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Motivation

THE BIG PICTURE
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Motivation

Two current challenges in theoretical physics



Motivation

Two current challenges in theoretical physics

Challenge Nr. 1:

Find a unified theory of all known interactions:

Electromagnetism, Weak force, Strong force
⇔ Gravity

Challenge: Quantization of gravity
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Motivation

Challenge Nr. 2: Strongly coupled systems

Describe observables and processes
in systems with a given interaction

Challenge: Beyond perturbation theory

Example: Yang-Mills theory

L = − 1

2g2
TrFµνFµν

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν]
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Challenge in theoretical physics: Strong coupling

g � 1

g ≥ 1

g ≥ 1: Application of perturbation theory not possible
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Motivation

Recent development:

Unified theory of fundamental interactions and description of strongly coupled
systems are much more closely related than we thought!



Motivation

Recent development:

Unified theory of fundamental interactions and description of strongly coupled
systems are much more closely related than we thought!

Gauge/gravity duality
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Gauge/Gravity Duality
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Gauge/Gravity Duality

Duality:

Gauge/Gravity Duality:

A theory without gravity is dual to a gravity theory.
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Gauge/gravity duality



Gauge/gravity duality

Conjecture which follows from a low-energy limit of string theory

Duality:

Quantum field theory at strong coupling
⇔ Theory of gravitation at weak coupling

Holography:

Quantum field theory in four dimensions
⇔ Gravitational theory in five dimensions
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Foundations: Gauge/gravity duality

Best understood example: AdS/CFT correspondence

AdS: Anti-de Sitter space, CFT: Conformal field theory
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Anti-de Sitter Space

Hyperbolic space of constant negative
curvature, has a boundary

Embedding of (Euclidean) AdSd+1 into
Minkd+2:

−X2
0 +X

2
1 +X

2
2 + · · ·+X

2
d+1 = −L2

Isometries of Euclidean AdSd+1:

SO(d+ 1, 1)

Metric on Poincaré patch:

ds2 = e2r/Ldxµdx
µ + dr2 or

ds2 = L2

z2
(dxµdx

µ + dz2)

X+X�

X2 = �1

P 2 = 0

Source: Costa, Penedones, Poland, Ryshkov 1109.6321
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Conformal field theory

Quantum field theory

in which the fields transform covariantly under conformal transformations

Conformal coordinate transformations:

Preserve angles locally: dx′µdx′µ = Ω2(x)dxµdx
µ

Correlation functions are determined up to a small number of parameters
J.E., Osborn ’97

In AdS/CFT correspondence: Conformal field theory in 3+1 dimensions:
N = 4 SU(N) Super Yang-Mills theory (global symmetry SO(4, 2)× SU(4))
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AdS/CFT correspondence

‘Dictionary’ Gauge invariant field theory operators
⇔ Classical fields in gravity theory

Symmetry properties coincide (SO(4, 2)× SO(6))

Test: (e.g.) Calculation of correlation functions
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AdS/CFT correspondence

String theory origin⇒ Ten dimensions

AdS5 × S5

Symmetries of field theory and geometry coincide: SO(4, 2)× SO(6)

Internal manifold determines field content
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Generalized AdS/CFT Correspondence: Gauge/gravity duality
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Generalized AdS/CFT Correspondence: Gauge/gravity duality

Generalization of AdS/CFT to quantum field theories of experimental relevance?

Prototype candidate: Low-energy QCD

SU(3) gauge theory with matter (gluons and quarks)

Strongly coupled at low energies⇒ mesons, baryons

Beta function negative
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Generalized AdS/CFT Correspondence: Gauge/gravity duality

Generalizations:

1. Symmetry requirements are relaxed in a controlled way

⇒ Renormalization Group flows

⇒ Finite temperature, finite density

2. More degrees of freedom are added (Example: quarks)

3. Large N limit continues to apply
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Top-down vs. bottom-up

Top-down: Begin with string theory in ten dimensions

⇒ Lagrangian of dual field theory known, few parameters



Top-down vs. bottom-up

Top-down: Begin with string theory in ten dimensions

⇒ Lagrangian of dual field theory known, few parameters

Bottom-up: Just work with deformations of AdS, ignore internal space

⇒
Calculations simpler, however only global symmetries of dual field theory
known

Universality
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Top-down approach

Use 10-dimensional (super)gravity actions obtained from string theory

to describe

Dual degrees of freedom in strongly coupled quantum field theory
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Introduction: String Theory

Quantum Theory of Gravity and Unification of Interactions:

Give up locality at very short distances

Natural cutoff: String length

ls ∼ 1
MPlanck

,

Open strings: Gauge interactions Closed strings: Gravity

Higher oscillation modes may be excited⇒ Particles
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Introduction: String Theory

Quantization:

Supersymmetric string theory is well-defined in 9 + 1 dimensions

(no tachyons, no anomalies)

Supersymmetry: Bosons⇔ Fermions

What is the meaning of the extra dimensions?

1. Compactification

2. D-Branes
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D-Branes

D-branes are embedded in ten-dimensional space (Hypersurfaces)

D3-Branes: (3+1)-dimensional hypersurfaces

open strings may end on D-branes⇔ dynamics
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D-Branes

In low-energy limit (strings pointlike)⇒

Open Strings⇔ Field theory (Gauge theory) degrees of freedom on the brane



D-Branes

In low-energy limit (strings pointlike)⇒

Open Strings⇔ Field theory (Gauge theory) degrees of freedom on the brane

Second interpretation of D-branes:

Solitonic solutions of ten-dimensional supergravity

heavy objects which curve the space around them

Elementary excitations: closed strings
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AdS/CFT correspondence

Map:

Four-dimensional quantum field theory

⇔ 5 + 5-dimensional gravity theory!

arises from identifying the two different interpretations of D-branes

D3 Branes⇒

N = 4 Super Yang-Mills theory is dual to string theory on AdS5 × S5
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String theory origin of the AdS/CFT correspondence

near-horizon geometry
AdS  x  S

5
5

D3 branes in 10d

duality

⇓ Low energy limit

Supersymmetric SU(N) gau-
ge theory in four dimensions
(N →∞)

Supergravity on the space
AdS5 × S5
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AdS/CFT correspondence (Maldacena 1997)

  

SU(N) gauge theory
(Quantum)

String Theory
Gravity (Quantum)

Saddle point
approximation

Large N gauge theory Classical Gravity

Duality

Duality
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AdS/CFT correspondence

Field-operator correspondence:

〈e
∫
ddxφ0(~x)O(~x)〉CFT = Zsugra

∣∣∣
φ(0,~x)=φ0(~x)

Generating functional for correlation functions of particular composite operators
in the quantum field theory

coincides with

Classical tree diagram generating functional in supergravity



AdS/CFT correspondence

Field-operator correspondence:

〈e
∫
ddxφ0(~x)O(~x)〉CFT = Zsugra

∣∣∣
φ(0,~x)=φ0(~x)

Generating functional for correlation functions of particular composite operators
in the quantum field theory

coincides with

Classical tree diagram generating functional in supergravity

Dictionary: field theory operators⇔ supergravity fields

O∆ ↔ φm , ∆ = d
2 +

√
d2

4 + L2m2
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Book on gauge/gravity duality
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Bottom-up approach

Strongly coupled quantum field theories

(difficult to solve)

are mapped to

Weakly coupled gravity theories (easy to solve)
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Finite temperature

Finite temperature field theory is dual to black hole embedded in AdS space

Motivation: In equilibrium, finite temperature given by periodic imaginary time
(Matsubara formalism)

Euclidean signature black hole also requires compactified imaginary time for
regularity at horizon!

Black hole metric (embedding in AdS):

ds2 =
L2

z2

(
f(z)dτ2 + d~x2 +

1

f(z)
dz2

)
, f(z) = 1− z4

z4
h

.
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Finite temperature

Hawking temperature

Th = 1/(πzh)

is identified with temperature of dual field theory
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Black holes

Gravity objects
with remarkable quantum properties

Very massive objects

Large mass⇔ Strong curvature

Once matter or light passes the Schwarzschild
radius, it is trapped inside the black hole and
cannot escape any more.⇒ Horizon

Hawking temperature: Bekenstein entropy

S =
AH
4G
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Black holes

In AdS/CFT:

Black hole is a particular solution of the equations of motion

of an abstract gravitational theory in Anti-de Sitter space

Information content of black hole⇔ Quantum information theory
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Causal structure of space-time

x = ct Set c = 1⇒ x = t

Flat space:

Black hole:
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Retarded Green’s function and quasinormal modes

Complex energy eigenvalues of fluctuations about gravity background

Example: Fluctuations of scalar field Φ(x, z) =
∫
d4ke−iωt+

~k·~xΦ(ω,~k, z)

Insert into equation of scalar fluctuation in AdS black hole background:

(�−m2L2)Φ(k, z) = 0

4u3∂u

(
f

u
∂uΦ(u, k)

)
+

u

(πT )2f

(
ω2 − |~k|2f

)
Φ(u, k)−m2L2Φ(u, k) = 0 .

u = z2/z2
h



Retarded Green’s function and quasinormal modes

Complex energy eigenvalues of fluctuations about gravity background

Example: Fluctuations of scalar field Φ(x, z) =
∫
d4ke−iωt+

~k·~xΦ(ω,~k, z)

Insert into equation of scalar fluctuation in AdS black hole background:

(�−m2L2)Φ(k, z) = 0

4u3∂u

(
f

u
∂uΦ(u, k)

)
+

u

(πT )2f

(
ω2 − |~k|2f

)
Φ(u, k)−m2L2Φ(u, k) = 0 .

u = z2/z2
h

Asymptotic solution near boundary:

Φ(u, k) ∼ φ(0)(k)u(d−∆)/2(1 +O(u)) + φ(1)(k)u∆/2(1 +O(u))

36



Retarded Green’s function and spectral function

ω (which may be complex) determine poles of retarded Green’s function

(location, decay width)

Spectral function: R(ω,~k) = −2ImGR(ω,~k)
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Example for spectral function: ρ meson in dense hadronic medium
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AdS/CFT result (J.E., Kaminski, Kerner, Rust 2008)
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Spectral function at finite baryon density

ρ vector meson spectral function in dense hadronic medium
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AdS/CFT result
(J.E., Kaminski, Kerner, Rust 2008)
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First example for applications: Shear viscosity

Shear viscosity over entropy density

η

s
=

1

4π

~
kB

Kovtun, Son, Starinets PRL 2004

Universal lower bound (does not depend on details of theory) at least to lea-
ding order

Bound satisfied by the most strongly coupled systems (g →∞)

Experimentally confirmed for quark-gluon plasma at RHIC accelerator

Also relevant for electrons in solid?
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Shear viscosity

Hydrodynamics: Long wavelength, low-frequency fluctuations in fluids

Expand physical quantities in derivatives of the fluid velocity: ~v, ∇~v, ∇∇~v . . .

Relativistically: Four-velocity uµ = (u0, u1, u2, u3), uµuµ = 1

u0 = 1/
√

1− ~v2, ~u = ~v/
√

1− ~v2

Consider energy-momentum tensor Tµν

Contains information about energy density, energy and momentum flux

Hydrodynamic expansion to first order in derivatives:

Tµν(x) = T
(0)
µν (x) + T

(1)
µν (x) + . . .

T
(0)
µν (x) = (ε+ P )uµuν − Pgµν , T (1)

µν = η
(
∂µuν + ∂νuµ − 2

3gµν∂λu
λ
)

+ ζgµν∂λu
λ

η shear viscosity, ζ bulk viscosity
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Holographic calculation of shear viscosity

Energy-momentum tensor Tµν dual to graviton gµν

Calculate correlation function 〈Txy(x1)Txy(x2)〉 from propagation through
black hole space

Shear viscosity is obtained from Kubo formula:

η = −lim
1

ω
ImGRxy,xy(ω)

Shear viscosity η = πN2T 3/8, entropy density s = π2N2T 3/2

η

s
=

1

4π

~
kB

(Note: Quantum critical system: τ = ~/(kBT ))
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Charged fluids: Vorticity

J.E., Haack, Kaminski, Yarom 0809.2488; JHEP 2009

Action ofN = 2, d = 5 Supergravity:
From compactification of d = 11 supergravity on a Calabi-Yau manifold

S = − 1

16πG5

∫ [√
−g
(
R + 12− 1

4
F

2

)
− 1

2
√

3
A ∧ F ∧ F

]
d

5
x



Charged fluids: Vorticity

J.E., Haack, Kaminski, Yarom 0809.2488; JHEP 2009

Action ofN = 2, d = 5 Supergravity:
From compactification of d = 11 supergravity on a Calabi-Yau manifold

S = − 1

16πG5

∫ [√
−g
(
R + 12− 1

4
F

2

)
− 1

2
√

3
A ∧ F ∧ F

]
d

5
x

Chern-Simons term leads to axial anomaly for boundary field theory:

∂µJ
µ
(A) =

1

16π2
εµνρσF

µνF ρσ



Charged fluids: Vorticity

J.E., Haack, Kaminski, Yarom 0809.2488; JHEP 2009

Action ofN = 2, d = 5 Supergravity:
From compactification of d = 11 supergravity on a Calabi-Yau manifold

S = − 1

16πG5

∫ [√
−g
(
R + 12− 1

4
F

2

)
− 1

2
√

3
A ∧ F ∧ F

]
d

5
x

Chern-Simons term leads to axial anomaly for boundary field theory:

∂µJ
µ
(A) =

1

16π2
εµνρσF

µνF ρσ

Contribution to relativistic hydrodynamics, proportional to angular momentum:

Jµ = ρuµ+ξωµ, ωµ = 1
2εµνσρu

ν∂σuρ, in fluid rest frame ~J = 1
2ξ∇× ~v
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Chiral vortical effect

Chiral separation: In a volume of rotating quark matter, quarks of opposite chirality move in
opposite directions. (Son, Surowka 2009)

Chiral vortical effect
Non-central
heavy ion collision

Anomaly induces topological charge Q5 ⇒ Axial chemical
potential µ5↔∆Q5

associated to the difference in number of left- and right-
handed fermions

Proposal for experimental confirmation (Oz, Keren-Zur 2010):
Enhanced production of spin-excited hadrons along rotation axis
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Chiral vortical effect

Chiral separation: Relativistic quantum effect



Chiral vortical effect

Chiral separation: Relativistic quantum effect
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Non-equilibrium in holography

Modelled by time-dependent solutions in gravity

Shock waves, collapsing matter shells

Application to formation of quark-gluon plasma

Very short hydrodynamization time

Chesler+Yaffe, Romatschke, Ecker, van der Schee, ...
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Entanglement entropy

A

B

Von Neumann entropy SN = −Trρ ln ρ

Reduced density matrix ρA = TrBρtot

Entanglement entropy

SA = −TrAρA ln ρA



Entanglement entropy

A

B

Von Neumann entropy SN = −Trρ ln ρ

Reduced density matrix ρA = TrBρtot

Entanglement entropy

SA = −TrAρA ln ρA

Ryu-Takayanagi 2006:

B

SA =
AreaγA

4GN

γA: Minimal area with ∂A = ∂γA
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Entanglement entropy: Quantum mechanics

Density matrix ρ =
∑
n
pn|Ψn〉〈Ψn|

Von Neumann entropy SvN = −Tr(ρ ln ρ)

Maximised when ρ diagonal with equal entries,
vanishes for pure states where ρ2 = ρ



Entanglement entropy: Quantum mechanics

Density matrix ρ =
∑
n
pn|Ψn〉〈Ψn|

Von Neumann entropy SvN = −Tr(ρ ln ρ)

Maximised when ρ diagonal with equal entries,
vanishes for pure states where ρ2 = ρ

Consider product Hilbert space H = HA ⊗HB
Reduced density matrix

ρA = TrBρtot

Entanglement entropy
SA = −TrAρA ln ρA

Analogy to black hole entropy
(‘Lost information’ hidden in B)
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Entanglement entropy: Gauge/gravity duality

Ryu-Takayanagi 2006:

SA =
AreaγA

4GN

γA: Minimal area bulk surface with ∂A = ∂γA

Satisfies strong subadditivity
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Entanglement entropy: Examples

Conformal field theory in 1+1 dimensions (Cardy, Calabrese):

S =
c

3
ln(`Λ)

Reproduced by Ryu-Takayanagi result

Λ ∝ 1/ε, ε boundary cut-off in radial direction

c = 3L/(2G3)

Finite temperature (at small `):

S(`) =
c

3
ln

(
1

πεT
sinh(2π`T )

)
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Holographic entanglement entropy: Arbitrary dimensions

J.E., Miekley 1709.07016

Analytic expression in closed form for strip region:

z∗: Turning point of minimal surface

Given implicity in terms of strip width `
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Holographic entanglement entropy: Arbitrary dimensions

J.E., Miekley 1709.07016
Entanglement density

σ =
S(T )− S(T = 0)

vol(A)

Non-monotonic behaviour
signals violation of area
theorem

53
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Generalization of AdS/CFT to quantum field theories of experimental relevance?
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Generalized AdS/CFT Correspondence: Gauge/gravity duality

Generalization of AdS/CFT to quantum field theories of experimental relevance?

Prototype candidate: Low-energy QCD

Generalizations:

1. Symmetry requirements are relaxed in a controlled way

⇒ Renormalization Group flows

2. More degrees of freedom are added (Example: quarks)

3. Large N limit continues to apply
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Breaking of conformal symmetry and supersymmetry

Deformations of AdS5 and S5

spacetime

deformation

Minkowski−
spacetime Anti−De Sitter−

Fifth Dimension⇔ Energy scale

Supersymmetry breaking by deforming the sphere S5
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Quarks in the AdS/CFT correspondence

Add D7-Branes (eight-dimensional surfaces) to ten-dimensional space

0 1 2 3 4 5 6 7 8 9
N D3 X X X X

1,2 D7 X X X X X X X X

Quarks: Low energy limit of open strings between D3- and D7-Branes
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Quarks (fundamental fields) from brane probes
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4567

D3N

4R

AdS5

open/closed string duality 

7−7

AdS5
brane

flavour open/open 
string duality

conventional

3−7
quarks

3−3

SYM

N   probe D7f

N →∞ (standard Maldacena limit), Nf small (probe approximation)

duality acts twice:

N = 4 SU(N) Super Yang-Mills theory

coupled to

N = 2 fundamental hypermultiplet

←→
IIB supergravity on AdS5 × S5

+
Probe brane DBI on AdS5 × S3

Karch, Katz 2002
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Quarks and Mesons

Quarks are introduced into AdS/CFT via the addition of brane probes

Nf � Nc, (Nf = 1 on our case)

Brane probes: open strings between D3 branes and brane probe correspond to
fundamental degrees of freedom in the field theory

Field theory described:

L = 1
4 Tr F

µνFµν + 1
2 ψ̄/Dψ

gauge group SU(N)

U(1)A symmetry: two Dirac fermions ψL, ψR; ψ = ψL + ψR

ψL → eiαψL , ψR → e−iαψR

chiral symmetry broken by condensate 〈ψ̄ψ〉
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Application: Quarks in the AdS/CFT correspondence

Add D7-Branes (eight-dimensional surfaces) to ten-dimensional space

Meson masses from fluctuations of the surface (D7-Brane):

π meson (pseudoscalar):
Energy eigenvalues of D7-brane coordinate fluctuations

ρ meson (vector meson):
Energy eigenvalues of gauge field fluctuations on D7-brane
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Chiral symmetry breaking within generalized AdS/CFT

Combine the deformation of the supergravity metric
with the addition of brane probes:

Dual gravity description of chiral symmetry breaking and Goldstone bosons

J. Babington, J. E., N. Evans, Z. Guralnik and I. Kirsch,

“Chiral symmetry breaking and pions in non-SUSY gauge/gravity duals”

Phys. Rev. D 69 (2004) 066007 [arXiv:hep-th/0306018].
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Applications to QCD-like theories: Light mesons

Babington, J.E., Evans, Guralnik, Kirsch PRD 2004

Gravitational realization of

Spontaneous chiral symmetry breaking

New ground state given by quark condensate 〈ψ̄ψ〉

Spontaneous symmetry breaking→ Goldstone bosons (Mesons)
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Light mesons

Babington, J.E., Evans, Guralnik, Kirsch PRD 2004

Meson masses obtained from fluctuations of hypersurface probe D7-brane

in a confining non-supersymmetric ten-dimensional gravity background

π pseudoscalar meson mass: From fluctuations of D-brane

ρ vector meson mass: From fluctuations of gauge field on D-brane
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D7 brane probe in deformed backgrounds

D7 brane probe in gravity backgrounds dual to

confining gauge theories without supersymmetry.

Example:

Constable-Myers background (particular deformation of AdS5 × S5 metric)

The deformation introduces a new scale into the metric.

In UV limit, geometry returns to AdS5×S5 with D7 probe wrapping AdS5×S3.
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General strategy

1. Start from Dirac-Born-Infeld action for a D7-brane embedded in deformed
background

SD7 ∼
∫
d8ξ

√
−det(P [G] + 2πα′F )

2. Derive equations of motion for transverse scalars (w5, w6)

3. Solve equations of motion numerically using shooting techniques

Solution determines embedding of D7-brane (e.g. w5 = 0, w6 = w6(ρ))

4. Meson spectrum:

Consider fluctuations δw5, δw6 around a background solution obtained in 3.

Solve equations of motion linearized in δw5, δw6
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Asymptotic behaviour of supergravity solutions

UV asymptotic behaviour of solutions to equation of motion:

w6 ∝ me−r + c e−3r

Identification of the coefficients as in the standard AdS/CFT correspondence:

m quark mass, c = 〈q̄q〉 quark condensate

Here:

m 6= 0: explicit breaking of U(1)A symmetry

c 6= 0: spontaneous breaking of U(1)A symmetry
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The Constable-Myers deformation

N = 4 super Yang-Mills theory deformed by VEV for tr FµνFµν
(R-singlet operator with D = 4) → non-supersymmetric QCD-like field theory

The Constable-Myers background is given by the metric

ds2 = H−1/2

(
w4 + b4

w4 − b4
)δ/4

dx2
4 +H1/2

(
w4 + b4

w4 − b4
)(2−δ)/4

w4 − b4
w4

6∑
i=1

dw2
i ,

where

H =

(
w4 + b4

w4 − b4
)δ
− 1 (∆2 + δ2 = 10)

and the dilaton and four-form

e2φ = e2φ0

(
w4 + b4

w4 − b4
)∆

, C(4) = −1

4
H−1dt ∧ dx ∧ dy ∧ dz

This background has a singularity at w = b
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The Constable-Myers deformation

The Constable-Myers background is dual to a confining gauge theory

since the Wilson loop displays an area law

Gravity dual of Wilson loop:

Minimal surface in dual geometry ending on the loop
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Chiral symmetry breaking

Solution of equation of motion for pro-
be brane

w6

bad
good
ugly ρ

singularity

Numerical Result:

m=1.25, c=1.03

m=1.0, c=1.18
m=0.8, c=1.31

m=0.4, c=1.60
m=0.2, c=1.73

m=10^−6, c=1.85

m=1.5, c=0.90

ρ

w

m=0.6, c=1.45

0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

1.25

1.5

1.75

2

g u
l

s i n

6

y
t
i

ra

c

0.5 1.0 1.5 2.0 2.5 3.0
0 

1.5

1.0

0.5

m3.5 4.0

Result:

Screening effect: Regular solutions
do not reach the singularity

Spontaneous breaking of U(1)A
symmetry: For m→ 0 we have
c ≡ 〈ψ̄ψ〉 6= 0
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Meson spectrum

From fluctuations of the probe brane

0.5 1 1.5 2
quark mass

1

2

3

4

5

6

meson mass

Goldstone boson (η′)

Gell-Mann-Oakes-Renner relation: MMeson ∝ √mQuark
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Comparison to lattice gauge theory

Mass of ρ meson as function of π meson mass2 (for N →∞)

0 0.25 0.5 0.75 1

(mπ / mρ0)
2

1

1.2

1.4

m
ρ / 

m
ρ0

Lattice extrapolation
AdS/CFT computation
N= 3
N= 4
N= 5
N= 6
N= 7
N=17
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Comparison to lattice gauge theory

Gauge/Gravity Duality: J.E., Evans, Kirsch, Threlfall ’07, review EPJA

Lattice gauge theory: Lucini, Del Debbio, Bali, Panero et al ’13

Result Gauge/Gravity Duality:
mρ(mπ)

mρ(0)
= 1 + 0.307

(
mπ

mρ(0)

)2

Result Lattice Gauge Theory (Bali, Bursa ’08): Slope 0.341± 0.023



Comparison to lattice gauge theory

Gauge/Gravity Duality: J.E., Evans, Kirsch, Threlfall ’07, review EPJA

Lattice gauge theory: Lucini, Del Debbio, Bali, Panero et al ’13

Result Gauge/Gravity Duality:
mρ(mπ)

mρ(0)
= 1 + 0.307

(
mπ

mρ(0)

)2

Result Lattice Gauge Theory (Bali, Bursa ’08): Slope 0.341± 0.023

Why is the agreement so good?
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Comparison to lattice gauge theory

D7 probe brane action expanded to quadratic order:

S = τ7Vol(S3)Tr

∫
d4xdρ ρ3

[
1

ρ2 + |X|2|DX|
2 +

∆m2L2

ρ2
|X|2 + (2πα′F )2

]



Comparison to lattice gauge theory

D7 probe brane action expanded to quadratic order:

S = τ7Vol(S3)Tr

∫
d4xdρ ρ3

[
1

ρ2 + |X|2|DX|
2 +

∆m2L2

ρ2
|X|2 + (2πα′F )2

]

Phenomenological model: J.E., Evans, Scott 2014

Metric

ds2 =
L2dρ2

ρ2 + |X|2 +
ρ2 + |X|2

L2
dx2

Fluctuations X = l(ρ)e2iπaTa

Make contact with QCD by choosing

∆m2L2 = −2γ = −3(N2 − 1)

2Nπ
α
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Anomalous dimension for gravity theory and for Yang-Mills J.E., Evans, Scott
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ρ meson vs. π meson mass2 J.E., Evans, Scott
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Sakai-Sugimoto model

D4/D8/D̄8 brane model Sakai+Sugimoto 12/2004

(cf. work by A. Rebhan)

Chiral symmetry breaking SU(3)× SU(3)→ SU(3)

⇒ More realistic



Sakai-Sugimoto model

D4/D8/D̄8 brane model Sakai+Sugimoto 12/2004

(cf. work by A. Rebhan)

Chiral symmetry breaking SU(3)× SU(3)→ SU(3)

⇒ More realistic

Energy scale is compactification scale of 5th dimension

Quark masses cannot be dialled
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Sakai-Sugimoto model
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FInite Temperature: D7 brane embedding in black hole background

First order phase transition

Babington, J.E., Evans, Guralnik, Kirsch
Mateos, Myers, Thomson
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D7 brane embedding in black hole background

Babington, J.E., Evans, Guralnik, Kirsch 0306018

Embeddings
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Masses and decay widths of mesons - Spectral functions

Standard procedure in D3/D7: Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: δw(x, ρ) = f(ρ)ei(
~k·~x−ωt), M2 = −k2
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For black hole embeddings, ω develops negative imaginary part
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Masses and decay widths of mesons - Spectral functions

Standard procedure in D3/D7: Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: δw(x, ρ) = f(ρ)ei(
~k·~x−ωt), M2 = −k2

For black hole embeddings, ω develops negative imaginary part

⇒ damping⇒ decay width

Make contact with hydrodynamics: Starinets, Kovtun ....

Spectral function determined by poles of retarded Green function

Quasinormal modes

Identify mesons with resonances in spectral function
Landsteiner, Hoyos, Montero
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Hydrodynamics from AdS/CFT - Spectral functions

Hydrodynamics from AdS/CFT Son, Starinets et al

Transport processes in the quark-gluon plasma
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Hydrodynamics from AdS/CFT - Spectral functions

Hydrodynamics from AdS/CFT Son, Starinets et al

Transport processes in the quark-gluon plasma

Time dependence requires Minkowski signature AdS black hole

Infalling boundary condition required at black hole horizon

Spectral function from imaginary part of retarded Green function

GRµν(ω,k) = −i
∫
d4x ei

~k~x θ(x0) 〈[Jµ(~x), Jν(0)]〉

Correlator calculated from propagation through AdS black hole space

Here: Jµ: flavour current dual to gauge field on D7 brane

Spectral function⇒ Resonance spectrum (vector mesons)
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Finite U(1) baryon density

Mateos, Myers, Matsuura et al
Baryon density nB and U(1) chemical potential µ
from VEV for gauge field time component:

Ā0(ρ) ∼ µ+
d̃

ρ2
, d̃ =

25/2

Nf
√
λT 3

nB

At finite baryon density, all embeddings are black hole embeddings
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Phase diagram with finite U(1) baryon density

Phase diagram:

grey region: nB = 0
white region: nB 6= 0
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Spectral Functions for Vector Mesons

Gauge field on D7: background + fluctuations

Âµ(ρ, ~x) = δ0
µÃ0(ρ) +Aµ(~x, ρ)

Insert this into equations of motion from DBI action of D7 brane

In Fourier space, use gauge invariant quantities

Ex = ωAx + qA0, Ey,z = ωAy,z (q = 0)

Green functions

GR = GRxx = GRyy = GRzz =
NfNcT

2

8
lim
ρ→∞

(
ρ3∂ρE(ρ)

E(ρ)

)

At vanishing density: Myers, Starinets, Thompson
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Spectral function for vector mesons with U(1) quark chemical potential

J.E., Kaminski, Rust 0710.0334

Spectral functions - temperature dominated regime
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Spectral function for vector mesons with U(1) quark chemical potential

J.E., Kaminski, Rust 0710.0334

Spectral functions - temperature dominated regime
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For increasing m/T , peaks first move to smaller, then to larger frequencies
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Spectral function

Spectral functions - potential-dominated regime
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Spectral function

Spectral functions - potential-dominated regime
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Agrees with supersymmetric meson spectrum

(Calculated analytically by Kruczenski, Mateos, Myers, Winters 0304032)
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ρ vector meson spectral function in dense hadronic medium
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AdS/CFT result (J.E., Kaminski, Kerner, Rust 2008)
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Spectral function at finite baryon density

ρ vector meson spectral function in dense hadronic medium
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Pomeron in AdS/CFT

Brower, Polchinski, Strassler, Tan JHEP 0712 (2007) 005
Pomeron:

Coherent color-singlet excitation in high-energy hadronic scattering

At large s, small t, large N

it contributes the leading singularity in the angular momentum plane

Pomeron in AdS/CFT: (large N )

Calculation of field theory amplitude from string amplitude in ten-dimensional
AdS5 × S5 space with cut-off

Four-dimensional scattering given by coherent sum over scattering in the six
transverse dimensions
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Hard scattering

Holographic encoding of gauge theory physics:

Low energy states at small r, high energy states at large r (near boundary)

Warped space:

ds
2

=
r2

L2
ηµνdx

µ
dx

ν
+
L2

r2
dr

2
+ L

2
ds

2
X

pµ =
r

L
p̃µ

A(s, t) ∝ sα(t,r)

pµ conserved momentum, corresponding to invariance under translation of xµ

p̃µ momentum in local inertial coordinates for momenta localized at r
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Pomeron in gauge/gravity duality

At large s, highest trajectory will dominate:

t positive: r small: soft (Regge) pomeron, properties determined by confining
dynamics: glueball

t negative: r large: hard (BFKL) pomeron, two-gluon perturbative small object
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Recent refinements

Ballon-Bayona, R. Quevedo, Costa
1704.08280
Exchange of higher-spin fields in the
graviton Regge trajectory
dual to glueball states of twist two

First four pomeron trajectories are
considered; fit to HERA data

x < 0.01

0.1 < Q2 < 400 in GeV2

χ2
d. o. f. = 1.7
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Example: Froissart bound

High-energy behaviour of total cross-sections in two-particle scattering

Heisenberg 1952:

A target hadron is surrounded by a pion field with energy density ∝ e−mπr

Inelastic processes will occur when the collision is close enough to locally yield
enough energy to create a pion pair

⇒
σ ∝ 1

m2
π

ln2 E

mπ
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Example: Froissart bound

Froissart 1961:

At high energies, the total cross-section for two-particle scattering (protons) has
an upper bound

σ ∝ ln2 s

s0

s centre-of-mass energy, s0 energy scale

General argument based on unitarity of S matrix and
analyticity properties of the scattering amplitude



Example: Froissart bound

Froissart 1961:

At high energies, the total cross-section for two-particle scattering (protons) has
an upper bound

σ ∝ ln2 s

s0

s centre-of-mass energy, s0 energy scale

General argument based on unitarity of S matrix and
analyticity properties of the scattering amplitude

QCD considerations link the Froissart bound at high energies to the dynamics
of ultra-soft gluons (strongly coupled)
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Example: Froissart bound in gauge/gravity duality

Giddings Phys.Rev. D67 (2003) 126001; Kang, Nastase Phys.Rev. D72 (2005) 106003

AdS metric with IR cutoff (‘hard wall’), point mass m is placed on this IR wall

This creates perturbations of the AdS space which may lead to the formation of
a black hole in AdS space

Geometrical cross section of this black hole⇔
maximum possible scattering cross section in the field theory

σ ≤ σBH = πr2
h ∝ ln2 E

E0
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Subleading corrections to Froissart bound from AdS black holes

Diez, Godbole, SInha, Phys.Lett. B746 (2015) 285

Subleading corrections ∝ − ln(s/s0) and ∝ ln s/s0 ln ln s/s0,
from higher curvature corrections

improve fits to cosmic ray and LHC data
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Subleading corrections to Froissart bound from AdS black holes

Diez, Godbole, SInha, Phys.Lett. B746 (2015) 285
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Total γp cross section

Caldwell, Wing Eur.Phys.J. C76 (2016) 463
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Conclusions and outlook

Gauge/gravity duality :

New duality between quantum field theory and gravity

New approach for describing strongly coupled systems

Application examples:

Transport, hydrodynamics, non-equilibrium, mesons, glueballs, Wilson loops,
deep inelastic scattering ...

Much more to explore!
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