and in many groups of vertebrates and insects, may
correspond to magnetoreceptivity (9), odor taxis (10), or tracking
changes in resource distributions (11). In bacteria and cells, di-
rectional information may result from an ability to respond to
thermal, chemical, or electromagnetic gradients (12).
It has been suggested that individual organisms can be seen as

information processing units (13) and that interactions among
organisms can provide collective benefits (14–20). For example, if
each individual is error prone in its detection of the migratory di-
rection, grouping may facilitate the spontaneous averaging of in-
dividual measurements, leading to improved navigation ability,
a property known as the “many wrongs principle” (16). In many
navigating groups, however, participants are mixed, such that
nearby individuals who may share these potential benefits are of
low relatedness. Even in migrating ungulates where family mem-
bers often maintain cohesion, and can thus be thought of as
a functional unit for selection, relatedness between nearby family
groups can be low (21). It remains unclear, therefore, how indi-
viduals optimize tradeoffs between costs and benefits of migration
and thus how, and under what ecological conditions, different mi-
gratory strategies evolve.

Here, we develop an individual-based, spatially explicit evolu-
tionary model of organismal movement and social interactions and
use this to investigate migratory strategies under a wide range of
densities and cost-benefit structures that represent diverse eco-
logical scenarios. We also explore how habitat fragmentation and
changes in population density over relatively short ecological time
scales, such as those induced by anthropogenic influence (22–24),
may be expected to affect migratory behavior.

Model for the Evolution of Migration
We take into account each individual’s ability to obtain information
about the appropriate migratory direction by exploiting environ-
mental features such as orienting using geomagnetic field cues (9)
or through a gradient detection process (10–12, 14). This is denoted
by an evolvable parameter ωgi (henceforth referred to as “gradient
detection ability”), where i refers to the index of the focal in-
dividual. A solitary individual in the absence of such an ability, i.e.,
when ωgi=0, performs a randomwalk. As ωgi increases, individuals
travel probabilistically more accurately along the environmental
gradient. Thus they accumulate migratory benefits, defined as the
normalized distance traveled (1), or equivalently the velocity, in the
migratory direction that asymptotically reaches a maximum value
(Fig. 1A and SI Appendices A and B).
We assume that individuals incur costs that increase mono-

tonically with their ωgi (Fig. 1B) because of properties such as en-
ergy expenditure involved (25) and/or associated costs such as
reduced predator vigilance during the gradient detection process.
In particular, we assume an exponentially increasing cost due toωgi,
but the specific form of the cost function chosen does not affect the
qualitative nature of the results (see SI Appendices A, B, and C for
details of model implementation and Appendix D for comments on
generality with respect to cost function).
An evolvable “sociality” trait, denoted by ωsi, represents the

possibility of social interactions (26), specifically, being attracted
toward and aligning direction of travel with nearby individuals (17,
27). This can be facilitated by vision (and/or other sensory modali-
ties) in insects and vertebrates or through more local mechanisms
such as adhesion, contact forces, and/or chemical signaling in bac-
teria or cells (28). We assume that this ability comes at a cost that
increases monotonically with ωsi.
Individualsmove in a direction determined by the balance of their

preference to travel along the migratory gradient and their social
tendencies, byweighing themproportionately to the strength of their
respective evolvable traits, ωgi and ωsi (17). Depending on the value
of these traits, individuals can exhibit a wide range of motion in-
cluding random walk (low ωgi and low ωsi), solitary migration (large
ωgi and lowωsi), formation andmaintenance of aggregations (lowωgi
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and largeωsi), and fission–fusion dynamics of migrating groups (e.g.,
large ωgi and moderate to large ωsi). Consequently, they acquire
a fitness corresponding to the migratory benefits minus the costs
incurred. Individuals are assumed to reproduce with a probability
proportional to their relative fitness and pass on their traits to their
offspringwith a smallmutation rate (29) (SIAppendicesA,B, andC).

Evolution of Migratory Strategies
Individuals optimize tradeoffs between the benefits of migration
and the costs involved in the migratory gradient detection. For
solitary individuals, the fitness does not depend on the strategy of
other individuals; hence, the evolutionary stable strategy of the
gradient detection ability is same as the value ωg that optimizes the
fitness (Fig. 1C and SI Appendix B).

We now consider populations in which individuals may encoun-
ter each other. Under a very broad range of parameter conditions,
we find that populations evolve two coexisting frequency-dependent
strategies, with both the strategies being equivalent in terms of
fitness (Fig. 2 A–C and SI Appendix D). In one mode, individuals
have a relatively high gradient detection ability with a weak so-
ciality trait (referred to as “leaders”). In the other mode, indi-
viduals have an extremely weak or nonexistent gradient detection
ability and possess strong social interactions (referred to as
“social individuals”) (Fig. 2C).
In this population, social individuals are locally attracted to each

other and to leaders, forming groups. Leaders preferentially move
in the direction of the gradient and are less influenced by others
because of their relatively weak social tendency. Consequently,
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Fig. 1. The optimum, or evolutionary stable, gradient detection strategy ωgi for a solitary individual. (A) Comparison betweennumerical simulations and analytical
calculations of migratory benefits, b, gained by a solitary individual (SI Appendix B). (B) Cost of gradient detection is given by cg = pg(exp(ωg/ωgc) − 1) and (C)
comparison between numerical simulations and analytical calculations of the individualfitness (f = b − cg). Parameters: size of populationN = 1, pg = 0.75, ωgc = 4.0,
strength of noise in perception σr = 0.1.
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Fig. 2. The evolution of collective migration. (A and B) The evolution of the gradient detection ability, ωg, and sociality trait, ωs, respectively. This result is largely
independent of the initial conditions (SI Appendix C ). (C) A 2D histogram of the evolved state at the 1,500th generation demonstrates the relatively small
proportion of leaders (high, ωg; low, ωs) and a majority of social individuals (low, ωg; high, ωs). (D) The group composition is quantified by the proportion of leaders
as a function of group size. Parameters: N = 16384, ρ = 7.0 × 10−3 individuals per BL2, pg = 0.75, cost of sociality ps = 0.0 and σr = 1.00. The other parameter values
are in SI Appendix A.
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composite groups consisting of both social individuals and leaders
emerge. Leaders tend to occupy frontal or peripheral positions, and
the whole group typically acquires a directed motion up the gra-
dient. We note that, to an observer, it would likely appear that all
individuals are actively climbing the gradient.
As a consequence of this complex spatiotemporal dynamic, we

see a fission–fusion process at the population level where groups
constantly merge and split during the collective migration (as seen
in many natural populations) (30; Movies S1 and S2). Couzin et al.
(17) showed that the proportion of leaders needed to guide a group
to the desired destination with a given accuracy decreases with
increasing group size (17). Here, we reveal that this leadership
principle emerges spontaneously in the evolved population through
the dynamics of groups merging and splitting (Fig. 2D).

Density and Cost Structure
To test the generality of our results, we investigate the evolved
states under a wide range of ecological scenarios (Fig. 3 and SI
Appendix E). Notably, population density can determine, in large
part, how often individuals encounter one another. The costs of
gradient detection may be species- and/or environment-specific.
Additionally, factors such as group size and/or spatial position in
a group can influence the effective cost incurred by individuals. For
example, individuals (typically leaders) who either tend to occupy
frontal positions or travel alone (due to their weakωsi and large ωgi)
may be more susceptible to predation (31) or pay higher energetic
costs through increased vigilance (32). They might also fail to ex-
ploit socially facilitated environmental change, such as moving
where others have trampled through vegetation, as in ungulates
(33). Within our model, such species-specific details can be ap-
proximated by rescaling the effective cost incurred while perform-
ing gradient detection.
We begin by exploring the evolved migratory strategies as

a function of density (ρ) and gradient detection cost ( pg) but for
a fixed and relatively small value of social cost ( ps). In extremely
low-density populations, where the probability of encountering
others is negligible and/or when it is inexpensive to evolve the
gradient detection ability, we find that all individuals use a relatively
large gradient detection ability (i.e., all are leaders) (bright region in
Fig. 3A). Leaders in these evolved populations have extremely weak
or no sociality, unlike those in Fig. 2A, because of costs associated
with social interactions. As a result, we find solitary migration. At
the other extreme, when densities are so high that frequent colli-
sions among individuals inhibit migration and/or when the gradient

detection is very expensive, nomember of the population evolves to
use gradient information leading to resident (i.e., nonmigratory)
populations (Fig. 3 A and B, dark regions).
There is, however, a very large intermediate region of parameter

space where leaders and social individuals coexist and populations
exhibit collective migration (Fig. 3A, yellow-red region). We note
that collective migration evolves even at very low densities where
individuals rarely interact, such as one individual in 1,000BL2 units,
where BL is the typical body length. Thus, even for species that are
not considered traditionally to migrate collectively, social inter-
actions may still play an important role.
The costs of social interactions ( ps) may typically be relatively

small because they are facilitated by an already necessary machin-
ery, such as vision, or physical forces, such as contact/friction (28).
However, larger group sizes can lead to increased competition for
resources among group members. These features can be included
by rescaling the cost of sociality; for example, ps is larger when the
competition for resources is high. In SI Appendix E, we show
evolved migratory strategies for a range of gradient detection ( pg)
and social costs ( ps). Depending on the value of these costs relative
to the migratory benefits, we find three qualitatively different mi-
gratory states of solitary migration (zero to moderate pg and small
to high ps), resident populations (high pg), and collective migration
(a large intermediate region, as in Fig. 3).

Context-Dependent Interactions
Thus far, we assumed that individuals use the same strategy at all
times within a generation. We now consider more intricate and
dynamic strategies; individuals might be able to modify their in-
teraction rules either probabilistically or depending on certain local
contexts. For instance, to avoid being exploited by social individu-
als, and/or to exploit others with gradient detection ability, an in-
dividual may not perform gradient detection when the local
condition is crowded, despite possessing a very high gradient de-
tection ability (ωgi). This can be facilitated by a quorum sensing
ability in cells or microorganisms (34) or, more generally, as
a consequence of responding to the state of the local environment.
Even under such scenarios, we find that the frequency-dependent
coexisting strategies of leaders, who use gradient detection almost
all of the time, and social individuals, who very rarely do, remains
evolutionarily stable (SI Appendices F and G). In other words,
migratory individuals in our model do not evolve context-de-
pendent interactions even when given the possibility to do so.
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Fig. 3. Evolvedmigratory strategies under different ecological conditions. (A) The proportion of leaders in, and (B) themigratory ability of, evolved populations as
a function of density (ρ), and cost of gradient detection (pg). Note that density is measured in units of individuals per BL−2. Populationmigratory ability is defined as
the migratory benefits averaged over all individuals in the population. (A) There is a clearly demarcated individual-migration state (bright region), a collective-
migration state (yellow-red regions), and a no-migration state (dark region) with sharp changes in the proportion of leaders between these evolved migratory
states. (B) Corresponding changes in populationmigratory ability is relatively gradual. The density is on a log-axis covering nearly five orders ofmagnitude and the
collective migration state occurs for densities where the interactions between individuals are very rare. Parameters: N = 320, ps = 1.0, and σr = 0.10. The other
parameter values are in SI Appendix A.
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Impact of Environmental Pressures
Anthropogenic pressures can significantly influence population
density, as seen in the steep decline of American bison (Bison
bison), and even result in extinction, as occurred with passenger
pigeon (Ectopistes migratorius) (1, 22–24). This is despite em-
pirical studies that provide evidence for rapid microevolutionary
changes in migratory patterns, for example in birds, within de-
cadal time scales (1, 35, 36). Here we investigate the impact of
habitat fragmentation and changes in population density on
migratory strategies.
In migratory species, as habitat fragmentation increases, indi-

viduals have to travel disproportionately larger distances to reach
suitable habitats [because of, for example, a reduced frequency of
encountering stop-over or refueling sites (1)] and thus to accumu-
late migratory benefits. We implement this by assuming that the
benefit b is a nonlinear function of the average distance migrated d,
i.e.,b=dβ (0≤d≤1),whereβ is a degreeof fragmentationwithβ=1
corresponding to a contiguous habitat. The larger the value of β,
the larger the nonlinearity, and, hence, the organism must cover
longermigratory distances to gain benefits (Fig. 4A); a highly non-
linearity, for example, may correspond to the need of some bird
species to reach distant, localized breeding grounds.We introduce
small changes in the habitat fragmentation (β) and allow adapta-
tion of traits, ωgi and ωsi, for a small number of generations, ng, to
account for the relatively short ecological time scales. This is in
contrast to our previous focus on robust evolutionary stable states
that could not be invaded by other mutant strategies and that are
often reached only on long evolutionary time scales.We also study
how our results are affected by different values of ng.
We find that, in habitats that fragment, the resulting ability of the

population to migrate reduces relatively gradually (Fig. 4B, solid
line). At high levels of habitat fragmentation, no individuals evolve
to be leaders, and therefore, the population loses its migratory
ability. Even after restoring the habitat, however, a population’s
migratory ability does not recover at the same habitat quality at
which it declined; i.e., it shows strong hysteresis, or memory, effects
(Fig. 4B, dotted line). In highly fragmented habitats, a small mu-
tation in ωgi that mildly alters the information use does not improve
the individual’s fitness; it requires large mutations in ωgi, exceeding
a threshold, to sufficiently enhance the information use and thus
migratory benefits that exceed the costs incurred (in ωgi). Large
mutations, however, typically do not occur on relatively short
ecological time scales. Upon substantial habitat restoration, the
required threshold change in the information use reduces and can

be reached by mutations occurring on ecological time scales and
hence migratory ability is reestablished (SI Appendix H).
We also find hysteresis effects, although less pronounced, as

a function of population density. These results are quantitatively,
but not qualitatively, affected by various choices of ng, represent-
ing different rates of change of ecological conditions; more spe-
cifically, the faster the rate of change of ecological conditions, the
lower the probability of large mutations and thus the stronger the
hysteresis effect (SI Appendix H). Note that we do not include an
explicit habitat structure where fragmentation is measured, for
example, by the extent of patchiness in the resource availability.
Instead, we approximated a plausible impact of habitat fragmen-
tation on migratory individuals by assuming that benefits are
a nonlinear function of the distance traveled. Also, our focus was
on the microevolutionary response of migratory strategies to
ecological changes but not the growth and decline/extinction of
populations themselves. Our model framework, however, can
potentially be useful in investigating combined effects of adaptive
migratory strategies together with the density-dependent growth
and mortality of populations.

Discussion
Our model predicts that individuals who invest in acquiring in-
formation about the migratory direction from environmental cues
are readily exploited by others who adopt a socially facilitated
movement behavior. For a wide range of biological assumptions,
these two coexisting strategies result in collective migration with
fission–fusion process. Furthermore, even when interactions
among organisms are very sparse and would typically be considered
insignificant, we find that social interactions play an important (and
perhaps hitherto unknown) role.
Collective migration occurs also when all individuals of a pop-

ulation evolve to use both the migratory directional information
and social cues. Migrating groups in these evolved populations
preserve their group composition over relatively long time scales.
However, this strategy is expected to occur only when the costs of
gradient information use and sociality are both negligibly small in
comparison with the benefits of migration. We also emphasize
general predictions of our model, that the ecology of species, rep-
resented by population density, habitat structure, costs, and bene-
fits of migration, determines whether populations will evolve to
a resident, a solitary migratory, or a collective migratory strategy.
Although a precise quantification of costs and benefits of in-

formation can be difficult, we suggest that evidence for (or the lack
of) a bimodal, or other such strongly skewed, population structure
in information use, as suggested here, will provide insights to un-
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derlying selection forces. The existence of such hierarchical struc-
ture among organisms may be deduced through an analysis of
individuals’ trajectories duringmigration such asmay be possible by
visual tracking of identifiable cells or GPS tracking of higher
organisms (37).We note that recently it has been possible to record
brain activity in free-flying birds (38), suggesting that the study of
the use of specific brain regions duringmigrationmay be possible in
the future. In addition, recent advances in our understanding of
how cells infer, and respond to, the state of its environment and
quantification of associated fitness (39, 40) make cellular systems
an attractive candidate for testing our model predictions. Other
drivers of migration, which are not mutually exclusive with our
hypothesis, include predators, competition, and/or disease avoid-
ance (1–8). As we discussed previously, these can be incorporated
by rescaling the costs and benefits of gradient climbing in our
framework and/or by making species-specific modifications to
our model.
Climate change and habitat destruction can dramatically alter

themigratory patterns; for example, migratory species may become
resident [e.g., blackcaps (Sylvia atricapilla); ref. 36], or lost migra-
tion can reappear [e.g., eastern house finch (Carpodacus mex-
icanus); ref. 41]. Using our model, we predict a gradual decline of
migratory behavior because of habitat destruction, but, owing to
relatively short time scale of these changes, the reestablishment of
lost behaviors will require substantially greater restoration. Our
study shows that the time scales of ecological changes play a crucial
role in determining the response of migratory species.
At a certain level of description, leaders whomigrate by investing

in costly directional information, and social individuals who navi-
gate by following others’ motion, can be mapped onto mean-field,
discrete-strategy models that exhibit producer–scrounger (PS) dy-
namics (42, 43), where producers and scroungers are similar to
leaders and social individuals, respectively. In contrast to PS
models, our approach provides a mechanistic basis for scaling from
individual-level description to higher levels of organizations and
how it feeds back to local interactions. For example, it allows us to
capture the role of nonlinear and emergent collective properties of
socially navigating groups, such as the many wrongs principle (SI
Appendix D), and that the proportion of leaders needed to guide
migratory groups in the desired direction reduces with the group
size (Fig. 2D). Additionally, we are able to provide testable pre-
dictions regarding the spatiotemporal dynamics and the composi-
tion of migratory groups (Movies S1 and S2). Furthermore, our
approach allows us to study intricate aspects of fixed vs. context-
dependent strategies (SI Appendices F andG) and the implications

of environmental structure on the evolution of migratory strategies
on both evolutionary and ecological time scales (Figs. 3 and 4).
Here, we focused on the phenomenon of migration with

a constant global gradient that leaders could detect with relatively
small errors. Would our results continue to hold when gradients/
stimuli exhibit complex stochastic spatiotemporal variations? We
note that novel collective navigational and search properties may
arise depending on the nature of social interactions and the en-
vironmental noise (14, 44). Future studies can reveal the role of
such emergent collective properties and stochasticity in an evo-
lutionary context.
Linking patterns of aggregation to their function is a question of

fundamental importance in biology. Our study offers insights about
the adaptive significance of social cues in migratory behavior on
both evolutionary and ecological time scales. Our results also have
broader implications for studies on the evolution of taxis and/or
foraging strategies in complex fluctuating environments. More
generally, it provides a useful framework to investigate the evolu-
tionary forces that drive collective behavior over a wide range of
spatial and temporal scales.

Materials and Methods
Movies S1 and S2 show spatiotemporal dynamics of the evolved population
of Fig. 2. SI Appendix provides further details on the model implementation
and generality of our results. It contains the following subsections: SI Ap-
pendix A, details of model implementation; SI Appendix B, evolutionary
stable strategy, or optimal strategy, for a single individual; SI Appendix C,
evolutionary simulations for populations; SI Appendix D, the evolution of
bimodal strategies and generality with respect to cost function; SI Appendix
E, evolutionary outcome as a function of cost of gradient detection and cost
of sociality; SI Appendix F, a model in which individuals can use their strategy
probabilistically; SI Appendix G, a model in which individuals can use their
strategy in a context-dependent way; SI Appendix H , the microevolutionary
response of migration to habitat fragmentation and changes in population
density.
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Time step = 5000

Movie S1. The spatiotemporal dynamics of the evolved population of Fig. 1 consisting of 16,384 individuals. Individuals are represented by small triangles and
the color of each triangle represents its gradient detection ability, ωgi with red being no or very weak ωgi and green representing individuals with strong ωgi, i.e.,
leaders (see the title page of the video for the color scale). At the beginning of the video (t = 0) individuals are assigned their evolved sociality-trait, ωsi obtained
from simulations of Fig. 1 but their gradient detection ability is set to zero, ωgi = 0. During a transient phase of t = ωtr = 2,000 time steps, individuals are locally
attracted to others and form aggregations. At the end of the transient phase, we switch on individual’s evolved gradient detection ability, ωgi, Individuals in
the leader mode of the evolved state have higher ωgi and therefore colors of triangles representing those individuals now appear green. This population
consisting of leaders and social individuals perform fission–fusion dynamics and performs collective migration. Therefore we have labeled this part of the
video (after t > 2,000) as the migratory phase.

Movie S1
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Time step = 5000

Movie S2. See legend for Movie S1, but the video zooms into a certain small portion of the space to observe dynamics occurring at the individual and group
levels.

Movie S2

Other Supporting Information Files

SI Appendix (PDF)
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A SI Methods: details of model implementation32

A.1 Movement rules:

Social Interactions: In a population consisting of N individuals, a focal individual i with position34

vector ci(t) and direction vector vi(t) moves at a constant speed s at time t. To account for
individuals maintaining a personal space, we assume that they avoid collision with their neighbors36

when they are within a short zone-of-avoidance with radius ra by moving away from them in the
direction:38

di(t + ∆t) = −
∑

j 6=i

cj(t)− ci(t)
|cj(t)− ci(t)| (1)

where di(t + ∆t) is the desired direction of travel in the next time step. Avoidance of other
individuals is assumed to be of highest priority1,2. In the event of no neighbors being detected40

within the zone-of-avoidance, an individual will be attracted towards and align its direction of
travel with other individuals within a local zone-of-socialization rs:42

dsi(t + ∆t) =
∑

j 6=i

cj(t)− ci(t)
|cj(t)− ci(t)| +

N∑

j=1

vj(t)
|vj(t)| (2)

where dsi(t + ∆t) is the desired direction of travel due to social interactions.

Migratory gradient/cue detection: Without loss of generality, we assume the x-axis to be44

the direction of an environmental gradient. An individual with a gradient detection ability, ωgi,
determines the direction of gradient, at each time step, with some errors. The larger the ωgi, the46

lower the influence of stochastic effects, and thus the higher accuracy at gradient detection. The
angular deviation from the migratory direction (x-axis), θ, is determined by dθ = −ωgθdt + σgdWg48

where dWg is the Wiener process. We use the exact expression for the time evolution of this

stochastic process, θ(t + ∆t) = θ(t)e−ωg∆t +
√

σ2
g

2ωg
(1− e−2ωg∆t)ζt where ζt is the Gaussian white50

noise. We wrap θ appropriately so that its an angle ∈ [−π, π] and obtain migratory direction to be
dgi = (cos(θ)x̂+sin(θ)ŷ). We note that the gradient detection process has correlations arising either52

due to temporal correlations in the gradient, or from inherent errors in an individual’s detection
ability.54

Movement: An individual balances the tendencies of gradient climbing with a desire to be social
by weighting them proportionately and moving in the direction2:56

d′i(t + ∆t) =
ωsid̂si(t + ∆t) + ωgid̂gi(t + ∆t) + σrd̂ri(t + ∆t)
|ωsid̂si(t + ∆t) + ωgid̂gi(t + ∆t) + σrd̂ri(t + ∆t)| (3)

where ωgi is the individual gradient detection ability, ωsi is the sociality trait, and d̂ri is a vector
with random orientation to simulate inherent errors in individual perception and motion. The hat58

signˆon the direction vectors indicate that they are normalized (unit) vectors.
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Individuals have a maximum turning rate of θmax and thus can turn at the most θmax∆t60

radians in the time step ∆t. If the angle between their current velocity vi(t) and their desired
direction di

′(t + ∆t) is less than θmax∆t, then the new direction of their movement would be62

vi(t + ∆t) = di
′(t + ∆t); otherwise, they turn θmax∆t towards it. The new position vector of the

individual i is then given by ci(t + ∆t) = ci(t) + svi(t + ∆t)∆t.64

Boundary Conditions: We assume that the space is periodic with a length l in each of the two
dimensions implying that a particle leaving one side of the simulated environment reappears on66

the opposite side with the same velocity. Since the space wraps onto itself in each dimension the
resulting environment can be mapped onto a torus. Such a boundary condition is a computational68

technique to simulate a large system, where edge effects are negligible, by focussing on a recurring
smaller part of the system that is sufficient to capture the essential biology.70

Periodic boundary condition, however, can lead to the following artificial feature when indi-
viduals move along a gradient. An individual with a high gradient detection ability, ωgi moves72

accurately along the positive x-axis with minor stochastic effects in its direction of travel. Owing
to periodic nature of the boundary, such individuals return to nearly the same path after crossing74

the boundary and therefore effectively travel along an one-dimensional recurring path. In order to
avoid this potential artefact, all individuals are perturbed along the y-axis at the time they cross76

the positive x-boundary in space. The strength of perturbation is given by the time-dependent
quantity 10 × s × cos(2πt/tp), where t is the time when the individual crosses boundary. Such a78

perturbation at the boundary ensures that an individual with high gradient detection ability ωgi, or
a group consisting of individuals having strong gradient detection ability, does not follow a straight80

line path but explores the whole two dimensional space. Yet this preserves the cohesion of a group
because any two nearby individuals of a group cross the boundary nearly simultaneously and are82

therefore displaced by (nearly) same strength of the time-dependent (but not random) perturbation.

A.2 Starting conditions:84

In each run, individuals start at random positions in space with random orientations.

A.3 Fitness evaluation:86

In each generation, the fitness of individuals is averaged over nr runs. In any run, from their
starting conditions, individuals move in space following above equations of motion for τtr time steps88

representing the transient time to form group structures (if any) at the dynamic equilibrium. The
fitness is then evaluated for each individual over an interval of τfit time steps. The fitness consists90

of a benefit, bi, defined as the (normalized) distance traveled along positive x-axis (with maximum
being 1 when travelling along the direction of gradient and minimum being -1 when travelling92

opposite to the direction of gradient). The fitness also includes costs incurred by individuals utilizing
their gradient detection ability ωgi and sociality ωsi: we assign cgi = pg(eωgi/ωgc − 1.0) and csi =94

ps(eωsi/ωsc − 1.0). Assuming that the costs and benefits can be measured in the same currency we
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define the individual fitness by: fi = bi− cgi− csi. In the subsequent sections, we refer to pg as the96

cost of gradient detection ability and ps to be the cost of social interactions.

A.4 Selection algorithm:98

The two evolvable phenotypes, individual gradient detection ability, ωgi, and sociality, ωsi, vary
continuously and take nonnegative values. At the beginning of first generation, individuals are100

assigned phenotypes drawn from a probability distribution (e.g., a distribution in which all have
zero gradient detection ability and zero sociality as in Figure 2 of the main text; or chosen from102

uniformly distributed random numbers in the phenotypic space as in Figure S4; or an evolved state
from a different parameter value as in Figure S5). We use Roulette-wheel-selection algorithm3

104

where each individual reproduces asexually with a probability that is proportional to its relative
fitness value4. Offspring carry similar traits to their parents after undergoing a small mutation106

which is a Gaussian random number with mean zero and standard deviation σµ. Generations
are nonoverlapping and the number of individuals are constant across generations. The selection108

process is repeated until a stable distribution of phenotypes is obtained. The stability of evolved
state thus obtained is checked by an invasibility analysis (see SI Methods C).110

A.5 Group size calculations

We define group as a collection of individuals satisfying the following condition: if two individuals112

i and j are within their distance of social interaction rs, then they belong to the same group.
Using the equivalence class algorithm5 we determine all groups and their constituent members at114

τg timesteps and then this is averaged over 10,000 realizations to obtain Figure 2D in the main text.

A.6 Parameters and sensitivity:116

Unless stated otherwise we have used the following parameter values in our simulations: l = 2.0,
dt = 0.2 of a unit time step (time step), θmax = 2.0 rad per unit time, τtr = 2000 time steps,118

τfit = 500 time steps, τg = 2500 timesteps, σ2
g = 0.2, s = ra per unit time, nr = 30, ωgc = 4.0,

ωsc = 4.0, σµ = 0.01, rs/ra = 6.0, β = 1.0 and ρ = N/(l/BL)2 = NBL2/L2 where BL = ra is the120

body length of the individual. We specify the density, ρ, and the number of individuals N for a
simulation and then determine the absolute values of rs and ra (also see Table 1).122

We have varied many of these parameter values, in particular, τtr, τfit, τg, nr, ωgc, ωsc, σµ and
rs/ra. Additionally, we tried other monotonically increasing functions for the cost as the gradient124

detection ability increases, in particular a linear and a square-root function. These did not affect
the qualitative nature of our results (see SI Appendix D.2).126

4



Quantity Description Values Units/Dimensions

l Size of the continuous space in each dimension 2.0 L

N Population size 320 or 16, 384 Individuals

ρ Population density 10−5 to 1 Individuals per BL−2

ra Zone of avoidance or size of a body length (BL) l
√

ρ/N L per BL

rs Zone of social interactions 6 ra L per BL

s Speed ra per unit time L per BL T

θmax Maximum turning angle per unit time 2.0 rad per unit time T−1

σg Randomness/error in gradient detection
√

0.2 -

σr Randomness/error in motion 0.1 or 1.0 -

dt Discrete time step 0.2 of a unit T

ωgi Gradient detection ability of individual i Evolvable -

ωsi Sociality trait of individual i Evolvable -

pg (Prefactor of) Cost of gradient detection 0 to 30 F

ps (Prefactor of) Cost of sociality 0 to 30 F

ωgc Scale for cost of gradient detection 4 -

ωsc Scale for cost of sociality 4 -

cgi Cost incurred due to gradient detection (ωgi) cgi = pg(eωgi/ωgc − 1.0) F

csi Cost incurred due to sociality (ωsi) csi = ps(eωsi/ωsc − 1.0) F

β Degree of habitat fragmentation See SI Appendix H -

di Normalized distance traveled along the migratory gradient See Eq(4) F

bi Benefit of migration bi = dβ
i F

fi Fitness of an individual fi = bi − cgi − csi F

τtr Transient time from starting conditions 2000 time steps T

τfit Time interval during which fitness is evaluated 500 time steps T

τg Time period after which group sizes are evaluated 2500 time steps T

nr Number of realizations per generation 30 -

σµ Strength of mutation in the evolvable parameters 0.01 -

Table 1: Summary of model quantities (BL = Body length, L = length, T = time, F = unit of
fitness).

B SI Methods: Evolutionary stable strategy, or optimal strat-

egy, for a solitary individual128

For an isolated individual the evolved gradient detection ability ω∗gi must optimize the trade-offs
between costs of gradient detection (cgi) and resulting benefits of migration (bi). We first determine130

the fitness gained by solitary individuals using analytical techniques.
Benefit: First we calculate the migratory benefit an individual gains by having a certain ability to132

detect the gradient, ωgi. During T units of time the benefit (bi), defined as the normalized distance
traveled along the positive x-axis (di), gained by an individual i is:134

bi = di =
∑T

t=0 s cos(θ(t))
T ra

(4)

where θ(t) is the angular deviation of the direction vector from the positive x-axis at time step
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t. Since s = ra, the maximum benefit is 1 if an individual travelling along the positive x-axis for136

all time steps, and the minimum fitness is -1 if the traveling direction is opposite to the gradient
(i.e., along the negative x-axis) for all time steps. The desired direction of motion at each time138

step, for a solitary individual, is given by:

d′i(t + ∆t) =
ωgid̂gi(t + ∆t) + σrd̂ri(t + ∆t)
|ωgid̂gi(t + ∆t) + σrd̂ri(t + ∆t)| (5)

where140

d̂gi(t + ∆t) = cos(θ(t))x̂ + sin(θ(t))ŷ (6)

and θ̇ = −ωgiθ(t) + ηgi(t) (7)

with ηgi(t) being uncorrelated Gaussian noise with mean zero and variance 2σ2
g (i.e., 〈ηgi(t)ηgi(t′)〉 =

2σ2
gδ(t−t′)). The stochastic process described by Eq 7 is the well known Ornstein-Uhlenbeck process142

and its solution is given by6,7:

θ(t) = θ(0)e−ωgit +
∫ t

0

e−ωgi(t−s)ηgi(s)ds (8)

for all t.144

Assuming that σr is small, the average benefit is given by:

〈bi〉 = 〈cos(θ(t))〉 (9)

= 〈e
iθ(t) + e−iθ(t)

2
〉 (10)

= 〈eiθ(t)〉 (since θ is a process with mean 0) (11)

= 〈eiθ(0)e−ωgit〉ic 〈ei
∫ t

0
e−ωgi(t−s)ηgi(s)ds〉ηgi (12)

= exp[− σ2
g

ωgi
] (13)

where the 〈〉 denotes the averaging over the errors (noise) over many realizations (nr) of migratory146

events/simulations.
Cost: As outlined in the SI Methods A, we assume the cost for having a certain gradient detection148

ability ωgi to be increasing with the ability as follows:

cgi = pg(exp(ωgi/ωgc)− 1.0) (14)

Fitness: The average fitness gained by an individual, which is a measure of its reproductive success,150

is given by:

F = 〈Fi〉 = 〈bi〉 − 〈cgi〉 (15)

= exp[− σ2
g

ωgi
]− pg(exp[

ωgi

ωgc
]− 1.0) (16)

Figure 1 of the main text shows a very good match between average fitness value obtained by152

numerical simulations and the analytical expression of Eq (16).
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C SI Methods: Evolutionary simulations for populations154

C.1 Evolutionary stable strategies (ESS) and evolutionary stable states

(ESSt)156

An ‘evolutionarily stable strategy’ (ESS) is defined as a strategy such that if all the members in a
population adopt it, it can not be invaded by any other mutant strategy4.158

An ‘evolutionary stable state’ (ESSt) is one that is restored by selection after the introduction of
a rare mutant close to the resident population’s phenotype. Such a population can be phenotypically,160

or genetically, monomorphic or polymorphic4.
In the following subsection we first note that one or more ESSt’s may exist under a given param-162

eter conditions in an evolutionary game4. In such circumstances we define a ‘robust evolutionary
stable state’ (rESSt) as one that is restored by selection after the introduction of a rare mutant164

from another ESSt, or more generally, a rare mutant that is far from the resident population’s
phenotype. Details are discussed below.166

C.2 Initial condition or history dependence of ESSt

We observe that the state to which a population evolves may depend on the initial conditions i.e., on168

the phenotype distribution that the individuals in the population were assigned at the 1st generation.
For a low cost of gradient detection ability pg, as shown in Figure S1, populations evolve to a bimodal170

state consisting of leaders and social individuals whose characteristics (such as fraction of leaders
in the population) quantitatively match very well with each other even though they start from very172

different initial conditions. On the other hand, when the costs of gradient detection are relatively
high we find initial condition dependence: Figure S2 shows that two populations (top two rows:174

2(a-d)) quickly moved away from the initial phenotype distribution and eventually underwent an
evolutionary branching (see SI Text D). The third and fourth populations (two bottom rows: 2(e-176

h)), however, evolved to an unimodal state with no leaders but all social individuals. We note that
both of these states are stable under small mutations to offspring phenotypes at the beginning of178

every generation and therefore, are evolutionary stable states (ESSt). More generally we find that
there is no initial condition dependence for zero to very low, and for very high, values of costs of180

gradient detection, pg. But there is an intermediate region of parameter values pg where the evolved
strategies show a hysteretic or initial condition dependence.182

C.3 Invasibility analysis and ‘robust evolutionary stable state’ (rESSt)

If multiple ESSt’s exist for a given parameter condition, as in Figure S2, we are interested in184

determining which of these multiple ESSt’s is more robust. We do so by invading one of the ESSt’s
thus obtained with rare mutants, including those far from the resident population’s phenotype, as186

described here: we introduce one individual (we have also tried 1% of the population as mutants)
having a certain phenotype value (ωgI and ωsI , I standing for an ‘Invader’) and check if the mutant188
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population grows in subsequent generations. We perform this check for the entire phenotype space3.
Additionally, for each of the ESSt’s we introduce a small number of mutants from other ESSt190

obtained for that parameter value. If the ESSt is not invaded by any of these mutant possibilities,
we call such an evolved state as a robust evolutionary stable state (rESSt).192

Figure S3(a-c) shows that a single mutant with a high gradient detection ability but no social-
ity, i.e., ωgI = 1.0 and ωsI = 0.0, in a resident population of 16383 social individuals (the evolved194

state of Figure S2(g-h)), can successfully invade and grow in number. Continuation of these simu-
lations showed that the resulting population eventually equilibrates in a bimodal state consisting of196

leaders and social individuals. This bimodal state quantitatively matches with the one we obtained
in Figure S2(a-d). On the other hand, we find that the bimodal state cannot be invaded by other198

mutants. In general for our migration model we find that whenever multiple ESSt’s are found due
to initial condition dependence, then a bimodal state consisting of leaders and social individuals200

is a robust evolutionary stable state (rESSt); unimodal populations consisting of all leaders or all
social individuals are easily invaded by mutants eventually resulting in the bimodal state of leaders202

and social individuals.
We note that an rESSt may not be an uninvadable state. To determine whether an evolved204

state is truly uninvadable, one must try invasion with all mutant states including, for example,
multimodal states. In the absence of analytical results, such a simulation is not feasible in a system206

such as ours where individuals can take continuous phenotype values leading to infinitely large
combinations of mutant states. Nevertheless the evolved states that we obtain in our simulations208

are biologically interesting and relevant.
We point out that a relatively faster way to obtain a rEESt is to begin simulations in which210

individuals are assigned values of ωgi and ωsi drawn from a uniformly distributed random variables
in the phenotype space4. This initial distribution of phenotypes effectively introduces competition212

between many possible strategies at the very first generation thus potentially enabling the most
robust state to evolve. Even though this does not assure that an rESSt will indeed be reached,214

results in Figure S4 show a bimodal state is evolved in less than 100 generations, in contrast with
homogeneous initial condition across populations that could take often more than 1000 generations216

to reach evolutionary branching (if at all).

C.4 Parameter scans218

Clearly, such an invasibility analysis is computationally very expensive and can even be prohibitive
if one is interested in a parameter scan as in Figure 3 of the main text. In order to make such220

3Due to numerical tractability of such an analysis, we often restrict both of these phenotype values in the range

[0, 2]. Many simulations performed with much higher bounds have all converged to a state within the bounds we

have specified. Moreover, results of analytical calculations for solitary individual often provides us with a good

reference value for expecting the population level strategies. Therefore, such a restriction on numerical simulations

is reasonable and is not expected to change the results we have obtained.
4Once again due to numerical tractability of such an analysis, we often restrict both these phenotype values in

the range [0, 2]
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calculations computationally feasible, we perform all of our parameter scan for smaller number
of individuals (N = 320). We also use the following ‘continuation technique’ to achieve an ESSt222

quickly: we begin at a parameter value (for example, given a density, start with the cost pg = 0) and
obtain a rESSt through rigorous evaluation through invasibility analysis. To perform the complete224

parameter scan, we then increment (or decrement) the cost pg and use the ESSt obtained for the
previous cost value as the initial phenotype distribution (i.e., at the 1st generation).226

This does not always guarantee a rESSt due to hysteretic effects. We perform a reverse parameter
scan by using the ESSt of the previous parameter value as the initial condition for the next one228

and sample results are shown in Figure S5. Clearly, we see memory effects leading to multiple
ESSt’s for a given cost of gradient detection. As noted in previous subsection, however, that when230

multiple ESSt’s occur for a given parameter value, a bimodal state is robust (rESSt). Therefore for
the parameter scan of density and the cost of gradient detection shown in Figure 3 of the maintext,232

as well as that of Figure S7, whenever we encountered multiple ESSt’s we have determined, and
shown, the rESSt among them.234
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Figure S1: Lack of initial condition (IC) dependence of evolved states at a low cost of gradient
detection ability (pg = 0.1). The left column is the temporal evolution of the gradient detection
ability, ωg. The right column shows the sociality trait, ωs. The colour scale of the plot represents
the number of individuals of a given phenotype. Rows represent results of different IC: (a-b)
ωgi = 0, ωsi = 0 (c-d) ωgi = 2, ωsi = 0 (e-f) ωgi = 2, ωsi = 2 (g-h) ωgi = 0, ωsi = 2 ∀ i at the
1st generation. We find no IC dependence for this set of parameter values (more specifically, for
pg = 0.1). Parameter values: ps = 0.0, ρ = 2.77× 10−2BL−2, σr = 1.0 and N = 16384.
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Figure S2: Initial condition (IC) dependence of evolved states at a moderate cost of gradient
detection ability (pg = 1.0). The left column is the temporal evolution of the gradient detection
ability, ωg. The right column shows the sociality trait, ωs. The colour scale of the plot represents
the number of individuals of a given phenotype. Rows represent results of different IC: (a-b)
ωgi = 0, ωsi = 0 (c-d) ωgi = 2, ωsi = 0 (e-f) ωgi = 2, ωsi = 2 (g-h) ωgi = 0, ωsi = 2 ∀ i at the 1st

generation. Parameter values: pg = 1.0, ps = 0.0, ρ = 2.77× 10−2BL−2, σr = 1.0 and N = 16384.
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Figure S3: Invasibility analysis. We start from the ESSt of simulation of Figure S2 (g-h) and remove
one individual randomly from the population and introduce a leader mutant (high gradient detection
ability and low sociality, ωgI = 1.0 and ωsI = 0.0). We then let the evolutionary simulations
continue. (a) The evolution of ωg. (b) The evolution of ωs (c) State of the population quantified by
the fraction of leaders (fl), defined as those having ωgi > 0.5. At the 1st generation, fl = 1/16384 ≈
0.000061. It rapidly grows and saturates to around 0.4 within a few hundred generations. All
parameters are as in Figure S1.

Figure S 4: At the 1st generation, individuals are assigned phenotypes drawn from a uniform
random distribution such that ωgi ∈ [0, 2] and ωsi ∈ [02]. (a) The evolution of ωg. (b) The
evolution of ωs. All parameters are as in Figure S1.
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Figure S 5: Hysteresis or memory effects while performing parameter scan. The evolutionary
stable state (ESSt) of the population is quantified by the fraction of leaders in the population. The
solid red line represents increasing pg, starting with pg = 0. The dotted blue line is the result for
decreasing pg starting from pg = 15.0. Other parameters are: ps = 1.0, ρ = 1.77 × 10−3BL−2,
σr = 0.1, N = 320.
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D SI Text: The evolution of bimodal strategies and gener-

ality with respect to cost function236

D.1 An intuitive explanation of the evolutionary branching process

In Figure 2 of the main text we have shown that individuals starting from no gradient detection238

ability, ωgi = 0 and no sociality, ωsi = 0, underwent an evolutionary branching process8 resulting
in a frequency dependent state consisting of leaders (high ωgi and low ωsi) and social individuals240

(non-existing or weak ωgi and high ωsi). Here we provide an intuitive explanation for the dynamics
leading to this branching process.242

In the population with ωgi = 0 and ωsi = 0 ∀ i, a mutant with a small and positive value
of gradient detection ability, ωgi > 0, will incur a cost but will gain a higher migratory benefits244

(albeit very small on absolute terms) leading to a net higher relative-fitness than the rest of the
population. Therefore the migratory selection pressure acts to increase the gradient detection246

ability of all individuals. Now if individuals acquire a mutation with a positive sociality trait,
ωsi > 0, they locally attract each other and others with no-sociality forming small and fragile248

groups. Yet individuals with a positive gradient detection ability in such groups can detect the
migratory direction relatively more accurately due to an averaging process known as the ‘many250

wrongs principle’9. Therefore the selection pressure acts to increase the sociality trait, ωsi as well.
The whole population, therefore, acquires higher values of both the gradient detection ability ωgi252

and the sociality trait ωsi in the initial stages of evolutionary dynamics (Figure 2 of the main text).
At a certain stage in the evolutionary process the social interactions reach a large enough value254

and begin to influence the evolutionary trajectory in novel ways. In this population individuals with
a slightly lower ωgi obtain a relatively higher fitness by incurring lesser costs in the gradient detection256

process but acquiring similar migratory benefits by social attraction to those with higher ωgi. The
decline of gradient detection ability observed in Figure 2 of the main text is a consequence of this258

reversal of selection pressure on ωgi. Such a process is facilitated by strong social interactions,
therefore the increasing trend in sociality trait ωsi continues during this stage of evolutionary260

dynamics.
As the gradient detection ability reduces and sociality trait increases, the population eventually262

reaches an evolutionary branching point. At this stage mutations that further lower the gradient
detection ability and increase the sociality trait continue to be favored due to the same mechanism264

we explained in previous paragraph. In addition, mutations that increase the gradient detection
ability but reduce the sociality trait will also be favored. Such mutants can compensate for the costs266

incurred in their increased gradient detection ability by the migratory benefits they accumulate.
This is facilitated by their reduced tendency to be attracted to other individuals thereby increasing268

their ability to migrate farther. Eventually the population reaches an evolutionary equilibrium with
leaders (those with high ωgi and weak/nonexistent ωsi) and social individuals (weak or nonexis-270

tent ωgi and high ωsi) obtain equivalent fitness values and therefore, coexist with each other in a
frequency dependent way.272
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D.2 Generality with respect to the choice of exponential cost function

It can be easily argued that a bimodal evolutionary stable state would occur even when we chose274

cost function other than an exponential, as long as it is a monotonically increasing function of
ωg or ωs. For a moderate value of cost of gradient detection, we will find an optimum gradient276

detection ability for a solitary individual as seen in Figure 1C of the main text, irrespective of the
specific form of the cost function. Consider a homogeneous population in which all individuals278

have that optimum gradient detection ability. In this population, a social individual mutant with
a low ωg (say, ωg = 0) but a high sociality trait (ωs) would have higher fitness because it acquires280

benefits equivalent to the average of the rest of the population of but its investment in gradient
detection is lower. Therefore, its frequency in the population will increase. At the other extreme,282

in a homogeneous population of ωg = 0 and high ωs, a leader mutant with high ωg but low ωs

is able to obtain migratory benefits that exceeds the investment in gradient detection and hence284

acquires higher fitness than the resident population. Therefore, the leader mutant will increase
its frequency in the population. The above argument for the frequency dependent evolutionary286

dynamics holds irrespective of the specific form of the cost function and therefore we expect that a
coexisting strategy of leaders and social individuals will emerge even when we chose monotonically288

increasing cost functions other than an exponential.
As a test, we performed sample simulations with a linear cost function (cgi(ωgi) = pg×ωgi/ωgc)290

as as well a decelerating square-root function (cgi(ωgi) = pg ×
√

ωgi/ωgc). Figure S6 shows that
these did not alter the qualitative features of our results (that three migratory states of individual292

migration, collective migration and resident population continue to occur depending on relative
costs and benefits).294

E SI Figure: Evolutionary outcome as a function of cost of

gradient detection and cost of sociality296

Social interactions can occur at a cost too, and we include this by assuming that the cost incurred
by an individual (csi) increases monotonically with the strength of the sociality trait, ωsi; more298

specifically, csi = ps(exp(ωsi/ωsc) − 1.0). For a given value of pg and ps, we quantify the evolved
state (rESSt) by the proportion of leaders, defined as those in the high gradient detection ability300

mode/branch, in the population. We also evaluate the migratory ability of the population by
averaging the benefits accumulated by all individuals.302

As in Figure 3 of main text we find three qualitatively different migratory states. When the
cost of gradient detection is very high no individual evolves to use gradient information and thus304

there is no migration (Figure S7a-b; dark regions). These resident populations may evolve sociality
through neutral mutations (i.e., those which neither increase nor decrease individual fitness) in the306

evolutionary process leading to non-migrating swarms when the cost of sociality is zero or negligible;
or they will consist entirely of asocial individuals leading to solitary random walking individuals308

even if ps relatively small.
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Figure S6: Evolutionary stable states (rESSt) obtained at the end of 300 generations, starting
from a random and uniform distribution of phenotypes (ωgi ∈ [0, 2] and ωsi ∈ [02]), for different
cost functions. In the first column (a-c), we have used linear cost functions: cgi = pgωgi/ωgc and
csi = psωsi/ωsc. In the second column (d-f), we have used a decelerating square root cost function:
cgi = pg

√
ωgi/ωgc and csi = ps

√
ωsi/ωsc. Parameter values: ρ = 2.7 × 10−2BL−2, σr = 1.0, N =

320, ps = 0. For brevity we have omitted showing the evolved distributions of sociality trait, ωs.

At the other end, when the cost of gradient detection is very low all individuals evolve to be310

leaders (Figure S7a; bright region). Individuals in these populations will also evolve sociality thus
resulting in collective migration only when the costs associated with sociality is negligible or very312

low. For low to very large costs of sociality, however, leaders are asocial leading to solitary migration.
In a relatively large intermediate region of pg and ps, however, leaders (who are typically asocial)314

and social individuals coexist and thus populations exhibit collective migration.
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Figure S7: Robust evolutionary stable states (rESSt) as a function of the gradient detection (pg)
and social costs (ps). (a) The colour scale of the plot represents the rESSt as quantified by the
proportion of leaders in the population. (b) The colour scale of the plot represents the migratory
ability of the evolved population. Parameter values: ρ = 7.0× 10−3BL−2, σr = 0.1, N = 320.
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F SI Text: A model in which individuals can employ their316

strategy probabilistically

So far we have assumed that individuals with a certain strategy use it all times within their life-318

time/generation. In nature, however, organisms may employ strategies in more complex ways; for
example, an individual may occasionally switch off the ability to perform gradient detection and320

exploit others’ detection by following social cues. We incorporate this feature in the following way.
First we assume that an individual may possess a gradient detection ability denoted by ωgi322

and the individual chooses to employ it (‘switch on’) with a probability fgi. Consequently, the
individual will switch off its detection ability with a probability of 1 − fgi. For each individual324

in the population, the gradient detection ‘switch’ is updated probabilistically after every τf time
steps. The equation of motion in this modified model is given by:326

d′i(t + ∆t) =
d̂si(t + ∆t) + ωgitd̂gi(t + ∆t) + σrd̂ri(t + ∆t)
d̂si(t + ∆t) + ωgitd̂gi(t + ∆t) + σrd̂ri(t + ∆t)| (17)

where the index t in ωgit denotes the current status of the gradient detection ability employed
by the individual and rest of the symbols are as in the main model used in this paper (see SI328

Methods A and C). In order for the evolutionary analysis to be tractable, we are measuring the
gradient detection ability of individuals relative to their sociality trait by setting ωgi = 1.0 for all330

individuals i. The relevant phenotypic space for this model is (ωgi, fgi) where ωgi is a continuous
variable that can take any nonnegative value and fgi, being a probability, is restricted to the interval332

[0, 1]. Individuals pay a cost that increases exponentially as a function of the gradient detection
ability they possess, but only during the intervals of time when they are using that strategy.334

For simplicity, we assume that there is no cost associated with switching between strategies.
Including this detail could amount to rescaling our existing cost structure and hence based on our336

results of parameters in previous sections (Figure 3 of the main text and Figure S7) we do not expect
the qualitative nature of these conclusions to be affected by such a simplification. Moreover adding338

a switching cost would provide a strong disincentive (evolutionarily, that is) for the organisms to
switch between strategies and hence making the evolution of bimodal/structured populations more340

likely.
Results of robust evolutionary stable states obtained through numerical simulations are shown342

in Figure S8(a-c). As in the simpler model presented for the main text, for the intermediate costs
of gradient detection the population evolves to a frequency-dependent bimodal state: in one mode344

the individuals never, or very rarely, use their gradient detection strategy (fgi ≈ 0) and therefore
the precise value of gradient detection ability they have is irrelevant. The other mode consists of346

individuals employing their gradient detection ability, ωgi, nearly always (fgi ≈ 1) and they have
a finite ωgi. In other words, the population effectively has a certain proportion of population who348

nearly always employ their finite ability to detect the gradients, referred to as leaders, and rest of
the population employs no gradient detection strategy but a socially facilitated movement behavior.350

We quantify the measurable impact of two phenotypes used in this model by defining a reduced
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Figure S8: The evolution of migratory strategies in the probabilistic gradient detection model. The
top row (a-c): evolved states at the 1250th generation starting from an uniform random distribution
of phenotypes (i.e., ωgi ∈ [0, 4] and fgi ∈ [0, 1]). (a) With no cost of gradient detection: pg = 0.0.
(b) Intermediate cost of gradient detection: pg = 0.2. (c) High cost of gradient detection: pg = 5.0.
The bottom row (d-f): the evolved states for the same cost parameter values in terms of a reduced
phenotypic space that can be interpreted as the gradient climbing ability. Other parameter values:
N = 320, ρ = 6.67× 10−3BL−2, σr = 0.1, τf = 5∆t

phenotype that is a product of the gradient detection ability, ωgi and the frequency of its usage, fgi,352

which effectively determines the environmental gradient climbing ability of individuals (hence re-
ferred to as ‘the gradient climbing ability’). These are plotted in Figure S8(d-f) and show a bimodal354

evolutionary stable state for the intermediate cost value. These results are qualitatively similar to
the main results we have presented demonstrating that including more complex rules where indi-356

viduals can employ their strategies in a probabilistic way does not alter the main conclusions of our
paper.358
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G SI Text: A model in which individuals can employ their

strategy in a context dependent way360

It is also reasonable, and important, to consider a scenario where individuals might be able to modify
their interaction rules depending on the local conditions they are experiencing10. For instance, in362

order to avoid being exploited by social individuals, and/or to exploit others with gradient detection
ability, an individual may not perform gradient detection when the local condition is crowded despite364

possessing a very high gradient detection ability (ωg). Additionally, this approach allows us to In
this section we show that including the possibility for individuals to evolve such context-dependent366

strategy does not affect the qualitative nature of the results we have obtained.
In this context dependent model an individual i at time t has an ability to detect the gradient,368

ωgit, and will employ it only if the number of nearby neighbours, defined as those within the zone
of socialization, rs, are less than a certain threshold, denoted by ngi, at that time. In other words370

ngi represents the ‘switch-off threshold’ for the gradient detection ability, for example based on a
quorum detection mechanism11. Individuals update such a (local) context dependent ωgit every372

τf time steps and follow Eq (17) for their motion. Therefore each individual has two evolvable
phenotypes, ωgi and ngi, where ωgi is a continuous variable that can take any nonnegative value374

and ngi can take any nonnegative integer values5. As in SI Text F we assume that: (i) We are
measuring the gradient detection ability relative to sociality by setting ωsi = 1 for all individuals376

i. (ii) Individuals pay a cost that exponentially increases as a function of the gradient detection
ability they possess, but only during the intervals of time when they are using that strategy. (iii)378

There is no cost associated with switching between strategies or to measure the local crowding
conditions. Note that our argument from SI Text F - that including switching cost does not affect380

the qualitative nature of our results - continues to hold.
Figure S9(a-c) shows the results of evolutionary simulations of this model. When there is no cost382

associated with the gradient detection all individuals evolve to a high gradient detection ability,
ωgi and a high switch-off/quorum threshold (i.e., number of neighbors) ngi. Since the evolved384

ngi is higher than the maximum possible number of individuals within the zone of socialization,
individuals in this evolved populations always employ their gradient detection ability, ωgi and thus,386

travel in the direction detected by them after balancing it with their social tendencies. At the
other extreme when the cost of gradient detection is very high, no individual evolves to have any388

significant gradient detection ability thus leading to no migratory behavior. For intermediate values
of cost (Figure S9(b)), however, the population evolves to a bimodal state with one mode containing390

individuals having, no or a very small, ngi and therefore they barely use their ωg (social individuals).
The other mode contains individuals with a very high ngi and therefore they always employ their392

ωgi (leaders).
We note that the phenotypic space used in this model is relatively complex: a high ωgi or a394

high ngi alone will not lead to a better gradient climbing or migratory ability. It is a combination

5We restrict ωgi ∈ [0, 4] and ngi ∈ [0, 100] for computational tractability
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of these two phenotypes that results in the migratory or gradient climbing ability of individuals.396

Therefore we focus on a behaviorally measurable quantity by reducing the phenotypic space into
a more intuitive one dimensional space of the ‘gradient climbing ability’ as in the previous SI398

Text F. We make an explicit calculation of how frequently the evolved individuals employ their
ωgi by continuously tracking its state in our simulations. We denote the value of frequency thus400

obtained by fgi. We multiply this quantity with the gradient detection ability, ωgi, to obtain the
gradient climbing ability. As we vary the cost parameter, the evolved structure of this more intuitive402

phenotype shows features that are qualitatively similar to results presented using a much simpler
model in the main text of the paper.404

We provide an intuitive explanation for the mechanism that maintains the evolutionary stability
of bimodal state even when switching between strategies is allowed. We compare two strategies,406

both having a high ωgi but they differ in their ngi; one with a moderate value of quorum threshold
nm and hence uses the detection strategy when there are not too many individuals around, and408

the other with a high quorum threshold nh and hence uses it almost all the time. We now consider
the effectiveness of these two individual strategies when they encounter a group in which no other410

individual has a gradient detection ability (i.e., ωgi = 0 ∀ i ∈ group). If the group size is smaller
than nm, both individuals employ their ωgi, emerge at the front due to self-sorting process1,2 and412

eventually may move out of the group thus accumulating migratory benefits. If the group size is
larger than nm, however, the individual with moderate value of quorum threshold may never switch414

on its gradient detection. In contrast, the individual with a higher quorum threshold is likely split
from the group and move along the environmental gradient thus accumulating better fitness.416

The above argument holds even if the encountered group consisted of individuals all with a
high ωgi and a moderate quorum threshold nm; because if the groupsize is larger than nm, all418

individuals are likely to switch of their gradient detection and hence there is no migration. In this
group, however, the individual with a high ngi will split from the group and migrate therefore gaining420

better fitness. In the extreme scenario when all members of a group have high ωgi and a high quorum
threshold, an individual with very low ngi can exploit others in the group better than an individual422

with a moderate ngi. Therefore individuals who employ their gradient detection in a context
dependent way (i.e., moderate values of ngi) are outperformed by both the strategies of ‘leaders’424

(i.e., those who always employ their gradient detection) and/or ‘naive’ individuals (i.e., those who
never employ gradient detection). We note that the explicit spatiotemporal dynamic plays a key426

role in maintaining the evolutionary stability of frequency-dependent bimodal states.
The convergence of qualitative results in models starting from very simple to more complex428

representation of the world, as well as wide range of parameter scans involving the costs of gradient
detection and the costs of sociality, and the benefit structures, shows the generality and potential430

wide applicability of the central conclusions of this paper.
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Figure S 9: The evolution of migratory strategies in the context dependent gradient detection
model. The top row (a-c): evolved states at the 1000th generation starting from an uniform random
distribution of phenotypes (i.e., ωgi ∈ [0, 4] and ngi ∈ [0, 100]). (a) With no cost of gradient
detection: pg = 0.0. (b) Intermediate cost of gradient detection: pg = 1.0. (c) High cost of gradient
detection: pg = 5.0. The bottom row (d-f): the evolved states for the same cost parameter values
in terms of a reduced phenotypic space that can be interpreted as the gradient climbing ability.
Other parameter values: N = 320, ρ = 6.67× 10−3BL−2, σr = 0.1, τf = 5∆t

22



H SI Text: The microevolutionary response of migration to432

habitat fragmentation and changes in population density

In this section we provide a detailed description of calculations pertaining to the microevolution-434

ary response of migratory phenomenon to habitat fragmentation (Figure 4 in the main text) and
changing population densities. We first define how we implement the cost-benefit structure for the436

gradient detection and migration in a fragmenting habitat. This is followed by how we interpret the
microevolution within our model. We then present results across a parameter scan corresponding438

to habitat fragmentation and changing density.
Migratory benefits and costs: So far we have (implicitly) considered a contiguous habitat440

where the benefits of migration are assumed to be proportional to the distance travelled along the
migratory route (i.e., positive x-axis in our simulations). However, we also want to consider more442

complex environments such as those that are discontinuous, or fragmented. If the environment
becomes increasingly fragmented, individuals may encounter stop-over and/or refueling sites pro-444

portionately less frequently and thus they need to cover disproportionately larger distances before
accumulating benefits12,13. We implement this in the following simple way in our model: the benefit446

gained by an individual i, bi, is a nonlinear function of the average (normalized) distance migrated
di (0 ≤ di ≤ 1: see Eq 4 of SI Methods B). More specifically, we assume bi = dβ

i where the non-448

linearity index β is treated as a proxy for the degree of habitat fragmentation. If β = 1, we have a
contiguous habitat and therefore individuals acquire benefits that are proportional to the distance450

covered along the migratory direction. As shown in Figure S10(a) the larger the value of β, the
larger the nonlinearity, and hence, the organism must cover longer migratory distance to gain ben-452

efits. We assume the same cost structure for the gradient detection ability ωgi and sociality ωsi as
was done for previous calculations: cgi = pgi(exp(ωgi/4.0)− 1.0) and csi = psi(exp(ωsi/4.0)− 1.0).454

The microevolutionary response: Empirical evidence suggests that migratory phenomenon
can exhibit rapid microevolutionary changes on relatively short ecological time scales such as456

decades14,15,13,16. Human induced ecological changes such as alterations in habitat structure and
the density of populations are also likely to occur on these time scales. Our interest is in predicting458

the ‘microevolutionary’ response of migratory phenomenon to such changing conditions using our
model framework.460

To do so, we emphasize that the ESSt’s obtained in evolutionary simulations can be history,
or initial condition, dependent (Figures S2 and S5). Furthermore, we have shown that although462

multiple ESSt’s may exist for a given set of parameter values, one of those population strategies
is likely to be more robust (rESSt); for example, a single but large mutant may often change the464

evolutionary trajectory of the population (see Figure S3 of SI Methods C). In simulating the
microevolutionary response of populations we note that large mutants won’t occur within relatively466

short ecological time scales over which habitat changes are likely to occur. Therefore, the hysteresis,
which we overcame through large mutants while obtaining uninvadable ESSt for the parameter scans468

(Figure 3 of the main text and Figure S7), is now the key feature4.
More specifically we begin the population at a given density in a contiguous habitat, (β = 1)470
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Figure S10: (a) Benefits as a function of distance migrated for different degrees of habitat frag-
mentation (β). (b) Variation in hysteresis curve of the microevolutionary response for different ng,
the length of generations available for the individuals to adapt their strategies, for a given change
in ecological parameter. The symbols connected by black lines represent the increasing habitat
fragmentation where as the ones connected by red lines correspond to habitat restoration. Different
symbols, on the other hand, correspond to different values of ng for which the simulations were
run. N = 320, ρ = 9.0 × 10−4BL−2, σr = 0.10, pg = 1.0, ps = 1.0 and the strength of mutation
σµ = 0.01.

and obtain the rESSt. We then introduce ecological changes by making a small increment in β. As
in previous parameter scans (see SI Methods C for methods), we use the evolved state from the472

previous parameter value as the initial phenotype distribution for this new parameter value and we
let the population undergo evolutionary dynamics for ng number of generations. We continue these474

simulations until the habitat fragmentation reaches a sufficiently large value where the migration
collapses. We then reverse the ecological conditions by restoring the habitat and determine the476

evolutionary response of the migratory strategies: this is done by gradually decreasing the value
of β and as before, we use the evolved phenotype distributions at the previous value of β as the478

initial distribution for the new one so that we can measure whether we can recover the migratory
phenomena. This procedure was followed to obtain Figure 4 of the main text that led to our480

prediction that the decline of migration will often be relatively gradual in response to habitat
fragmentation, but that it will require significantly greater restoration of habitats to recover lost482

migratory behavior.
We interpret ng, the number of generations available for the individuals to evolve the strategies484

for a given change in ecological conditions, as a relative measure of evolutionary time scales to
ecological time scales. If ng →∞, then the ecological conditions vary extremely slowly, and hence,486

one can argue that the population reaches the rESSt. As ng → 1, the evolutionary time scales are
comparable to ecological time scales and any resulting adaptations by individuals in that relatively488

smaller time scale can be treated as microevolution. For the simulations in Figure 4 of main text,
we have used ng = 300 generations. Here, we compare how the hysteresis curve changes as we490
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change ng. From Figure S10(b) we find that the strong hysteresis effect we reported continues to
hold for ng = 100, 10 and 5 generations. In fact, we find that as the evolutionary time scales become492

comparable to ecological time scales, the hysteresis is more pronounced.
We have carried out full parameter scans of habitat fragmentation and variations in density494

of populations to determine the microevolutionary response of the migratory phenomena. Results
are shown in Figure S12. As noted in the main text, population migratory ability shows strong496

hysteresis requiring much larger restoration of habitat than at which it first declined. This is
due to lack of mutations that exceed a threshold on ecological timescales. We have quantified this498

threshold as follows: For a given value of habitat fragmentation (β) all individuals in the population,
except one, are assigned ωsi = 0 and ωgi = 0. We assume that the remaining one individual has a500

different strategy given by ωsi = 0 and ωgi = ωgt > 0 (for example, due to a mutation). Through
simulations we check whether the mutant will grow in the population, or not. We define threshold502

mutation as the minimum value of ωgt such that the number of mutants in the population has
increases (i.e., greater than one) at the end of 10 generations. The threshold ωg thus determined is504

plotted Figure S11. Clearly, this threshold value of mutation rises rapidly as with increasing habitat
fragmentation. Such large mutations, however, can not occur on ecological timescales of habitat506

restoration. Therefore we find hysteresis behavior. We also find hysteresis curves as a function of
density of population, although to a lesser degree, as seen in Figure S12.508
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Figure S11: The threshold mutation in ωg as a function of habitat fragmentation. Parameters:
pg = 1.0, ps = 1.0, σr = 0.1, N = 320.
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Figure S12: Response of migration to anthropogenic activities. In all of the above plots, the migra-
tory performance of evolved populations is plotted as a heat-map, with brighter regions representing
effective migration and dark regions representing no or weak migration (see the color-scale). The
x-axis is β, the degree of habitat fragmentation. The arrows indicate the direction in which the pa-
rameters were changed. (a) shows how the migratory behavior is affected, for a fixed density, as the
habitat fragmentation increases whereas in (b) the habitat is restored. (c) Increasing, or (d) decreas-
ing, density for fixed levels of fragmentation. Parameters: pg = 1.0, ps = 1.0, σr = 0.1, N = 320.
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