Emergent behavior in self-organized dynamics: from consensus to hydrodynamic flocking

Eitan Tadmor

University of Maryland¹

ICTS Colloquium, TIFR Bangalore Jan. 18, 2018

Collaborators:

I Carrillo

Y -P Choi

S He

S Motsch

¹Center for Scientific Computation and Mathematical Modeling (CSCAMM) Department of Mathematics and Institute for Physical Science & Technology

Examples of self-organized dynamics

• "Living agents": flocks of birds; schools of fish; colonies of ants, bacteria, cells

Examples of self-organized dynamics

"Living agents": flocks of birds; schools of fish; colonies of ants, bacteria, cells

• "Thinking agents": Human crowd; traffic jam; "opinion dynamics", neural networks

Examples of self-organized dynamics

"Living agents": flocks of birds; schools of fish; colonies of ants, bacteria, cells

• "Thinking agents": Human crowd; traffic jam; "opinion dynamics", neural networks

• "Non-living agents": sensor-based robots, UAVs, micro-motors, nematic fluids, ...

Short range interactions:

Different rules of engagement of agents with local neighbors

- Short range interactions:
 Different rules of engagement of agents with local neighbors
- Despite the variety living agents, "thinking" or mechanical agents: Coherent structures emerge for large time $t \gg 1$, large crowds $N \gg 1$:

- Short range interactions:
 Different rules of engagement of agents with local neighbors
- Despite the variety living agents, "thinking" or mechanical agents: Coherent structures emerge for large time $t \gg 1$, large crowds $N \gg 1$:
 - → emergence of swarms, colonies, parties, consensus, flocks, ...

- Short range interactions:
 Different rules of engagement of agents with local neighbors
- Despite the variety living agents, "thinking" or mechanical agents: Coherent structures emerge for large time $t \gg 1$, large crowds $N \gg 1$:
 - → emergence of swarms, colonies, parties, consensus, flocks, ...
- Global effect: phenomena of emergence on long-range scales

- Short range interactions:
 Different rules of engagement of agents with local neighbors
- Despite the variety living agents, "thinking" or mechanical agents: Coherent structures emerge for large time $t\gg 1$, large crowds $N\gg 1$:
 - → emergence of swarms, colonies, parties, consensus, flocks, ...
- Global effect: phenomena of emergence on long-range scales
- Fundamentals on short-range interactions: environmental averaging, alignment, synchronization, attraction-repulsion, phase transition, ...

- Short range interactions:
 Different rules of engagement of agents with local neighbors
- Despite the variety living agents, "thinking" or mechanical agents: Coherent structures emerge for large time $t\gg 1$, large crowds $N\gg 1$:
 - → emergence of swarms, colonies, parties, consensus, flocks, ...
- Global effect: phenomena of emergence on long-range scales
- Fundamentals on short-range interactions:
 environmental averaging, alignment, synchronization,
 attraction-repulsion, phase transition, ...
- Key issue: the notion of 'local neighborhood'

Outline

- Rules of engagement: alignment
 - Krause model for opinion dynamics
 - Sensor-based motion the rendezvous problem
 - Vicsek model for flocking; phase transition
 - Cucker-Smale models for flocking near and far from equilibrium
- $t \to \infty$: The emergence of consensus, parties, leaders, ...
 - Large time behavior consensus, flocking, ...
 - Synchronization Kuramoto model
 - Taking tendency into account emergence of leaders
 - A general perspective
- 3 $N \to \infty$: Social hydrodynamics
 - Kinetic description
 - From kinetic to hydrodynamic description of flocking
 - Hydrodynamic alignment smooth solutions must flock
 - Critical thresholds in flocking hydrodynamics

• A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t{+}\Delta t) = \sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j(t) \left[\begin{array}{c} \sum_j a_{ij} = 1 \end{array}
ight]$$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t+\Delta t) = \sum_{j\in\mathcal{N}_i} a_{ij} \mathbf{p}_j(t) \left| \sum_j a_{ij} = 1 \right|$$

frequency
$$\alpha \sim \frac{1}{\Delta t}$$

$$\frac{\mathbf{p}_{i}(t+\Delta t)-\mathbf{p}_{i}(t)}{\Delta t}=\alpha \left(\sum_{j\in\mathcal{N}_{i}}a_{ij}\;\mathbf{p}_{j}-\mathbf{p}_{i}\right)$$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t+\Delta t) = \sum_{j\in\mathcal{N}_i} a_{ij} \mathbf{p}_j(t)$$
 $\sum_j a_{ij} = 1$

frequency
$$\alpha \sim \frac{1}{\Delta t}$$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \left(\sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j - \mathbf{p}_i\right)$$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t+\Delta t) = \sum_{j\in\mathcal{N}_i} a_{ij} \mathbf{p}_j(t)$$
 $\sum_j a_{ij} = 1$

frequency
$$\alpha \sim \frac{1}{\Delta t}$$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \sum_{j \in \mathcal{N}_i} a_{ij} (\mathbf{p}_j - \mathbf{p}_i)$$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t{+}\Delta t) = \sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j(t) \left| \sum_j a_{ij} = 1 \right|$$

Alignment w/frequency $\alpha \sim \frac{1}{\Delta t}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \sum_{j \in \mathcal{N}_i} a_{ij}(\mathbf{p}_j - \mathbf{p}_i)$$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t + \Delta t) = \sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j(t) \left\| \sum_j a_{ij} = 1 \right\|$$

Alignment w/frequency $\alpha \sim \frac{1}{\Delta t}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \big(\sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j - \mathbf{p}_i\big)$$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t{+}\Delta t) = \sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j(t) \Bigg| \sum_j a_{ij} = 1$$

Alignment w/frequency $\alpha \sim \frac{1}{\Delta t}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \big(\sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j - \mathbf{p}_i\big)$$

• Nonlinear influence function ϕ :

$$a_{ij} = \frac{1}{\deg_i} \phi(\mathbf{p}_i, \mathbf{p}_j) \geqslant \mathbf{0}$$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t{+}\Delta t) = \sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j(t) \left| \sum_j a_{ij} = 1
ight|$$

Alignment w/frequency $\alpha \sim \frac{1}{\Delta t}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \big(\sum_{j \in \mathcal{N}_i} a_{ij} \; \mathbf{p}_j - \mathbf{p}_i\big)$$

• Nonlinear influence function ϕ :

$$a_{ij} = \frac{1}{\deg_i} \phi(\mathbf{p}_i, \mathbf{p}_j) \geqslant \mathbf{0}$$
 $\phi(|\mathbf{x}_i - \mathbf{p}_i|)$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t{+}\Delta t) = \sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j(t) igg| \sum_j a_{ij} = 1$$

Alignment w/frequency $\alpha \sim \frac{1}{\Delta t}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \Big(\sum_{j \in \mathcal{N}_i} a_{ij} \; \mathbf{p}_j - \mathbf{p}_i\Big)$$

• Nonlinear influence function ϕ :

$$a_{ij} = \frac{1}{\mathsf{deg}_i} \phi(\mathbf{p}_i, \mathbf{p}_j) \geqslant 0$$
 $\frac{\phi(|\mathbf{x}_i - \mathbf{x}_j|)}{\mathsf{deg}_i}$

ullet deg $_i := \sum_i \phi(\mathbf{p}_i, \mathbf{p}_j)$

— the degree of influence on $agent_i$

- A general class of $N \gg 1$ agents identified w/"traits" $\{\mathbf{p}_i(t)\}_{i=1}^N$: in different contexts $\{\mathbf{p}_i(t)\}$ are positions, opinions, velocities, orientations,
- Environmental Averaging:

$$\mathbf{p}_i(t{+}\Delta t) = \sum_{j \in \mathcal{N}_i} a_{ij} \mathbf{p}_j(t) \Bigg] \hspace{0.2cm} \sum_j a_{ij} = 1$$

Alignment w/frequency $\alpha \sim \frac{1}{\Delta t}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}_i(t) = \alpha \big(\sum_{j \in \mathcal{N}_i} a_{ij} \; \mathbf{p}_j - \mathbf{p}_i\big)$$

• Nonlinear influence function ϕ :

$$a_{ij} = rac{1}{\mathsf{deg}_i} \phi(\mathbf{p}_i, \mathbf{p}_j) \geqslant 0$$
 $\frac{\phi(|\mathbf{x}_i - \mathbf{x}_j|)}{\mathsf{deg}_i}$

- ullet deg $_i := \sum_j \phi(\mathbf{p}_i, \mathbf{p}_j)$
- the degree of influence on $agent_i$
- ullet Neighborhood \mathcal{N}_i geometric neighborhood dictated by ϕ

Example#1: Krause model² for opinion dynamics

• State space — vectors of "opinions": $\{\mathbf{x}_i(t)\}_{i=1}^N$

²U. Krause (1997,2000), R. Hegselmann & U.Krause: Opinion dynamics and bounded confidence models, analysis and simulation (2002,2004)

Example#1: Krause model² for opinion dynamics

- State space vectors of "opinions": $\{\mathbf{x}_i(t)\}_{i=1}^N$
- ullet Krause-Hegselmann model (1997) interaction through **local** averaging:

$$\mathbf{x}_i(t+\Delta t) = \frac{1}{N_i} \sum_{|\mathbf{x}_i-\mathbf{x}_j| \leq R} \mathbf{x}_j(t), \qquad N_i := \#\{\mathbf{x}_j : |\mathbf{x}_j-\mathbf{x}_i| < R\}$$

"Environmental averaging":

$$\mathbf{x}_i(t+\Delta t) = \sum_{j\in\mathcal{N}_i} a_{ij}\mathbf{x}_j(t)$$
 $\sum_j a_{ij} = 1$

Act on difference of opinions:

$$a_{ij} = \frac{\phi(|\mathbf{x}_i - \mathbf{x}_j|)}{\deg_i} \qquad \qquad \phi(r) = \mathbb{1}_{[0,R)}(r)$$

• $\deg_i = \sum_{k \in \mathcal{N}_i} \phi(|\mathbf{x}_i - \mathbf{x}_k|) \rightsquigarrow N_i$

— the degree of influence on $agent_i$

* Typical question in collective dynamics: does "averaging" lead to "consensus"?

²U. Krause (1997,2000), R. Hegselmann & U.Krause: Opinion dynamics and bounded confidence models, analysis and simulation (2002,2004)

- State space vectors of positions: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{x}_i(t)\}_{i=1}^N$
- Mean-shift gradient flow³ (non parametric clustering):

$$\mathbf{x} (t + \Delta t) = \frac{\sum_{j} \phi(|\mathbf{x} (t) - \mathbf{x}_{j}|)\mathbf{x}_{j}}{\sum_{j} \phi(|\mathbf{x} (t) - \mathbf{x}_{j}|)} \leftarrow \text{local mean}$$

$$= \mathbf{x} + \frac{\Delta t}{\deg(\mathbf{x})} \sum_{j \in \mathcal{N}_{i}} \phi(|\mathbf{x} - \mathbf{x}_{j}|)(\mathbf{x}_{j} - \mathbf{x})_{|\mathbf{x} = \mathbf{x}_{i}(t)} \leftarrow \text{alignment}$$

- Local means are shifted in direction of maximal increase of density
- Robotic agents: the "rendezvous problem" $^{3b-3d}$ $\mathbf{x}_i(t) \mathbf{x}_j(t) \xrightarrow{t \to \infty} 0$?

³Y. Cheng (1995); D. Comaniciu & P. Meer (2002);

- State space vectors of positions: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{x}_i(t)\}_{i=1}^N$
- Mean-shift gradient flow³ (non parametric clustering):

$$\begin{aligned} \mathbf{x}_i(t+\Delta t) &= \frac{\sum_j \phi(|\mathbf{x}_i(t)-\mathbf{x}_j|)\mathbf{x}_j}{\sum_j \phi(|\mathbf{x}_i(t)-\mathbf{x}_j|)} &\longleftarrow \text{ local mean} \\ &= \mathbf{x} + \frac{\Delta t}{\deg(\mathbf{x})} \sum_{j \in \mathcal{N}_i} \phi(|\mathbf{x}-\mathbf{x}_j|)(\mathbf{x}_j-\mathbf{x})_{|\mathbf{x}=\mathbf{x}_i(t)} &\longleftarrow \text{ alignment} \end{aligned}$$

- Local means are shifted in direction of maximal increase of density
- ullet Robotic agents: the "rendezvous problem" $^{3b-3d}$ ${f x}_i(t) {f x}_j(t) \xrightarrow{t o \infty} 0$?
- \star Local ϕ 's \leadsto clusters identified by shared basin of attraction as $t \to \infty$

³Y. Cheng (1995); D. Comaniciu & P. Meer (2002);

- State space vectors of positions: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{x}_i(t)\}_{i=1}^N$
- Mean-shift gradient flow³ (non parametric clustering):

$$\mathbf{x} (t + \Delta t) = \frac{\sum_{j} \phi(|\mathbf{x} (t) - \mathbf{x}_{j}|)\mathbf{x}_{j}}{\sum_{j} \phi(|\mathbf{x} (t) - \mathbf{x}_{j}|)} \leftarrow \text{local mean}$$

$$= \mathbf{x} + \frac{\Delta t}{\deg(\mathbf{x})} \sum_{j \in \mathcal{N}_{i}} \phi(|\mathbf{x} - \mathbf{x}_{j}|)(\mathbf{x}_{j} - \mathbf{x})_{|\mathbf{x} = \mathbf{x}_{i}(t)} \leftarrow \text{alignment}$$

- Local means are shifted in direction of maximal increase of density
- Robotic agents: the "rendezvous problem" $^{3b-3d}$ $\mathbf{x}_i(t) \mathbf{x}_j(t) \xrightarrow{t \to \infty} 0$?
- \star Local ϕ 's \leadsto clusters identified by shared basin of attraction as $t\to\infty$

³Y. Cheng (1995); D. Comaniciu & P. Meer (2002);

- State space vectors of positions: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{x}_i(t)\}_{i=1}^N$
- Mean-shift gradient flow³ (non parametric clustering):

$$\begin{split} \mathbf{x} & \left(t + \Delta t \right) = \frac{\sum_{j} \phi(|\mathbf{x} \ (t) - \mathbf{x}_{j}|) \mathbf{x}_{j}}{\sum_{j} \phi(|\mathbf{x} \ (t) - \mathbf{x}_{j}|)} & \longleftarrow \text{ local mean} \\ &= \mathbf{x} + \frac{\Delta t}{\deg(\mathbf{x})} \sum_{j \in \mathcal{N}_{i}} \phi(|\mathbf{x} - \mathbf{x}_{j}|) (\mathbf{x}_{j} - \mathbf{x})_{|\mathbf{x} = \mathbf{x}_{i}(t)} & \longleftarrow \text{ alignment} \end{split}$$

- Local means are shifted in direction of maximal increase of density
- Robotic agents: the "rendezvous problem" $^{3b-3d}$ $\mathbf{x}_i(t) \mathbf{x}_j(t) \xrightarrow{t \to \infty} 0$?
- \star Local ϕ 's \leadsto clusters identified by shared basin of attraction as $t\to\infty$

³Y. Cheng (1995); D. Comaniciu & P. Meer (2002);

- State space vectors of positions: $\{\mathbf{p}_i(t)\}_{i=1}^N \rightsquigarrow \{\mathbf{x}_i(t)\}_{i=1}^N$
- Mean-shift gradient flow³ (non parametric clustering):

$$\begin{split} \mathbf{x} \; (t + \Delta t) &= \frac{\sum_{j} \phi(|\mathbf{x} \; (t) - \mathbf{x}_{j}|) \mathbf{x}_{j}}{\sum_{j} \phi(|\mathbf{x} \; (t) - \mathbf{x}_{j}|)} \qquad \longleftarrow \; \text{local mean} \\ &= \mathbf{x} + \frac{\Delta t}{\deg(\mathbf{x})} \sum_{j \in \mathcal{N}_{i}} \phi(|\mathbf{x} - \mathbf{x}_{j}|) (\mathbf{x}_{j} - \mathbf{x})_{|\mathbf{x} = \mathbf{x}_{i}(t)} \qquad \longleftarrow \; \text{alignment} \end{split}$$

- Local means are shifted in direction of maximal increase of density
- Robotic agents: the "rendezvous problem" $^{3b-3d}$ $\mathbf{x}_i(t) \mathbf{x}_j(t) \xrightarrow{t \to \infty} 0$?

$$\star$$
 Local ϕ 's \leadsto clusters identified by shared basin of attraction as $t \to \infty$

³Y. Cheng (1995); D. Comaniciu & P. Meer (2002);

^{3b}On limited visibility — Ji & Egerstedt (2007); Bellaiche & Bruckstein (2015);

^{3c}Time delay — Olfati-Saber & Murray (2004), Somarakis & Baras (2013-);

 $^{^{3}d}$ Connectivity of mobile networks — Zalvanos, Pappas, et. al (2007-2011)

Example #3: Vicsek model⁴ — alignment of orientations

• Fix a speed s. Averaging of orientations $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\omega_i(t)\}_{i=1}^N \in \mathbb{S}^{\mathsf{d}-1}$

$$\omega_i(t+\Delta t) = \left(s\sum_{j\in\mathcal{N}_i} a_{ij}\,\omega_j(t) + \mathsf{noise}
ight) imes rac{1}{|s\sum_j a_{ij}\,\omega_j(t) + \mathsf{noise}|}$$

ullet 2D additive Noise= uniform in angle in [- au, au]

$$\bullet \ a_{ij} = \frac{\phi(|\mathbf{x}_i - \mathbf{x}_j|)}{\deg_i} \quad \leadsto \quad \mathbf{v}_i(t) := \frac{s}{\deg_i} \sum_{j: |\mathbf{x}_i - \mathbf{x}_j| < R} \phi(|\mathbf{x}_i - \mathbf{x}_j|) \omega_j(t)$$

⁴T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet (PRL 1995)

Example #3: Vicsek model⁴ — alignment of orientations

• Fix a speed s. Averaging of orientations $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\omega_i(t)\}_{i=1}^N \in \mathbb{S}^{\mathsf{d}-1}$

$$\omega_i(t+\Delta t) = \left(s\sum_{j\in\mathcal{N}_i} a_{ij}\,\omega_j(t) + \mathsf{noise}
ight) imes rac{1}{|s\sum_j a_{ij}\,\omega_j(t) + \mathsf{noise}|}$$

- ullet 2D additive Noise= uniform in angle in [- au, au]
- $\bullet \ a_{ij} = \frac{\phi(|\mathbf{x}_i \mathbf{x}_j|)}{\deg_i} \quad \leadsto \quad \mathbf{v}_i(t) := \frac{s}{\deg_i} \sum_{j: |\mathbf{x}_i \mathbf{x}_j| < R} \phi(|\mathbf{x}_i \mathbf{x}_j|) \omega_j(t)$
- A second-order model $a_{ij}(\mathbf{x}(t))$: $\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \cdot \mathbf{v}_i(t)$

⁴T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet (PRL 1995)

Example #3: Vicsek model⁴ — alignment of orientations

• Fix a speed s. Averaging of orientations $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\omega_i(t)\}_{i=1}^N \in \mathbb{S}^{\mathsf{d}-1}$

$$\omega_i(t+\Delta t) = \left(s\sum_{j\in\mathcal{N}_i} a_{ij}\,\omega_j(t) + \mathsf{noise}
ight) imes rac{1}{|s\sum_j a_{ij}\,\omega_j(t) + \mathsf{noise}|}$$

ullet 2D additive Noise= uniform in angle in [- au, au]

$$\bullet \ a_{ij} = \frac{\phi(|\mathbf{x}_i - \mathbf{x}_j|)}{\deg_i} \quad \leadsto \quad \mathbf{v}_i(t) := \frac{s}{\deg_i} \sum_{j: |\mathbf{x}_i - \mathbf{x}_j| < R} \phi(|\mathbf{x}_i - \mathbf{x}_j|) \omega_j(t)$$

• A second-order model $a_{ij}(\mathbf{x}(t))$: $\mathbf{x}_i(t+\Delta t) = \mathbf{x}_i(t) + \Delta t \cdot \mathbf{v}_i(t)$

Vicsek model as an alignment dynamics

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{v}_{i}(t) = \alpha \sum_{i \in \mathcal{N}_{i}} a_{ij} \left(\mathbf{v}_{j} - \frac{\langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle}{|\mathbf{v}_{i}|^{2}} \mathbf{v}_{i}\right)$$

• Beyond environmental averaging:

Projection $\frac{\langle \mathbf{v}_i, \mathbf{v}_j \rangle}{|\mathbf{v}_i|^2}$ enforces fixed speed, $|\mathbf{v}_i(t)| = s$, and noise (τ)

⁴T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet (PRL 1995)

• State space — vectors of velocities: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{v}_i(t)\}_{i=1}^N$

⁵Emergent Behavior in Flocks (2007)

- State space vectors of velocities: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{v}_i(t)\}_{i=1}^N$
- ullet Environmental averaging of velocities $\{oldsymbol{v}_i(t)\}_{i=1}^{N} \in \mathbb{R}^d$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{v}_i(t) = \alpha \Big(\sum_{j \in \mathcal{N}_i} a_{ij}\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big)$$

⁵Emergent Behavior in Flocks (2007)

- State space vectors of velocities: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{v}_i(t)\}_{i=1}^N$
- ullet Environmental averaging of velocities $\{oldsymbol{v}_i(t)\}_{i=1}^{N} \in \mathbb{R}^d$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{v}_i(t) = \alpha \Big(\sum_{j \in \mathcal{N}_i} a_{ij}\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big)$$

• A second-order model:

$$a_{ij}(\mathbf{x}(t)) = \frac{1}{\deg_i} \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|), \quad \frac{\mathsf{d}}{\mathsf{d}t} \mathbf{x}_i(t) = \mathbf{v}_i(t)$$

⁵Emergent Behavior in Flocks (2007)

- State space vectors of velocities: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{v}_i(t)\}_{i=1}^N$
- Environmental averaging of velocities $\{\mathbf{v}_i(t)\}_{i=1}^N \in \mathbb{R}^d$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{v}_i(t) = \alpha \Big(\sum_{j \in \mathcal{N}_i} a_{ij}\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big) = \alpha \sum_{j \in \mathcal{N}_i} a_{ij} \Big(\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big)$$

• A second-order model:

$$a_{ij}(\mathbf{x}(t)) = \frac{1}{\deg_i} \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|), \quad \frac{\mathsf{d}}{\mathsf{d}t} \mathbf{x}_i(t) = \mathbf{v}_i(t)$$

Emergent behavior in self-organized dynamics

 $^{^5}$ Emergent Behavior in Flocks (2007) $^{5a}a_{ii}:=1-\sum_{j
eq i}a_{ij}$

Example#4: Cucker-Smale model⁵— velocity alignment

- State space vectors of velocities: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{v}_i(t)\}_{i=1}^N$
- Environmental averaging of velocities $\{\mathbf{v}_i(t)\}_{i=1}^N \in \mathbb{R}^d \leadsto \text{alignment}^{6a}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{v}_i(t) = \alpha \Big(\sum_{j \in \mathcal{N}_i} a_{ij}\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big) = \alpha \sum_{j \in \mathcal{N}_i} a_{ij} \Big(\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big)$$

• A second-order model:

$$a_{ij}(\mathbf{x}(t)) = rac{1}{\deg_i}\phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|), \quad rac{\mathsf{d}}{\mathsf{d}t}\mathbf{x}_i(t) = \mathbf{v}_i(t)$$

ullet Global vs. local models: scaling by graph degree $\deg_i = \sum_k \phi(|\mathbf{x}_i - \mathbf{x}_k|)$

 $^{^5}$ Emergent Behavior in Flocks (2007) $^{5a}a_{ii}:=1-\sum_{j
eq i}a_{ij}$

Example#4: Cucker-Smale model⁵— velocity alignment

- State space vectors of velocities: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{v}_i(t)\}_{i=1}^N$
- Environmental averaging of velocities $\{\mathbf{v}_i(t)\}_{i=1}^N \in \mathbb{R}^d \leadsto \text{alignment}^{6a}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{v}_i(t) = \alpha \Big(\sum_{j \in \mathcal{N}_i} a_{ij}\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big) = \alpha \sum_{j \in \mathcal{N}_i} a_{ij} \Big(\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big)$$

• A second-order model:

$$a_{ij}(\mathbf{x}(t)) = rac{1}{\deg_i}\phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|), \quad rac{\mathsf{d}}{\mathsf{d}t}\mathbf{x}_i(t) = \mathbf{v}_i(t)$$

- ullet Global vs. local models: scaling by graph degree $\deg_i = \sum \phi(|\mathbf{x}_i \mathbf{x}_k|)$
- * Global models Long-range interactions: $\mathcal{N}_i = \{1, \dots, N\} \mapsto \deg_i \mapsto N$ Example of Cucker-Smale: $\phi(r) \sim (1+r)^{-2\delta}, \ \delta > 0; -\lceil \operatorname{Supp}\{\phi\} \rceil = \infty$

 $^{^5}$ Emergent Behavior in Flocks (2007) $^{5a}a_{ii}:=1-\sum_{j
eq i}a_{ij}$

Example#4: Cucker-Smale model⁵— velocity alignment

- State space vectors of velocities: $\{\mathbf{p}_i(t)\}_{i=1}^N \leadsto \{\mathbf{v}_i(t)\}_{i=1}^N$
- Environmental averaging of velocities $\{\mathbf{v}_i(t)\}_{i=1}^N \in \mathbb{R}^d \rightsquigarrow \text{alignment}^{6a}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{v}_i(t) = \alpha \Big(\sum_{j \in \mathcal{N}_i} a_{ij}\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big) = \alpha \sum_{j \in \mathcal{N}_i} a_{ij} \Big(\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big)$$

• A second-order model:

$$a_{ij}(\mathbf{x}(t)) = rac{1}{\deg_i}\phi(|\mathbf{x}_i(t)-\mathbf{x}_j(t)|), \quad rac{\mathsf{d}}{\mathsf{d}t}\mathbf{x}_i(t) = \mathbf{v}_i(t)$$

- ullet Global vs. local models: scaling by graph degree $\deg_i = \sum \phi(|\mathbf{x}_i \mathbf{x}_k|)$
- * Global models Long-range interactions: $\mathcal{N}_i = \{1, ..., N\} \mapsto \deg_i \mapsto N$ Example of Cucker-Smale: $\phi(r) \sim (1+r)^{-2\delta}, \ \delta > 0; -\lceil \operatorname{Supp}\{\phi\} \rceil = \infty$
- \star Local models when diameter (Supp $\{\phi\}$) \ll max $|\mathbf{x}_i(t) \mathbf{x}_j(t)|$:

Short-range interactions involve 'nearby' neighbors $\deg_i \rightsquigarrow N_i$

 $^{^5}$ Emergent Behavior in Flocks (2007) $^{5a}a_{ii}:=1-\sum_{j
eq i}a_{ij}$

Example#5: far from equilibrium

• (with S. Motsch⁶): $a_{ij}(\mathbf{x}(t)) = \frac{1}{\deg_i} \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{v}_i(t) = \frac{\alpha}{\mathrm{deg}_i} \sum_{j \in \mathcal{N}_i} \phi_{ij} \Big(\mathbf{v}_j(t) - \mathbf{v}_i(t) \Big), \quad \deg_i = \sum_k \phi_{ik}$$

⁶A new model for self-organized dynamics and its flocking behavior (2011)

Example #5: far from equilibrium

• (with S. Motsch⁶): $a_{ij}(\mathbf{x}(t)) = \frac{1}{\deg_i}\phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|)$

(with S. Motsch^o):
$$a_{ij}(\mathbf{x}(t)) = \frac{1}{\deg_i} \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|)$$

$$\frac{d}{dt} \mathbf{v}_i(t) = \frac{\alpha}{\deg_i} \sum_{j \in \mathcal{N}_i} \phi_{ij} \Big(\mathbf{v}_j(t) - \mathbf{v}_i(t) \Big), \quad \deg_i = \sum_k \phi_{ik}$$

$$\star \deg_i (i \in G_1) \approx N_1 \phi_0 \quad \leadsto \quad \frac{\mathsf{d}}{\mathsf{d} t} \mathbf{v}_i(t) = \frac{\alpha}{N_1 \phi_0} \sum_{G_1} \phi_{ij} \left(\mathbf{v}_j(t) - \mathbf{v}_i(t) \right)$$

10

⁶A new model for self-organized dynamics and its flocking behavior (2011)

Example#5: far from equilibrium

• (with S. Motsch⁶): $a_{ij}(\mathbf{x}(t)) = \frac{1}{\deg_i} \phi(|\mathbf{x}_i(t) - \mathbf{x}_j(t)|)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{v}_i(t) = \frac{\alpha}{\mathrm{deg}_i} \sum_{j \in \mathcal{N}_i} \phi_{ij} \Big(\mathbf{v}_j(t) - \mathbf{v}_i(t)\Big), \quad \deg_i = \sum_k \phi_{ik}$$

$$\star \deg_i (i \in G_1) \approx N_1 \phi_0 \quad \leadsto \quad \frac{\mathsf{d}}{\mathsf{d} t} \mathbf{v}_i(t) = \frac{\alpha}{N_1 \phi_0} \sum_{G_1} \phi_{ij} \left(\mathbf{v}_j(t) - \mathbf{v}_i(t) \right)$$

• $A_{\phi} = \{a_{ij} = \frac{\phi_{ij}}{\deg_i}\}$ is <u>not</u> symmetric . . .

but involves the symmetric graph Laplacian $L_A:=I-D^{1/2}A_\phi D^{-1/2}$

 $^6\mathrm{A}$ new model for self-organized dynamics and its flocking behavior (2011)

Outline

- Rules of engagement: alignment
 - Krause model for opinion dynamics
 - Sensor-based motion the rendezvous problem
 - Vicsek model for flocking; phase transition
 - Cucker-Smale models for flocking near and far from equilibrium
- $oldsymbol{2} t
 ightarrow \infty$: The emergence of consensus, parties, leaders, ...
 - Large time behavior consensus, flocking, . . .
 - Synchronization Kuramoto model
 - Taking tendency into account emergence of leaders
 - A general perspective
- - Kinetic description
 - From kinetic to hydrodynamic description of flocking
 - Hydrodynamic alignment smooth solutions must flock
 - Critical thresholds in flocking hydrodynamics

Graph
$$G = (V, E)$$
: vertices $V = \{\mathbf{p}_i\} \subset \mathbb{R}^N$; edges $E_{\phi} = \{\mathbf{e}_{ij}\} \subset \mathbb{R}^N \times \mathbb{R}^N$ grad $\nabla_{\phi}(\mathbf{p})_{ij} := \sqrt{\phi_{ij}}(\mathbf{p}_i - \mathbf{p}_j)$; divergence $\operatorname{div}_{\phi}(\mathbf{e})_i := \sum_i \sqrt{\phi_{ij}}(\mathbf{e}_{ij} - \mathbf{e}_{ji})$

Graph
$$G = (V, E)$$
: vertices $V = \{\mathbf{p}_i\} \subset \mathbb{R}^N$; edges $E_{\phi} = \{\mathbf{e}_{ij}\} \subset \mathbb{R}^N \times \mathbb{R}^N$ grad $\nabla_{\phi}(\mathbf{p})_{ij} := \sqrt{\phi_{ij}}(\mathbf{p}_i - \mathbf{p}_j)$; divergence $\operatorname{div}_{\phi}(\mathbf{e})_i := \sum_j \sqrt{\phi_{ij}}(\mathbf{e}_{ij} - \mathbf{e}_{ji})$ and Laplacian: $\Delta_{\phi} := -\frac{1}{2}\operatorname{div}_{\phi} \circ \nabla_{\phi}$, $\Delta_{\phi}(\mathbf{p})_i = \sum_i \phi_{ij}(\mathbf{p}_i - \mathbf{p}_j)$

Graph
$$G = (V, E)$$
: vertices $V = \{\mathbf{p}_i\} \subset \mathbb{R}^N$; edges $E_{\phi} = \{\mathbf{e}_{ij}\} \subset \mathbb{R}^N \times \mathbb{R}^N$ grad $\nabla_{\phi}(\mathbf{p})_{ij} := \sqrt{\phi_{ij}}(\mathbf{p}_i - \mathbf{p}_j)$; divergence $\operatorname{div}_{\phi}(\mathbf{e})_i := \sum_j \sqrt{\phi_{ij}}(\mathbf{e}_{ij} - \mathbf{e}_{ji})$ and Laplacian: $\Delta_{\phi} := -\frac{1}{2}\operatorname{div}_{\phi} \circ \nabla_{\phi}, \quad \Delta_{\phi}(\mathbf{p})_i = \sum_j \phi_{ij}(\mathbf{p}_i - \mathbf{p}_j)$

• Alignment as a diffusion process: $\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{p}(t) = \frac{-\alpha}{\mathrm{deg}(\mathbf{p}(t))}\Delta_{\phi}(\mathbf{p}(t))$

Graph
$$G = (V, E)$$
: vertices $V = \{\mathbf{p}_i\} \subset \mathbb{R}^N$; edges $E_{\phi} = \{\mathbf{e}_{ij}\} \subset \mathbb{R}^N \times \mathbb{R}^N$ grad $\nabla_{\phi}(\mathbf{p})_{ij} := \sqrt{\phi_{ij}}(\mathbf{p}_i - \mathbf{p}_j)$; divergence $\operatorname{div}_{\phi}(\mathbf{e})_i := \sum_j \sqrt{\phi_{ij}}(\mathbf{e}_{ij} - \mathbf{e}_{ji})$ and Laplacian: $\Delta_{\phi} := -\frac{1}{2}\operatorname{div}_{\phi} \circ \nabla_{\phi}$, $\Delta_{\phi}(\mathbf{p})_i = \sum_i \phi_{ij}(\mathbf{p}_i - \mathbf{p}_j)$

• Alignment as a diffusion process: $\frac{d}{dt}\mathbf{p}(t) = \frac{-\alpha}{\deg(\mathbf{p}(t))}\Delta_{\phi}(\mathbf{p}(t))$

$$\frac{\mathsf{d}}{\mathsf{d}t}[\mathbf{p}(t)] \leqslant -\mu(t)[\mathbf{p}(t)] \quad \text{with} \quad [\mathbf{p}]_2 := \left(\sum |\mathbf{p}_i - \mathbf{p}_j|^2\right)^{1/2}$$

- Consensus depends on Fiedler $\#\mu(t) = \lambda_2(L_{A(\mathbf{x}(t))}) > 0$ $(L_A := I A_\phi)$
- \leadsto Consensus depends on propagation of connectivity of the graph $G(\mathbf{p}(t))$

Graph
$$G = (V, E)$$
: vertices $V = \{\mathbf{p}_i\} \subset \mathbb{R}^N$; edges $E_{\phi} = \{\mathbf{e}_{ij}\} \subset \mathbb{R}^N \times \mathbb{R}^N$ grad $\nabla_{\phi}(\mathbf{p})_{ij} := \sqrt{\phi_{ij}}(\mathbf{p}_i - \mathbf{p}_j)$; divergence $\operatorname{div}_{\phi}(\mathbf{e})_i := \sum_j \sqrt{\phi_{ij}}(\mathbf{e}_{ij} - \mathbf{e}_{ji})$ and Laplacian: $\Delta_{\phi} := -\frac{1}{2}\operatorname{div}_{\phi} \circ \nabla_{\phi}$, $\Delta_{\phi}(\mathbf{p})_i = \sum_j \phi_{ij}(\mathbf{p}_i - \mathbf{p}_j)$

• Alignment as a diffusion process: $\frac{\mathsf{d}}{\mathsf{d}t}\mathbf{p}(t) = \frac{-\alpha^{-j}}{\mathsf{deg}(\mathbf{p}(t))}\Delta_{\phi}(\mathbf{p}(t))$

$$rac{\mathsf{d}}{\mathsf{d}t}ig[\mathbf{p}(t)ig]\leqslant -rac{\mu(t)ig[\mathbf{p}(t)ig]}{ig]} \quad ext{with} \quad ig[\mathbf{p}ig]_2:= \Big(\sum |\mathbf{p}_i-\mathbf{p}_j|^2\Big)^{1/2}$$

- Consensus depends on Fiedler $\#\mu(t) = \lambda_2(L_{A(\mathbf{x}(t))}) > 0 \ (L_A := I A_\phi)$
- \leadsto Consensus depends on propagation of connectivity of the graph $G(\mathbf{p}(t))$
- \star Global models <u>unconditional</u> flocking/consensus: $\int_{-\infty}^{\infty} \phi(r) dr = \infty$

Graph
$$G=(V,E)$$
: vertices $V=\{\mathbf{p}_i\}\subset\mathbb{R}^N$; edges $E_\phi=\{\mathbf{e}_{ij}\}\subset\mathbb{R}^N\times\mathbb{R}^N$ grad $\nabla_\phi(\mathbf{p})_{ij}:=\sqrt{\phi_{ij}}(\mathbf{p}_i-\mathbf{p}_j)$; divergence $\mathrm{div}_\phi(\mathbf{e})_i:=\sum_j\sqrt{\phi_{ij}}(\mathbf{e}_{ij}-\mathbf{e}_{ji})$ and Laplacian: $\Delta_\phi:=-\frac{1}{2}\mathrm{div}_\phi\circ\nabla_\phi,\quad \Delta_\phi(\mathbf{p})_i=\sum_j\phi_{ij}(\mathbf{p}_i-\mathbf{p}_j)$

• Alignment as a diffusion process: $\frac{d}{dt}\mathbf{p}(t) = \frac{-\alpha^{-J}}{\deg(\mathbf{p}(t))}\Delta_{\phi}(\mathbf{p}(t))$

$$\frac{\mathsf{d}}{\mathsf{d}t}[\mathbf{p}(t)] \leqslant -\mu(t)[\mathbf{p}(t)]$$
 with $[\mathbf{p}]_2 := \left(\sum |\mathbf{p}_i - \mathbf{p}_j|^2\right)^{1/2}$

- Consensus depends on Fiedler $\#\mu(t) = \lambda_2(L_{A(\mathbf{x}(t))}) > 0$ $(L_A := I A_\phi)$
- \leadsto Consensus depends on propagation of connectivity of the graph $G(\mathbf{p}(t))$
 - \star Global models <u>unconditional</u> flocking/consensus: $\int^{\infty} \phi(r) \mathrm{d}r = \infty$
 - * Local models $\left[\mathsf{Supp}(\phi) \right]_{\infty} \ll \left[\mathbf{x}(0) \right]_{\infty} \rightsquigarrow K \text{ clusters. When } K = 1?$

Graph
$$G = (V, E)$$
: vertices $V = \{\mathbf{p}_i\} \subset \mathbb{R}^N$; edges $E_{\phi} = \{\mathbf{e}_{ij}\} \subset \mathbb{R}^N \times \mathbb{R}^N$

grad
$$\nabla_{\phi}(\mathbf{p})_{ij} := \sqrt{\phi_{ij}}(\mathbf{p}_i - \mathbf{p}_j);$$
 divergence $\operatorname{div}_{\phi}(\mathbf{e})_i := \sum_j \sqrt{\phi_{ij}}(\mathbf{e}_{ij} - \mathbf{e}_{ji})$ and Laplacian: $\Delta_{\phi} := -\frac{1}{2}\operatorname{div}_{\phi} \circ \nabla_{\phi}, \quad \Delta_{\phi}(\mathbf{p})_i = \sum_j \phi_{ij}(\mathbf{p}_i - \mathbf{p}_j)$

• Alignment as a diffusion process: $\frac{d}{dt}\mathbf{p}(t) = \frac{-\alpha}{\deg(\mathbf{p}(t))}\Delta_{\phi}(\mathbf{p}(t))$

$$\frac{\mathsf{d}}{\mathsf{d}t}\big[\mathbf{p}(t)\big] \leqslant -\mu(t)\big[\mathbf{p}(t)\big] \quad \text{with} \quad \big[\mathbf{p}\big]_2 := \Big(\sum |\mathbf{p}_i - \mathbf{p}_j|^2\Big)^{1/2}$$

- ullet Consensus depends on Fiedler $\#\mu(t) = \lambda_2(L_{A(\mathbf{x}(t))}) > 0$ $(L_A := I A_\phi)$
- ightharpoonup Consensus depends on propagation of $\underline{\mathsf{connectivity}}$ of the graph $G(\mathbf{p}(t))$

* Global models — unconditional flocking/consensus:
$$\int_{-\infty}^{\infty} \phi(r) dr = \infty$$

- $\star \ \mathsf{Local} \ \mathsf{models} - \left[\mathsf{Supp}(\phi) \right]_{\infty} \ll \left[\mathbf{x}(0) \right]_{\infty} \ \rightsquigarrow \ K \ \mathsf{clusters.} \ \mathsf{When} \ K = 1?$
- * Interplay between dynamics on graph and graph driven by the dynamics

Cucker-Smale vs. Motsch-Tadmor model (global influence)

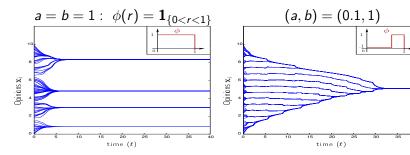
• Global influence: $\phi_{ij} = \phi(|\mathbf{x}_i - \mathbf{x}_j|)$

$$\begin{cases} \dot{\mathbf{x}}_i = \mathbf{v}_i \\ \dot{\mathbf{v}}_i = \frac{1}{\deg_i} \sum_{j=1}^n \phi_{ij} (\mathbf{v}_j - \mathbf{v}_i), & \deg_i = \begin{cases} N & \text{Cucker-Smale} \\ \sum_k \phi_{ik} & \text{Motsch-Tadmor} \end{cases}$$

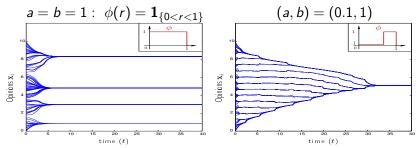
Cucker-Smale vs. Motsch-Tadmor model (global influence)

• Global influence: $\phi_{ij} = \phi(|\mathbf{x}_i - \mathbf{x}_j|)$

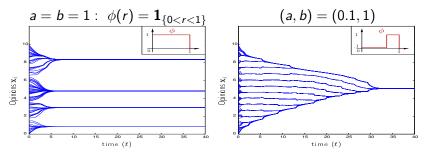
$$\begin{cases} \dot{\mathbf{x}}_i = \mathbf{v}_i \\ \dot{\mathbf{v}}_i = \frac{1}{\deg_i} \sum_{j=1}^n \phi_{ij} (\mathbf{v}_j - \mathbf{v}_i), & \deg_i = \begin{cases} N & \text{Cucker-Smale} \\ \sum_k \phi_{ik} & \text{Motsch-Tadmor} \end{cases}$$



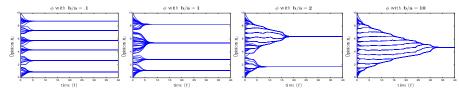
ullet 100 uniformly distributed opinions: $\phi(r) = a {f 1}_{\{r \leqslant rac{1}{\sqrt{2}}\}} + b {f 1}_{\{rac{1}{\sqrt{2}} \leqslant r < 1\}}$



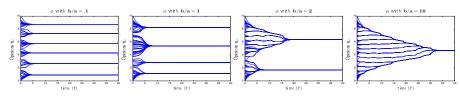
• Homophilious dynamics: align with those that think alike $(a \gg b)$



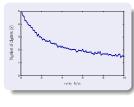
- Homophilious dynamics: align with those that think alike $(a \gg b)$ vs.
- Heterophilious dynamics: "bonding with the different" $(a \ll b)$



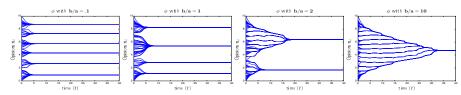
- Homophilious dynamics: align with those that think alike $(a \gg b)$ vs.
- Heterophilious dynamics: "bonding with the different" $(a \ll b)$



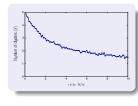
- Homophilious dynamics: align with those that think alike $(a \gg b)$ vs.
- Heterophilious dynamics: "bonding with the different" $(a \ll b)$
- Heterophilious dynamics enhances connectivity⁶: The # of clusters, K(b/a), is decreasing \leadsto



⁶Motsch & ET., Heterophilious dynamics enhances consensus, SIAM Review 2014



- Homophilious dynamics: align with those that think alike $(a \gg b)$ vs.
- Heterophilious dynamics: "bonding with the different" $(a \ll b)$
- Heterophilious dynamics enhances connectivity⁶: The # of clusters, K(b/a), is decreasing \rightsquigarrow
- \star Heterophilious dynamics enhances consensus $\phi(\cdot)_{|0 < r < R}$ is increasing $\leadsto \lambda_2(L_{A(\mathbf{x}(t))}) > \eta > 0$?



⁶Motsch & ET., Heterophilious dynamics enhances consensus, SIAM Review 2014

2D heterophilious dynamics

ullet Local interaction – compactly supported influence function ϕ vs. Local interaction - heterophily dynamics with factor 10:

2D heterophilious dynamics

• Local interaction – compactly supported influence function ϕ vs. Local interaction - heterophily dynamics with factor 10:

"Regarding networks and homophily, birds of a feather flock together, but people are influenced by those they like. Both these processes result in the same outcome (similar people together in groups), but there is no standard accepted way of separating these two processes".

Introduction to Mathematical Sociology, P. Bonacich & P. Lu

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

Emergent behavior in self-organized dynamics

16

• Empirical distribution $\rho^{N}(t, \mathbf{x}) := \frac{1}{N} \sum_{i} \delta_{\mathbf{x} - \mathbf{x}_{i}(t)} \cong \overline{\rho} + \frac{\rho_{1}}{\rho_{1}}(t, \mathbf{x})$

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

• Empirical distribution $ho^N(t,\mathbf{x}) := \frac{1}{N} \sum_i \delta_{\mathbf{x}-\mathbf{x}_i(t)} \cong \overline{\rho} + \frac{\rho_1}{\rho_1}(t,\mathbf{x})$ Fluctuations⁷: $|\widehat{\rho_1}(t,k)| \sim e^{\gamma_{\max}t}, \quad \gamma_{\max} := \max_{k>0} \left[2k \int_0^1 \phi(s) \sin(ks) s \, \mathrm{d}s \right]$

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

Emergent behavior in self-organized dynamics

16

- Empirical distribution $\rho^N(t, \mathbf{x}) := \frac{1}{N} \sum_i \delta_{\mathbf{x} \mathbf{x}_i(t)} \cong \overline{\rho} + \frac{\rho_1(t, \mathbf{x})}{\rho_1(t, \mathbf{x})}$ Fluctuations⁷: $|\widehat{\rho_1}(t, k)| \sim e^{\gamma_{\max} t}$, $\gamma_{\max} := \max_{k>0} \left[2k \int_0^1 \phi(s) \sin(ks) s \, \mathrm{d}s \right]$
- ullet If $t\gtrsim L^2$ then $\mathbb{E}\left[
 ho_1(t,x)
 ho_1(t,x')
 ight]\simeq e^{2\gamma_{\max}t}\cos\left(k_{\max}(x-x')
 ight)$

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

- Empirical distribution $\rho^{N}(t, \mathbf{x}) := \frac{1}{N} \sum_{i} \delta_{\mathbf{x} \mathbf{x}_{i}(t)} \cong \overline{\rho} + \rho_{1}(t, \mathbf{x})$ Fluctuations⁷: $|\widehat{\rho_{1}}(t, k)| \sim e^{\gamma_{\max} t}$, $\gamma_{\max} := \max_{k>0} \left[2k \int_{0}^{1} \phi(s) \sin(ks) s \, \mathrm{d}s \right]$
- ullet If $t\gtrsim L^2$ then $\mathbb{E}\left[
 ho_1(t,x)
 ho_1(t,x')
 ight]\simeq e^{2\gamma_{\max}t}\cos\left(k_{\max}(x-x')
 ight)$
- Mean distance between clusters = $\frac{2\pi}{k_{\text{max}}}$

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

Emergent behavior in self-organized dynamics

16

- Empirical distribution $ho^N(t,\mathbf{x}) := \frac{1}{N} \sum_i \delta_{\mathbf{x}-\mathbf{x}_i(t)} \cong \overline{\rho} + \rho_1(t,\mathbf{x})$ Fluctuations⁷: $|\widehat{\rho_1}(t,k)| \sim e^{\gamma_{\max}t}, \quad \gamma_{\max} := \max_{k>0} \left[2k \int_0^1 \phi(s) \sin(ks) s \, \mathrm{d}s \right]$
- ullet If $t\gtrsim L^2$ then $\mathbb{E}\left[
 ho_1(t,x)
 ho_1(t,x')
 ight]\simeq e^{2\gamma_{\max}t}\cos\left(k_{\max}(x-x')
 ight)$
- Mean distance between clusters = $\frac{2\pi}{k_{\text{max}}}$

$$\phi(r) = \mathbb{1}_{[0,1]}$$

- Empirical distribution $\rho^{N}(t, \mathbf{x}) := \frac{1}{N} \sum_{i} \delta_{\mathbf{x} \mathbf{x}_{i}(t)} \cong \overline{\rho} + \rho_{1}(t, \mathbf{x})$ Fluctuations⁷: $|\widehat{\rho_{1}}(t, k)| \sim e^{\gamma_{\max} t}$, $\gamma_{\max} := \max_{k>0} \left[2k \int_{0}^{1} \phi(s) \sin(ks) s \, \mathrm{d}s \right]$
- If $t \gtrsim L^2$ then $\mathbb{E}\left[\rho_1(t,x)\rho_1(t,x')\right] \simeq e^{2\gamma_{\mathsf{max}}t}\cos\left(k_{\mathsf{max}}(x-x')\right)$
- ullet Mean distance between clusters $= rac{2\pi}{k_{
 m max}}$

$$\phi(r) = \mathbb{1}_{[0,1]} \quad k_{\mathsf{max}} := \operatorname*{argmax}_{k} 2k \int_{0}^{1} \phi(s) \sin(ks) s \, \mathrm{d}s \simeq 2.75 < 2\pi \leadsto \mathsf{no} \; \mathsf{consensus}$$

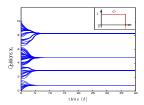
⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

Emergent behavior in self-organized dynamics

16

- Empirical distribution $ho^N(t,\mathbf{x}) := \frac{1}{N} \sum_i \delta_{\mathbf{x}-\mathbf{x}_i(t)} \cong \overline{\rho} + \frac{\rho_1(t,\mathbf{x})}{\rho_1(t,\mathbf{x})}$ Fluctuations⁷: $|\widehat{\rho_1}(t,k)| \sim e^{\gamma_{\max}t}$, $\gamma_{\max} := \max_{k>0} \left[2k \int_0^1 \phi(s) \sin(ks) s \, \mathrm{d}s \right]$
- If $t \gtrsim L^2$ then $\mathbb{E}\left[\rho_1(t,x)\rho_1(t,x')\right] \simeq e^{2\gamma_{\mathsf{max}}t}\cos\left(k_{\mathsf{max}}(x-x')\right)$
- Mean distance between clusters $=\frac{2\pi}{k_{\max}}$

$$\phi(r) = \mathbb{1}_{[0,1]}$$
 $k_{\max} := \underset{k}{\operatorname{argmax}} \ 2k \int_{0}^{1} \phi(s) \sin(ks) s \, \mathrm{d}s \simeq 2.75 < 2\pi \leadsto \text{no consensus}$



mean distance $\simeq 2.3$

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

- Empirical distribution $\rho^{N}(t, \mathbf{x}) := \frac{1}{N} \sum_{i} \delta_{\mathbf{x} \mathbf{x}_{i}(t)} \cong \overline{\rho} + \rho_{1}(t, \mathbf{x})$ Fluctuations⁷: $|\widehat{\rho_{1}}(t, k)| \sim e^{\gamma_{\max}t}$, $\gamma_{\max} := \max_{k>0} \left[2k \int_{0}^{1} \phi(s) \sin(ks) s \, ds \right]$
- ullet If $t\gtrsim L^2$ then $\mathbb{E}\left[
 ho_1(t,x)
 ho_1(t,x')
 ight]\simeq e^{2\gamma_{\max}t}\cos\left(k_{\max}(x-x')
 ight)$
- Mean distance between clusters = $\frac{2\pi}{k_{\text{max}}}$

$$\phi(r) = \mathbb{1}_{[0,1]} \quad k_{\max} := \underset{k}{\operatorname{argmax}} \ 2k \int_{0}^{1} \phi(s) \sin(ks) s \, \mathrm{d}s \simeq 2.75 < 2\pi \leadsto \text{no consensus}$$

$$\phi(r) = 0.1 \cdot \mathbb{1}_{[0,1/\sqrt{2}]} + \mathbb{1}_{[1/\sqrt{2},1]}$$

mean distance $\simeq 2.3$

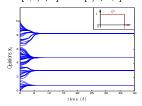
⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

Fluctuations and mean distance of interacting clusters

- Empirical distribution $\rho^{N}(t, \mathbf{x}) := \frac{1}{N} \sum_{i} \delta_{\mathbf{x} \mathbf{x}_{i}(t)} \cong \overline{\rho} + \rho_{1}(t, \mathbf{x})$ Fluctuations⁷: $|\widehat{\rho_{1}}(t, k)| \sim e^{\gamma_{\max} t}$, $\gamma_{\max} := \max_{k>0} \left[2k \int_{0}^{1} \phi(s) \sin(ks) s \, ds \right]$
- If $t \gtrsim L^2$ then $\mathbb{E}\left[\rho_1(t,x)\rho_1(t,x')\right] \simeq e^{2\gamma_{\max}t}\cos\left(k_{\max}(x-x')\right)$
- Mean distance between clusters = $\frac{2\pi}{k_{\text{max}}}$

$$\phi(r) = \mathbb{1}_{[0,1]} \quad k_{\text{max}} := \underset{k}{\operatorname{argmax}} \ 2k \int_{0}^{1} \phi(s) \sin(ks) s \, \mathrm{d}s \simeq 2.75 < 2\pi \leadsto \text{no consensus}$$

$$\phi(r) = 0.1 \cdot \mathbb{1}_{[0,1/\sqrt{2}]} + \mathbb{1}_{[1/\sqrt{2},1]} \quad k_{\text{max}} \simeq 9.1 > 2\pi \leadsto \text{consensus}$$

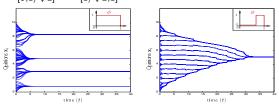


mean distance $\simeq 2.3$

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

Fluctuations and mean distance of interacting clusters

- Empirical distribution $\rho^{N}(t, \mathbf{x}) := \frac{1}{N} \sum_{i} \delta_{\mathbf{x} \mathbf{x}_{i}(t)} \cong \overline{\rho} + \rho_{1}(t, \mathbf{x})$ Fluctuations⁷: $|\widehat{\rho_{1}}(t, k)| \sim e^{\gamma_{\max} t}$, $\gamma_{\max} := \max_{k>0} \left[2k \int_{0}^{1} \phi(s) \sin(ks) s \, ds \right]$
- If $t \gtrsim L^2$ then $\mathbb{E}\left[\rho_1(t,x)\rho_1(t,x')\right] \simeq e^{2\gamma_{\max}t}\cos\left(k_{\max}(x-x')\right)$
- Mean distance between clusters = $\frac{2\pi}{k_{\text{max}}}$



mean distance $\simeq 2.3$

mean distance $\simeq 0.7$

⁷Garnier, Papanicolaou, Yang, Consensus convergence with stochastic effects (2017)

 Many more aspects are taken into account in modeling collective dynamics with different rules of engagement

- Many more aspects are taken into account in modeling collective dynamics with different rules of engagement
- Stochastic effects and phase transition Vicsek model

- Many more aspects are taken into account in modeling collective dynamics with different rules of engagement
- Stochastic effects and phase transition Vicsek model
- ⊙ Phase transition as an effective defense mechanism, group decision process, ...

- Many more aspects are taken into account in modeling collective dynamics with different rules of engagement
- Stochastic effects and phase transition Vicsek model
- Phase transition as an effective defense mechanism, group decision process, ...
- Attraction and repulsion the paradigm of C. Reynolds' boids

- Many more aspects are taken into account in modeling collective dynamics with different rules of engagement
- Stochastic effects and phase transition Vicsek model
- Phase transition as an effective defense mechanism, group decision process, ...
- Attraction and repulsion the paradigm of C. Reynolds' boids
- Control
- Many important applications

- Many more aspects are taken into account in modeling collective dynamics with different rules of engagement
- Stochastic effects and phase transition Vicsek model
- Phase transition as an effective defense mechanism, group decision process, ...
- Attraction and repulsion the paradigm of C. Reynolds' boids
- Control
- Many important applications
- Synchronization Kuramoto's model for large sets of coupled oscillators
- \odot Motivated by chemical and biological systems; applications in neuroscience

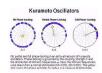
- Many more aspects are taken into account in modeling collective dynamics with different rules of engagement
- Stochastic effects and phase transition Vicsek model
- Phase transition as an effective defense mechanism, group decision process, ...
- Attraction and repulsion the paradigm of C. Reynolds' boids
- Control
- Many important applications
- Synchronization Kuramoto's model for large sets of coupled oscillators
- Motivated by chemical and biological systems; applications in neuroscience
- An example emergence of leaders ...

Example #6: Synchronization

• Kuramoto model⁸ $\{\mathbf{p}_i\} \leadsto \text{phases } \{\theta_i\}$ or frequencies $\{\omega_i = \dot{\theta}_i\}$

$$\frac{\mathsf{d}}{\mathsf{d}t}\theta_i(t) = \Omega_i + \frac{K}{N} \sum_j \sin(\theta_j - \theta_i) \rightsquigarrow \Omega_i + \frac{K}{\mathsf{deg}_i} \sum_j a_{ij}(\theta_j - \theta_i), \ a_{ij} = \frac{\sin(\theta_j - \theta_i)}{\theta_j - \theta_i}$$

- $|\Omega_i| < \alpha r$: steady states; more oscillators recruited into synchronized clusters $(r \approx 1)$ as $\alpha > \alpha_c$ increases
- $|\Omega_i| > \alpha r$: no synchronization $(r \approx 0)$ is possible for $\alpha < \alpha_c$

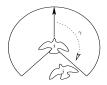


Stewart Heitmann

⁸Kuramoto, Lecture Notes Phys. (1975, 1984)...Acebron et. al. RevModPhys (2005) ^{8b}Ha et. al (2010 –), Gerard-Varet, Dietert, Fernandez, Giacomin (2016)

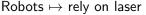
Example #7: tendency to follow in "thinking agents"

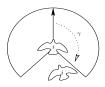
Robots \mapsto rely on laser



"Living agents" \mapsto rely on vision

Example #7: tendency to follow in "thinking agents"

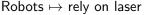


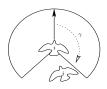


"Living agents" \mapsto rely on vision

• Influenced by the **projection** of those moving ahead tracing using pheromones rather than vision . . . following the footsteps of – education . . .

Example #7: tendency to follow in "thinking agents"





"Living agents" \mapsto rely on vision

• Influenced by the **projection** of those moving ahead tracing using pheromones rather than vision . . . following the footsteps of – education . . .

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{p}_{i}(t) = \frac{1}{\mathrm{deg}_{i}}\sum_{i\in\mathcal{N}_{i}}\phi(|\mathbf{x}_{i}-\mathbf{x}_{j}|)\left(\frac{\langle\mathbf{p}_{i},\mathbf{p}_{j}\rangle}{|\mathbf{p}_{j}|^{2}}\mathbf{p}_{j}-\mathbf{p}_{i}\right),$$

Tendency and emergence of leaders - 1st-order model

$$\frac{d}{dt}\mathbf{x}_{i}(t) = \sum_{j \in \mathcal{N}_{i}} a_{ij}\mathbf{x}_{j} - \mathbf{x}_{i}, \quad a_{ij} = \frac{1}{\deg_{i}}\phi(|\mathbf{x} - \mathbf{x}_{j}|) \frac{\langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle}{|\mathbf{x}_{j}|^{2}}$$

Figure: Random initial conditions, $\phi = \mathbb{1}_{[0,1]}$. Snapshots: t = 0, 0.3, 0.5, 2, 5, 70.

Self-organized dynamics

- Biology The role of empirical data
 - Flocks, swarms, colonies, ... how are they formed?
 - Since there is no Newton's law what are the rules of engagement?
 - ★ Agents <u>are</u> different are these observed patterns observed patterns system specific?

- Biology The role of empirical data
 - Flocks, swarms, colonies, ... how are they formed? Since there is no Newton's law what are the rules of engagement?
 - ★ Agents <u>are</u> different are these
- Physics Order and disorder in complex systems
 Models are different but deep analogies in patterns of equilibrium
 Stability near "thermal equilibrium": statistical mechanicsstatistical
 mechanics
 - * Ensembles act similarly-can we classify patterns of collective motions?

21

- Biology The role of empirical data Flocks, swarms, colonies, ... — how are they formed? Since there is no Newton's law — what are the rules of engagement?
 - * Agents are different are these
- Physics Order and disorder in complex systems Models are different — but deep analogies in patterns of equilibrium Stability near "thermal equilibrium": statistical mechanics
 - * Ensembles act similarly—can we classify patterns of collective motions?
- Computer Science The role of discrete geometry Agents form networks – large-time large-crowd network dynamics * Clustering and spectral theory of graphs

- Biology The role of empirical data
 Flocks, swarms, colonies, ... how are they formed?
 Since there is no Newton's law what are the rules of engagement?
 * Agents are different are these
- Physics Order and disorder in complex systems
 Models are different but deep analogies in patterns of equilibrium
 Stability near "thermal equilibrium": statistical mechanics
 * Ensembles act similarly—can we classify patterns of collective motions?
- Computer Science The role of discrete geometry
 Agents form <u>networks</u> large-time large-crowd network dynamics
 Clustering and spectral theory of graphs
- Engineering Essential design features control and synchronization
 Can we control collective dynamics optimize traffic, improve safety?

- Biology The role of empirical data
 - Flocks, swarms, colonies, ... how are they formed? Since there is no Newton's law what are the rules of engagement?
 - ★ Agents <u>are</u> different are these
- Physics Order and disorder in complex systems
 Models are different but deep analogies in patterns of equilibrium
 Stability near "thermal equilibrium": statistical mechanics
 - * Ensembles act similarly-can we classify patterns of collective motions?
- Computer Science The role of discrete geometry
 Agents form <u>networks</u> large-time large-crowd network dynamics
 Clustering and spectral theory of graphs
- Engineering Essential design features control and synchronization
 Can we control collective dynamics optimize traffic, improve safety?
- Mathematics Agent-based models; non-local PDEs
 Agent-based → kinetic models → macroscopic models
 ★ Numerical and analytical studies of 'social hydrodynamics'

Outline

- Rules of engagement: alignment
 - Krause model for opinion dynamics
 - Sensor-based motion the rendezvous problem
 - Vicsek model for flocking; phase transition
 - Cucker-Smale models for flocking near and far from equilibrium
- 2 $t \to \infty$: The emergence of consensus, parties, leaders, ...
 - Large time behavior consensus, flocking, ...
 - Synchronization Kuramoto model
 - Taking tendency into account emergence of leaders
 - A general perspective
- - Kinetic description
 - From kinetic to hydrodynamic description of flocking
 - Hydrodynamic alignment smooth solutions must flock
 - Critical thresholds in flocking hydrodynamics

Second limit — behavior of large crowds 9 $N ightarrow \infty$

• Empirical distribution $f^N := \frac{1}{N} \sum_j \delta_{\mathbf{x} - \mathbf{x}_j(t)} \otimes \delta_{\mathbf{v} - \mathbf{v}_j(t)} \longrightarrow f(t, \mathbf{x}, \mathbf{v})$

Vlasov eq. for distribution $f(t, \mathbf{x}, \mathbf{v})$

$$f_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + \alpha \nabla_{\mathbf{v}} \cdot Q(f, f) = 0$$

⁹Ha & ET (2008); Canizo, Carrillo, Rosado (2009); Carrillo-Fornasier-Rosado-Toscani (2009), Motsch-ET (2014)

Second limit — behavior of large crowds 9 $N o \infty$

• Empirical distribution $f^N := \frac{1}{N} \sum_j \delta_{\mathbf{x} - \mathbf{x}_j(t)} \otimes \delta_{\mathbf{v} - \mathbf{v}_j(t)} \longrightarrow f(t, \mathbf{x}, \mathbf{v})$

Vlasov eq. for distribution $f(t, \mathbf{x}, \mathbf{v})$

$$f_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + \alpha \nabla_{\mathbf{v}} \cdot Q(f, f) = 0$$

• Q(f, f) assembles binary interactions: alignment, repulsion, noise, ...

$$Q(f,f) = \frac{1}{\deg(t,\mathbf{x})} \int_{\mathbb{R}^{2d}} \frac{\phi(|\mathbf{x} - \mathbf{y}|)(\mathbf{w} - \mathbf{v})f(t,\mathbf{x},\mathbf{v})f(t,\mathbf{y},\mathbf{w})d\mathbf{y}d\mathbf{w} + \dots$$

⁹Ha & ET (2008); Canizo, Carrillo, Rosado (2009); Carrillo-Fornasier-Rosado-Toscani (2009), Motsch-ET (2014)

Second limit — behavior of large crowds $^9~N \rightarrow \infty$

• Empirical distribution $f^N := \frac{1}{N} \sum_i \delta_{\mathbf{x} - \mathbf{x}_j(t)} \otimes \delta_{\mathbf{v} - \mathbf{v}_j(t)} \longrightarrow f(t, \mathbf{x}, \mathbf{v})$

Vlasov eq. for distribution $f(t, \mathbf{x}, \mathbf{v})$

$$f_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + \alpha \nabla_{\mathbf{v}} \cdot Q(f, f) = 0$$

• Q(f, f) assembles binary interactions: alignment, repulsion, noise, ...

$$Q(f,f) = \frac{1}{\deg(t,\mathbf{x})} \int_{\mathbb{R}^{2d}} \phi(|\mathbf{x} - \mathbf{y}|) (\mathbf{w} - \mathbf{v}) f(t,\mathbf{x},\mathbf{v}) f(t,\mathbf{y},\mathbf{w}) d\mathbf{y} d\mathbf{w} + \dots$$
Flocking $(K = 1)$ $f \rightsquigarrow \rho(t,\mathbf{x}) \delta(\mathbf{v} - \mathbf{u}(t,\mathbf{x})) \dots$

⁹Ha & ET (2008); Canizo, Carrillo, Rosado (2009); Carrillo-Fornasier-Rosado-Toscani (2009), Motsch-ET (2014)

Second limit — behavior of large crowds 9 $N o \infty$

• Empirical distribution $f^N := \frac{1}{N} \sum_j \delta_{\mathbf{x} - \mathbf{x}_j(t)} \otimes \delta_{\mathbf{v} - \mathbf{v}_j(t)} \longrightarrow f(t, \mathbf{x}, \mathbf{v})$

Vlasov eq. for distribution $f(t, \mathbf{x}, \mathbf{v})$

$$f_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + \alpha \nabla_{\mathbf{v}} \cdot Q(f, f) = 0$$

• Q(f, f) assembles binary interactions: alignment, repulsion, noise, ...

$$Q(f,f) = \frac{1}{\deg(t,\mathbf{x})} \int_{\mathbb{R}^{2d}} \frac{\phi(|\mathbf{x}-\mathbf{y}|)(\mathbf{w}-\mathbf{v})f(t,\mathbf{x},\mathbf{v})f(t,\mathbf{y},\mathbf{w})d\mathbf{y}d\mathbf{w} + \dots$$

• Flocking (K = 1) $f \rightsquigarrow \rho(t, \mathbf{x})\delta(\mathbf{v} - \mathbf{u}(t, \mathbf{x}))...$

.... recovered in terms of moments —

$$\begin{bmatrix} \text{density} & \rho \\ \text{momentum ...} & \rho \mathbf{u} \end{bmatrix} = \int \begin{bmatrix} 1 \\ \mathbf{v} \end{bmatrix} f(t, \mathbf{x}, \mathbf{v}) d\mathbf{v}$$

⁹Ha & ET (2008); Canizo, Carrillo, Rosado (2009); Carrillo-Fornasier-Rosado-Toscani (2009), Motsch-ET (2014)

$$\begin{cases} \text{ mass : } & \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0 \\ \text{ momentum : } & \partial_t (\rho \mathbf{u}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u} + P(\mathbf{f})) = \rho \, \mathcal{A}_{\rho}(\mathbf{u}) \end{cases}$$

¹⁰R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016)

¹⁰R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016)

$$\begin{cases} \text{ mass : } & \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0 \\ \text{ momentum : } & \partial_t (\rho \mathbf{u}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u} + P(\mathbf{f})) = \rho \, \mathcal{A}_\rho(\mathbf{u}) \end{cases}$$

- Non-local <u>alignment</u> $\mathcal{A}_{\rho}(\mathbf{u}) = \frac{\alpha}{\deg} \int_{\mathbb{D}^d} \phi(\mathbf{x}, \mathbf{y}) (\mathbf{u}(t, \mathbf{y}) \mathbf{u}(t, \mathbf{x})) \rho(t, \mathbf{y}) d\mathbf{y}$

$$\begin{split} \bullet \text{ Commutator form}^{10} \colon & \mathcal{A}_{\rho}(\mathbf{u}) := \frac{\alpha}{\deg} [L_{\phi}, \mathbf{u}](\rho), \\ & [L_{\phi}, \mathbf{u}](\rho) = L_{\phi}(\rho \mathbf{u}) - L_{\phi}(\rho) \mathbf{u}, \qquad L_{\phi}(g) := \int_{\mathbb{R}^d} \phi(\mathbf{x}, \mathbf{y}) (g(\mathbf{y}) - g(\mathbf{x})) \mathrm{d}\mathbf{y} \end{split}$$

¹⁰R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016)

$$\begin{cases} \text{ mass : } & \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0 \\ \text{ momentum : } & \partial_t (\rho \mathbf{u}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u} + P(\mathbf{f})) = \rho \, \mathcal{A}_{\rho}(\mathbf{u}) \end{cases}$$

- ullet Commutator form 10 : ${\cal A}_{
 ho}({f u}):=rac{lpha}{{
 m deg}}[L_{\phi},{f u}](
 ho)$,

$$[L_{\phi}, \mathbf{u}](\rho) = L_{\phi}(\rho \mathbf{u}) - L_{\phi}(\rho)\mathbf{u}, \qquad L_{\phi}(g) := \int_{\mathbb{R}^d} \phi(\mathbf{x}, \mathbf{y})(g(\mathbf{y}) - g(\mathbf{x}))d\mathbf{y}$$

$$\text{Stress tensor}^{10b} \qquad P_{ij}(\mathbf{f}) = \int_{\mathbb{R}^d} (\mathbf{v}_i - \mathbf{u}_i)(\mathbf{v}_j - \mathbf{u}_j)\mathbf{f}(\mathbf{t}, \mathbf{x}, \mathbf{v})d\mathbf{v} \equiv 0$$

Stress tensor^{10b}
$$P_{ij}(\mathbf{f}) = \int_{\mathbb{R}^d} (\mathbf{v}_i - \mathbf{u}_i)(\mathbf{v}_j - \mathbf{u}_j) \mathbf{f}(\mathbf{t}, \mathbf{x}, \mathbf{v}) d\mathbf{v} \equiv 0$$

¹⁰R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016)

$$\begin{cases} \text{ mass : } & \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0 \\ \text{ momentum : } & \partial_t (\rho \mathbf{u}) + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u} + P(\mathbf{f})) = \rho \, \mathcal{A}_{\rho}(\mathbf{u}) \end{cases}$$

- Non-local <u>alignment</u> $\mathcal{A}_{\rho}(\mathbf{u}) = \frac{\alpha}{\deg} \int_{\mathbb{R}^d} \phi(\mathbf{x}, \mathbf{y}) (\mathbf{u}(t, \mathbf{y}) \mathbf{u}(t, \mathbf{x})) \rho(t, \mathbf{y}) d\mathbf{y}$
- ullet Commutator form 10 : ${\color{red} {\cal A}_{
 ho}}({f u}):=rac{lpha}{\deg}[L_{\phi},{f u}](
 ho)$,

$$[L_{\phi},\mathbf{u}](
ho) = L_{\phi}(
ho\mathbf{u}) - L_{\phi}(
ho)\mathbf{u}, \qquad L_{\phi}(g) := \int_{\mathbb{R}^d} \phi(\mathbf{x},\mathbf{y})(g(\mathbf{y}) - g(\mathbf{x}))d\mathbf{y}$$

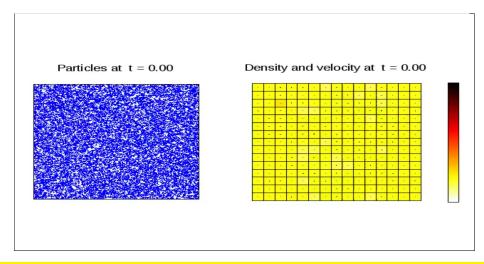
Stress tensor^{10b}
$$P_{ij}(\mathbf{f}) = \int_{\mathbb{R}^d} (\mathbf{v}_i - \mathbf{u}_i)(\mathbf{v}_j - \mathbf{u}_j) \mathbf{f}(\mathbf{t}, \mathbf{x}, \mathbf{v}) d\mathbf{v} \equiv 0$$

Transport+Alignment:
$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla_{\mathbf{x}})\mathbf{u} = \frac{\mathcal{A}_{\rho}(\mathbf{u})}{\mathcal{A}_{\rho}(\mathbf{u})} = \frac{\alpha}{\deg}[L_{\phi}, \mathbf{u}](\rho)$$

¹⁰R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016) ^{10b}Ha & ET(2008); Carrillo et. al.(2012); Karper, Mellet, Trivisa (2013)

Hydrodynamic vs. agent-base description

Vicsek model: agent-base model vs. hydrodynamic description



Flocking behavior – bounded kernels

• Classical solutions must flock

11

Flocking behavior – bounded kernels

• Classical solutions must flock

$$\begin{array}{lcl} \rho_t + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) & = & 0, & \underline{\text{compactly supported } \rho_0} \\ \mathbf{u}_t + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} & = & \mathcal{A}_{\rho}(\mathbf{u}), & (\mathcal{A}_{\rho}(\mathbf{u}) = \frac{\alpha}{\deg} [L_{\phi}, \mathbf{u}](\rho)) \end{array}$$

Flocking behavior - bounded kernels

• Classical solutions must flock

$$\rho_t + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0, \qquad \underbrace{\text{compactly supported}}_{t} \rho_0$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} = \underbrace{\mathcal{A}_{\rho}}_{t}(\mathbf{u}), \qquad (\underbrace{\mathcal{A}_{\rho}}_{t}(\mathbf{u}) = \frac{\alpha}{\deg}[L_{\phi}, \mathbf{u}](\rho))$$

$$\underbrace{\text{Theorem}^{11}}_{t}. \text{ Set diameter } [\mathbf{u}(t)]_{\infty} := \sup_{\mathbf{x}, \mathbf{y} \in \text{Supp } \rho(t, \cdot)} |\mathbf{u}(t, \mathbf{x}) - \mathbf{u}(t, \mathbf{y})|$$

$$\underbrace{\text{If } \mathbf{u} \in C^1 \ \, \rightsquigarrow \ \, \frac{d}{dt}[\mathbf{u}(t)] \leqslant -\alpha \, \mu(t) \, [\mathbf{u}(t)] :$$

$$\mu_{\infty}(t) \text{ is coefficient of ergodicity } \geqslant \min_{\mathbf{x}, \mathbf{y} \in \text{Supp } \rho(t, \cdot)} \phi(|\mathbf{x} - \mathbf{y}|)$$

$$\underbrace{\text{Then } \underline{\mathbf{global}}}_{t} \text{ interaction } \int_{0}^{\infty} \phi(s) ds = \infty \ \, \rightsquigarrow \ \, \text{unconditional flocking}^{11b} :$$

$$\underbrace{\mathbf{u}(t, \cdot) \xrightarrow{t \to \infty}_{t} \overline{\mathbf{u}}}_{t}$$

$$\underbrace{\mathbf{u}(t, \cdot) \xrightarrow{t \to \infty}_{t} \overline{\mathbf{u}}}_{t}$$

¹¹ET & C. Tan, Proc. Roy. Soc. A (2014);

^{11b}Independent of the closure relation! S.-Y. Ha & ET, KRM (2008)

Flocking behavior - bounded kernels

upported a

• Classical solutions must flock

$$\begin{array}{lcl} \rho_t + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) & = & 0, & \underline{\text{compactly supported } \rho_0} \\ \mathbf{u}_t + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} & = & \mathcal{A}_{\rho}(\mathbf{u}), & (\mathcal{A}_{\rho}(\mathbf{u}) = \frac{\alpha}{\deg} [L_{\phi}, \mathbf{u}](\rho)) \end{array}$$

$$\underline{\text{If }} \mathbf{u} \in C^1 \implies \frac{\mathsf{d}}{\mathsf{d}t} [\mathbf{u}(t)] \leqslant -\alpha \, \mu(t) [\mathbf{u}(t)]:$$

$$\mu_{\infty}(t)$$
 is coefficient of ergodicity $\geqslant \min_{\mathbf{r}, \mathbf{x}, \mathbf{y} \in \mathsf{Supp}\, \rho(t, \cdot)} \phi(|\mathbf{x} - \mathbf{y}|)$

Then global interaction $\int_{-\infty}^{\infty} \phi(s) ds = \infty \implies \text{unconditional flocking}^{11b}$:

$$\mbox{unconditional flocking} \dots \left\{ \begin{aligned} \mathbf{u}(t,\cdot) &\xrightarrow{t \to \infty} \overline{\mathbf{u}} \\ \rho(t,\mathbf{x}) - \rho_{\infty}(\mathbf{x} - t\overline{\mathbf{u}}) &\xrightarrow{t \to \infty} 0 \end{aligned} \right.$$

• When does $\mathbf{u}(t,\cdot) \in C^1$ -solution exist? What about <u>local</u> interaction?

¹¹ET & C. Tan, Proc. Roy. Soc. A (2014);

^{11b}Independent of the closure relation! S.-Y. Ha & ET, KRM (2008)

We have a much larger class in mind...

$$\mathbf{u}_t + \mathbf{u} \cdot
abla \mathbf{u} = [L_{\phi}, \mathbf{u}](
ho) = \int_{\mathbb{R}^d} \phi(|\mathbf{x} - \mathbf{y}|) (\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x}))
ho(\mathbf{y}) d\mathbf{y}$$

We have a much larger class in mind...

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = [L_{\phi}, \mathbf{u}](
ho) = \int_{\mathbb{R}^d} \phi(|\mathbf{x} - \mathbf{y}|) (\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x})) \rho(\mathbf{y}) d\mathbf{y}$$

• Bounded $\phi \in L^1 \cap L^\infty$ — but ϕ need not necessarily positive

We have a much larger class in mind...

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = [L_{\phi}, \mathbf{u}](
ho) = \int_{\mathbb{R}^d} \phi(|\mathbf{x} - \mathbf{y}|) (\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x})) \rho(\mathbf{y}) d\mathbf{y}$$

- Bounded $\phi \in L^1 \cap L^\infty$ but ϕ need not necessarily positive
- Singular ϕ 's Fractional dissipation: $L = -(-\Delta)^{\beta/2} \iff \phi_{\beta}(\mathbf{x}) = |\mathbf{x}|^{-(d+\beta)}$

$$\rightarrow \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = [L_{\beta}, \mathbf{u}](\rho) = \int_{\mathbb{R}^d} \frac{\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x})}{|\mathbf{x} - \mathbf{y}|^{d+\beta}} \, \rho(\mathbf{y}) d\mathbf{y}, \quad \beta < 2$$

We have a much larger class in mind...

$$\mathbf{u}_t + \mathbf{u} \cdot
abla \mathbf{u} = [L_\phi, \mathbf{u}](
ho) = \int_{\mathbb{R}^d} \phi(|\mathbf{x} - \mathbf{y}|) (\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x}))
ho(\mathbf{y}) d\mathbf{y}$$

- Bounded $\phi \in L^1 \cap L^\infty$ but ϕ need not necessarily positive
- Singular ϕ 's Fractional dissipation: $L = -(-\Delta)^{\beta/2} \iff \phi_{\beta}(\mathbf{x}) = |\mathbf{x}|^{-(d+\beta)}$

$$\rightarrow \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = [L_{\beta}, \mathbf{u}](\rho) = \int_{\mathbb{R}^d} \frac{\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x})}{|\mathbf{x} - \mathbf{y}|^{d+\beta}} \, \rho(\mathbf{y}) d\mathbf{y}, \quad \beta < 2$$

• "Local action" — Limiting case $\beta=2$ — Navier-Stokes eqs. $L=\Delta$

$$\rightsquigarrow$$
 $(\rho \mathbf{u})_t + \nabla(\rho \mathbf{u} \otimes \mathbf{u}) = \nabla(\rho^2 D \mathbf{u}), \quad D \mathbf{u} = \{\partial_i u_j\}$

 \bullet For bounded ϕ 's — under certain critical threshold conditions in configuration space

12

- For bounded ϕ 's under certain critical threshold conditions in configuration space
- For NS eqs¹² ($\beta = 2$): $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = \text{div}(\rho^2 \nabla \mathbf{u})$

¹²Mellet, Vasseur, C. Yu, ...

- For bounded ϕ 's under certain critical threshold conditions in configuration space
- For NS eqs¹² ($\beta = 2$): $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = \text{div}(\rho^2 \nabla \mathbf{u})$
- For singular $\phi_{\beta}(x) = |x|^{-(d+\beta)}$ for $\beta \in [1,2)$

¹²Mellet, Vasseur, C. Yu, . . .

^{12b}R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016);

- For bounded ϕ 's under certain critical threshold conditions in configuration space
- For NS eqs¹² ($\beta = 2$): $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = \text{div}(\rho^2 \nabla \mathbf{u})$
- For singular $\phi_{\beta}(x) = |x|^{-(d+\beta)}$ for $\beta \in [1,2)$
- \star No threshold restriction for singular kernels^{12b} $1 \leqslant \beta \leqslant 2!$

¹²Mellet, Vasseur, C. Yu, . . .

^{12b}R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016);

- For bounded ϕ 's under certain critical threshold conditions in configuration space
- For NS eqs¹² ($\beta = 2$): $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = \text{div}(\rho^2 \nabla \mathbf{u})$
- For singular $\phi_{\beta}(x) = |x|^{-(d+\beta)}$ for $\beta \in [1,2)$
- * No threshold restriction for singular kernels $1 \le \beta \le 2!$
- $\star \beta = 1$ is critical ...

¹²Mellet, Vasseur, C. Yu, . . .

^{12b}R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016);

- \bullet For bounded ϕ 's under certain critical threshold conditions in configuration space
- For NS eqs¹² ($\beta = 2$): $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = \text{div}(\rho^2 \nabla \mathbf{u})$
- For singular $\phi_{\beta}(x) = |x|^{-(d+\beta)}$ for $\beta \in [1,2)$
- \star No threshold restriction for singular kernels^{12b} $1 \leqslant \beta \leqslant 2!$
- $\star \beta = 1$ is critical ... in fact, the whole range $0 < \beta < 1$ is critical! 12c

¹²Mellet, Vasseur, C. Yu, . . .

^{12b}R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016);

^{12c}Do, Kiselev, Ryzhik & Tan, Global regularity for fractional Euler alignment (2017)

- \bullet For bounded ϕ 's under certain critical threshold conditions in configuration space
- For NS eqs¹² ($\beta = 2$): $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = \operatorname{div}(\rho^2 \nabla \mathbf{u})$
- For singular $\phi_{\beta}(x) = |x|^{-(d+\beta)}$ for $\beta \in [1,2)$
- \star No threshold restriction for singular kernels^{12b} $1 \leqslant \beta \leqslant 2!$
- $\star \beta = 1$ is critical ... in fact, the whole range $0 < \beta < 1$ is critical! 12c
- \star In contrast to blow-up in fractional Burgers: regularity iff 12d $eta\geqslant 1$

$$u_t + uu_x = \int_{\mathbb{R}} \frac{u(y) - u(x)}{|x - y|^{1+\beta}} dy, \qquad \beta < 2$$

• The role of (i) no vacuum and (ii) the spectral gap in 2D dynamics

¹²Mellet, Vasseur, C. Yu, . . .

^{12b}R. Shvydkoy & ET, Eulerian dynamics with commutator forcing (2016);

^{12c}Do, Kiselev, Ryzhik & Tan, Global regularity for fractional Euler alignment (2017)

^{12d}Caffarelli-Vasseur, Kiselev-Nazarov, Constantin-Vicol

Progress — mostly one- and two-dimensional models

ullet Critical threshold – 1D flocking hydrodynamics 13

¹³Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

Progress — mostly one- and two-dimensional models

ullet Critical threshold – 1D flocking hydrodynamics 13

¹³Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

 $^{^{13}b}\mathsf{Shvydkoy}\ \&\ \mathsf{ET}\ \mathsf{Eulerian}\ \mathsf{dynamics}\ \mathsf{with}\ \mathsf{commutator}\ \mathsf{forcing}.\ \mathsf{I},\ \mathsf{II}\ \mathsf{and}\ \mathsf{III}\ (2017)$

Progress — mostly one- and two-dimensional models

ullet Critical threshold – 1D flocking hydrodynamics 13

• Flocking – fractional dissipation 13b : $\phi_{\beta}(x) = |x|^{-(1+\beta)}$

ullet Spectral gap in 2D flocking hydrodynamics 13c

¹³Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

 $^{^{13}b}$ Shvydkoy & ET Eulerian dynamics with commutator forcing. I, II and III (2017) 13c S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

• 1D alignment:

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

• Rewrite ... $\rho_t = -(\rho u)_x$

$$u_t + uu_x = \phi * (\rho u) - u(\phi * \rho)$$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

- Rewrite ... $\rho_t = -(\rho u)_x$ $u_t + uu_x = \phi * (\rho u) u(\phi * \rho)$
- ullet Differentiate along the particle path: set $\{\cdot\}':=\partial_t+u\partial_x$ and $\mathsf{d}:=u_\mathsf{x}$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

- Rewrite ... $\rho_t = -(\rho u)_x$ $u_t + u u_x = \phi * (\rho u) u(\phi * \rho)$
- ullet Differentiate along the particle path: set $\{\cdot\}':=\partial_t+u\partial_x$ and $\mathsf{d}:=u_x$

$$d' + d^2 = \phi * (\rho u)_x \qquad - u(\phi * \rho)_x - u_x(\phi * \rho)$$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

- Rewrite ... $\rho_t = -(\rho u)_X$ $u_t + u u_X = \phi * (\rho u) u (\phi * \rho)$
- ullet Differentiate along the particle path: set $\{\cdot\}':=\partial_t+u\partial_x$ and $\mathsf{d}:=u_x$

$$d' + d^2 = \overbrace{\phi * (\rho u)_x}^{- \phi * \rho_t} - u(\phi * \rho)_x - u_x(\phi * \rho)$$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

- Rewrite ... $\rho_t = -(\rho u)_x$ $u_t + u u_x = \phi * (\rho u) u(\phi * \rho)$
- ullet Differentiate along the particle path: set $\{\cdot\}':=\partial_t+u\partial_x$ and $\mathsf{d}:=u_x$

$$d' + d^2 = \overbrace{\phi * (\rho u)_x}^{-(\phi * \rho)_t} - u(\phi * \rho)_x - u_x(\phi * \rho)$$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

- Rewrite ... $\rho_t = -(\rho u)_x$ $u_t + uu_x = \phi * (\rho u) u(\phi * \rho)$
- ullet Differentiate along the particle path: set $\{\cdot\}':=\partial_t+u\partial_x$ and $\mathsf{d}:=u_x$

$$d' + d^2 = \overbrace{\phi * (\rho u)_x}^{-(\phi * \rho)_t} - u(\phi * \rho)_x - u_x(\phi * \rho) = -(\partial_t + u\partial_x)\phi * \rho - d(\phi * \rho)$$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

• 1D alignment:

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

- Rewrite ... $\rho_t = -(\rho u)_X$ $u_t + uu_X = \phi * (\rho u) u(\phi * \rho)$
- ullet Differentiate along the particle path: set $\{\cdot\}':=\partial_t+u\partial_x$ and $\mathsf{d}:=u_x$

$$d' + d^2 = \overbrace{\phi * (\rho u)_x}^{-(\phi * \rho)_t} - u(\phi * \rho)_x - u_x(\phi * \rho) = -(\partial_t + u\partial_x)\phi * \rho - d(\phi * \rho)$$

• Riccati balanced by alignment: $(d + \phi * \rho)' = -d(d + \phi * \rho)$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

$$\rho_t + (\rho u)_x = 0$$

$$u_t + uu_x = \int \phi(|x - y|)(u(t, y) - u(t, x)\rho(t, y)dy$$

- Rewrite ... $\rho_t = -(\rho u)_x$ $u_t + uu_x = \phi * (\rho u) u(\phi * \rho)$
- ullet Differentiate along the particle path: set $\{\cdot\}':=\partial_t+u\partial_x$ and $\mathsf{d}:=u_x$

$$d' + d^2 = \overbrace{\phi * (\rho u)_x}^{-(\phi * \rho)_t} - u(\phi * \rho)_x - u_x(\phi * \rho) = -(\partial_t + u\partial_x)\phi * \rho - d(\phi * \rho)$$

- Riccati balanced by alignment: $(d + \phi * \rho)' = -d(d + \phi * \rho)$
- Global smooth solution under a critical threshold condition iff u_0' "is not too negative": $u_0'(x) + \phi * \rho_0(x) \geqslant 0$

¹⁴Y.-P. Choi, J. Carrillo, E.T., C. Tan (2015)

$$(\mathsf{d} + \phi * \rho)' + \mathsf{d}(\mathsf{d} + \phi * \rho) = 0$$

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\overbrace{\mathbf{d} + \phi * \rho}^{\mathbf{e} := u_{\mathsf{x}} + \phi * \rho}) = 0$$

$$(d + \phi * \rho)' + d(d + \phi * \rho) = 0 \quad \Leftrightarrow \quad e' + u_x e = 0$$

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{\mathsf{x}}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1+\beta}} dy, \ \phi_\beta = |x|^{-(1+\beta)}$$

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{x}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1+\beta}} dy, \ \phi_\beta = |x|^{-(1+\beta)}$$

•
$$e := u_x + L_\beta(\rho)$$
: $e' + u_x e = 0$

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{\mathsf{x}}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1 + \beta}} dy, \ \phi_\beta = |x|^{-(1 + \beta)}$$

•
$$e := u_x + L_\beta(\rho)$$
: $e' + u_x e = 0$ just like $\rho' + u_x \rho = 0$

•
$$\frac{e}{\rho}$$
 propagates along particle paths: $(\frac{e}{\rho})' = 0$

$$\Rightarrow \frac{\mathsf{e}}{\rho} = \frac{\mathsf{e}_0}{\rho_0} := c_0$$
 and therefore

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{\mathsf{x}}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1+\beta}} dy, \ \phi_\beta = |x|^{-(1+\beta)}$$

- $\mathbf{e} := \mathbf{u}_{\mathsf{x}} + \mathbf{L}_{\beta}(\rho)$: $\mathbf{e}' + \mathbf{u}_{\mathsf{x}}\mathbf{e} = 0$ just like $\rho' + \mathbf{u}_{\mathsf{x}}\rho = 0$
- $\frac{e}{\rho}$ propagates along particle paths: $(\frac{e}{\rho})' = 0$

$$\Rightarrow \frac{\mathrm{e}}{\rho} = \frac{\mathrm{e}_0}{\rho_0} := c_0$$
 and therefore ρ is bounded iff $\mathrm{e} = u_{\mathsf{x}} + L_{\beta}(\rho)$ is

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{x}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1 + \beta}} dy, \ \phi_\beta = |x|^{-(1 + \beta)}$$

- $e := u_x + L_\beta(\rho)$: $e' + u_x e = 0$ just like $\rho' + u_x \rho = 0$
- $\frac{\mathsf{e}}{\rho}$ propagates along particle paths: $\left(\frac{\mathsf{e}}{\rho}\right)' = 0$ $\Rightarrow \frac{\mathsf{e}}{\rho} = \frac{\mathsf{e}_0}{\rho_0} := c_0$ and therefore ρ is bounded iff $\mathsf{e} = u_x + L_\beta(\rho)$ is
- A bound on the density $\rho_+(t) = \max_x \rho(x, t) < \infty$:

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{\mathbf{x}}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1 + \beta}} dy, \ \phi_\beta = |x|^{-(1 + \beta)}$$

- $\mathbf{e} := \mathbf{u}_{\mathsf{x}} + \mathbf{L}_{\beta}(\rho)$: $\mathbf{e}' + \mathbf{u}_{\mathsf{x}}\mathbf{e} = 0$ just like $\rho' + \mathbf{u}_{\mathsf{x}}\rho = 0$
- $\frac{e}{\rho}$ propagates along particle paths: $\left(\frac{e}{\rho}\right)'=0$

$$\Rightarrow \frac{\mathsf{e}}{\rho} = \frac{\mathsf{e}_0}{\rho_0} := c_0$$
 and therefore ρ is bounded iff $\mathsf{e} = u_\mathsf{x} + L_\beta(\rho)$ is

• A bound on the density $\rho_+(t) = \max_x \rho(x, t) < \infty$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_+ + u_{\mathsf{x}}\rho_+ = 0$$

$$(d + \phi * \rho)' + d(d + \phi * \rho) = 0 \implies e' + u_x e = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1 + \beta}} dy, \ \phi_\beta = |x|^{-(1 + \beta)}$$

- $\mathbf{e} := \mathbf{u}_{\mathsf{x}} + \mathbf{L}_{\beta}(\rho)$: $\mathbf{e}' + \mathbf{u}_{\mathsf{x}}\mathbf{e} = 0$ just like $\rho' + \mathbf{u}_{\mathsf{x}}\rho = 0$
- $\frac{e}{\rho}$ propagates along particle paths: $(\frac{e}{\rho})' = 0$

$$\Rightarrow \frac{\mathsf{e}}{\rho} = \frac{\mathsf{e}_0}{\rho_0} := c_0$$
 and therefore ρ is bounded iff $\mathsf{e} = u_\mathsf{x} + L_\beta(\rho)$ is

• A bound on the density $\rho_+(t) = \max_x \rho(x, t) < \infty$:

$$\frac{\mathsf{d}}{\mathsf{d}t}
ho_+ = (L_eta(
ho_+) - \mathsf{e}_+)
ho_+$$

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{\mathbf{x}}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1+\beta}} dy, \ \phi_\beta = |x|^{-(1+\beta)}$$

- $e := u_x + L_\beta(\rho)$: $e' + u_x e = 0$ just like $\rho' + u_x \rho = 0$
- $\frac{e}{a}$ propagates along particle paths: $\left(\frac{e}{a}\right)' = 0$ $\Rightarrow \frac{e}{\rho} = \frac{e_0}{\rho_0} := c_0$ and therefore ρ is bounded iff $e = u_x + L_\beta(\rho)$ is
- A bound on the density $\rho_+(t) = \max_x \rho(x, t) < \infty$:

$$rac{\mathsf{d}}{\mathsf{d}t}
ho_+ = (L_eta(
ho_+) - e_+)
ho_+$$

Quadratic growth $-{
m e}_+
ho_+\sim c_0
ho_+^2~$ vs. decay $L_{eta}(
ho_+)<-c_{eta}
ho_+,~-c_{eta}\ll-1$

$$(\mathbf{d} + \phi * \rho)' + \mathbf{d}(\mathbf{d} + \phi * \rho) = 0 \quad \Leftrightarrow \quad \mathbf{e}' + u_{\mathbf{x}}\mathbf{e} = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1+\beta}} dy, \ \phi_\beta = |x|^{-(1+\beta)}$$

- $e := u_x + L_\beta(\rho)$: $e' + u_x e = 0$ just like $\rho' + u_x \rho = 0$
- $\frac{e}{a}$ propagates along particle paths: $\left(\frac{e}{a}\right)' = 0$ $\Rightarrow \frac{e}{\rho} = \frac{e_0}{\rho_0} := c_0$ and therefore ρ is bounded iff $e = u_x + L_\beta(\rho)$ is
- A bound on the density $\rho_+(t) = \max_x \rho(x, t) < \infty$:

$$rac{\mathsf{d}}{\mathsf{d}t}
ho_+ = (L_eta(
ho_+) - e_+)
ho_+$$

Quadratic growth $-{
m e}_+
ho_+\sim c_0
ho_+^2~$ vs. decay $L_{eta}(
ho_+)<-c_{eta}
ho_+,~-c_{eta}\ll-1$

$$(d + \phi * \rho)' + d(d + \phi * \rho) = 0 \quad \Leftrightarrow \quad e' + u_x e = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1+\beta}} dy, \ \phi_\beta = |x|^{-(1+\beta)}$$

- $\mathbf{e} := \mathbf{u}_{\mathbf{x}} + \mathbf{L}_{\beta}(\rho)$: $\mathbf{e}' + \mathbf{u}_{\mathbf{x}}\mathbf{e} = 0$ just like $\rho' + \mathbf{u}_{\mathbf{x}}\rho = 0$
- $\frac{e}{\rho}$ propagates along particle paths: $\left(\frac{e}{\rho}\right)' = 0$

$$\Rightarrow \frac{\mathsf{e}}{\rho} = \frac{\mathsf{e}_0}{\rho_0} := c_0$$
 and therefore ρ is bounded iff $\mathsf{e} = u_\mathsf{x} + L_\beta(\rho)$ is

• A bound on the density $\rho_+(t) = \max_x \rho(x, t) < \infty$:

$$\frac{\mathsf{d}}{\mathsf{d}t}\rho_+ = (L_\beta(\rho_+) - e_+)\rho_+ \leqslant (-c_\beta + c_0)\rho_+^2$$

Quadratic growth $-{
m e}_+
ho_+ \sim c_0
ho_+^2~$ vs. decay $L_{eta}(
ho_+) < -c_{eta}
ho_+,~ -c_{eta} \ll -1$

$$(d + \phi * \rho)' + d(d + \phi * \rho) = 0 \quad \Leftrightarrow \quad e' + u_x e = 0$$

•
$$u_t + uu_x = [L_\beta, u](\rho), \quad L_\beta(\rho) = \text{p.v.} \int_{\mathbb{R}} \frac{\rho(y) - \rho(x)}{|x - y|^{1 + \beta}} dy, \ \phi_\beta = |x|^{-(1 + \beta)}$$

- $\mathbf{e} := \mathbf{u}_{\mathsf{x}} + \mathbf{L}_{\beta}(\rho)$: $\mathbf{e}' + \mathbf{u}_{\mathsf{x}}\mathbf{e} = 0$ just like $\rho' + \mathbf{u}_{\mathsf{x}}\rho = 0$
- $\frac{e}{\rho}$ propagates along particle paths: $(\frac{e}{\rho})' = 0$

$$\Rightarrow \frac{\mathsf{e}}{\rho} = \frac{\mathsf{e}_0}{\rho_0} := c_0$$
 and therefore ρ is bounded iff $\mathsf{e} = u_\mathsf{x} + L_\beta(\rho)$ is

• A bound on the density $\rho_+(t) = \max_x \rho(x, t) < \infty$:

$$\frac{\mathsf{d}}{\mathsf{d}t}\rho_+ = (L_\beta(\rho_+) - e_+)\rho_+ \leqslant (-c_\beta + c_0)\rho_+^2$$

Quadratic growth $-{
m e}_+
ho_+\sim c_0
ho_+^2~$ vs. decay $L_{eta}(
ho_+)<-c_{eta}
ho_+,~-c_{eta}\ll-1$

• Why $\rho_+(t) = \max_x \rho(x, t) < \infty$ matters?

$$ho_t + u
ho_{\mathsf{x}} + u_{\mathsf{x}}
ho = 0$$
 'implies' $u_{\mathsf{x}} > -\infty$ (at least along particle path)

¹⁵Constantin-Vicol (2012);

$$ho_t + u
ho_{\scriptscriptstyle X} + u_{\scriptscriptstyle X}
ho = 0$$
 'implies' $u_{\scriptscriptstyle X} > -\infty$ (at least along particle path)

• In fact, substitution $u_x = e - \Lambda^{\beta} \rho$ yields <u>diffusive</u> mass eq.

$$\rho_t + u\rho_x + e\rho = \rho\Lambda^{\beta}\rho, \qquad \Lambda^{\beta}g = \text{p.v.} \int_{\mathbb{R}} \frac{g(y) - g(x)}{|x - y|^{1+\beta}} dy$$

and likewise for momentum — $m_t + u m_x + e m =
ho \Lambda^{eta} m$ (eta = 1 critical)

¹⁵Constantin-Vicol (2012):

$$ho_t + u
ho_{\mathsf{x}} + u_{\mathsf{x}}
ho = 0$$
 'implies' $u_{\mathsf{x}} > -\infty$ (at least along particle path)

• In fact, substitution $u_x = e - \Lambda^{\beta} \rho$ yields <u>diffusive</u> mass eq.

$$ho_t + u
ho_x + \mathrm{e}
ho =
ho \Lambda^{eta}
ho, \qquad \Lambda^{eta} g = \mathrm{p.v.} \int_{\mathbb{R}} rac{g(y) - g(x)}{|x - y|^{1 + eta}} \mathrm{d} y$$

and likewise for momentum — $m_t + u m_x + e m =
ho \Lambda^{eta} m$ (eta = 1 critical)

• Drift + fractional diffusion: no Schauder estimate ...but pointwise

$$\frac{d}{dt}\rho_x^2(x) \leqslant c_1 + c_2 |\rho_x|^{2+\gamma} - c_3(D\rho_x)(x), \ \ (Dg)(x) := \int_{\mathbb{R}} \frac{|g(x) - g(x+y)|^2}{|y|^2} dy$$

¹⁵Constantin-Vicol (2012);

$$ho_t + u
ho_{
m x} + u_{
m x}
ho = 0$$
 'implies' $u_{
m x} > -\infty$ (at least along particle path)

• In fact, substitution $u_x = e - \Lambda^{\beta} \rho$ yields <u>diffusive</u> mass eq.

$$ho_t + u
ho_x + \mathrm{e}
ho =
ho \Lambda^{\beta}
ho, \qquad \Lambda^{\beta} g = \mathrm{p.v.} \int_{\mathbb{R}} rac{g(y) - g(x)}{|x - y|^{1 + eta}} \mathrm{d} y$$

and likewise for momentum — $m_t + u m_x + e m =
ho \Lambda^{eta} m$ (eta = 1 critical)

• Drift + fractional diffusion: no Schauder estimate ...but pointwise

$$\frac{d}{dt}\rho_x^2(x) \leqslant c_1 + c_2 |\rho_x|^{2+\gamma} - c_3(D\rho_x)(x), \ (Dg)(x) := \int_{\mathbb{R}} \frac{|g(x) - g(x+y)|^2}{|y|^2} dy$$

Nonlinear max. principle¹⁵ $D\rho_x(x) \geqslant c_4 |\rho_x(x)|^3 \rightsquigarrow |\rho|_{H^{3+\beta}}, |u|_{H^4} \leqslant Const.$

¹⁵Constantin-Vicol (2012):

$$ho_t + u
ho_{\mathsf{x}} + u_{\mathsf{x}}
ho = 0$$
 'implies' $u_{\mathsf{x}} > -\infty$ (at least along particle path)

• In fact, substitution $u_x = e - \Lambda^{\beta} \rho$ yields <u>diffusive</u> mass eq.

$$ho_t + u
ho_x + \mathrm{e}
ho =
ho \Lambda^{eta}
ho, \qquad \Lambda^{eta} g = \mathrm{p.v.} \int_{\mathbb{R}} rac{g(y) - g(x)}{|x - y|^{1 + eta}} \mathrm{d} y$$

and likewise for momentum — $m_t + u m_{\mathsf{x}} + e m =
ho \mathsf{\Lambda}^{eta} m$ (eta = 1 critical)

• Drift + fractional diffusion: no Schauder estimate ...but pointwise

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_x^2(x) \leqslant c_1 + c_2 |\rho_x|^{2+\gamma} - c_3(D\rho_x)(x), \ \ (Dg)(x) := \int_{\mathbb{R}} \frac{|g(x) - g(x+y)|^2}{|y|^2} \mathrm{d}y$$

Nonlinear max. principle¹⁵ $D\rho_x(x) \geqslant c_4 |\rho_x(x)|^3 \rightsquigarrow |\rho|_{H^{3+\beta}}, |u|_{H^4} \leqslant Const.$

• Flocking:
$$|\rho(\cdot,t)-\rho_{\infty}(x-t\overline{u})|\lesssim \mathrm{e}^{-\delta t}$$
 where $\overline{u}=\frac{m_0}{\rho_0}$

 $^{^{15}}$ Constantin-Vicol (2012); 15b Shvydkoy & ET, Eulerian dynamics II. Flocking (2017)

$$ho_t + u
ho_x + u_x
ho = 0$$
 'implies' $u_x > -\infty$ (at least along particle path)

• In fact, substitution $u_x = e - \Lambda^{\beta} \rho$ yields <u>diffusive</u> mass eq.

$$ho_t + u
ho_x + \mathrm{e}
ho =
ho \Lambda^{eta}
ho, \qquad \Lambda^{eta} g = \mathrm{p.v.} \int_{\mathbb{R}} rac{g(y) - g(x)}{|x - y|^{1 + eta}} \mathrm{d}y$$

and likewise for momentum — $m_t + u m_{\scriptscriptstyle X} + e m =
ho \Lambda^{eta} m$ (eta = 1 critical)

• Drift + fractional diffusion: no Schauder estimate ...but pointwise

$$\frac{d}{dt}\rho_x^2(x) \leqslant c_1 + c_2 |\rho_x|^{2+\gamma} - c_3(D\rho_x)(x), \ \ (Dg)(x) := \int_{\mathbb{R}} \frac{|g(x) - g(x+y)|^2}{|y|^2} dy$$

Nonlinear max. principle¹⁵ $D\rho_x(x) \geqslant c_4 |\rho_x(x)|^3 \rightsquigarrow |\rho|_{H^{3+\beta}}, |u|_{H^4} \leqslant Const.$

• Flocking:
$$|\rho(\cdot,t)-\rho_{\infty}(x-t\overline{u})|\lesssim \mathrm{e}^{-\delta t}$$
 where $\overline{u}=\frac{m_0}{\rho_0}$

ullet Global smooth solution 0 < eta < 2 with no CT; Singularity helps!

¹⁵Constantin-Vicol (2012); ^{15b}Shvydkoy & ET, Eulerian dynamics II. Flocking (2017)

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

• C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) - \mathbf{u} \phi * \rho$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i \mathbf{u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i \mathbf{u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho)(\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i {f u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho) (\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

• Now take the trace — trace(D) = div_x \mathbf{u} =: d ...

$$d_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} d + \operatorname{trace}(D^2) = \overbrace{\phi * \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u})} - (\phi * \rho) d - \mathbf{u} \cdot \nabla_{\mathbf{x}}(\phi * \rho)$$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

E

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i \mathbf{u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho) (\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

• Now take the trace — trace(D) = div_x \mathbf{u} =: d ...

$$d_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} d + \operatorname{trace}(D^2) = \overbrace{\phi * \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u})}^{-\varphi * \rho t} - (\phi * \rho) d - \mathbf{u} \cdot \nabla_{\mathbf{x}}(\phi * \rho)$$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i \mathbf{u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho) (\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

$$d_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} d + \operatorname{trace}(D^2) = \overbrace{\phi * \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u})}^{f} - (\phi * \rho) d - \mathbf{u} \cdot \nabla_{\mathbf{x}}(\phi * \rho)$$

$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}}) d + \operatorname{trace}(D^2) = -(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})(\phi * \rho) - (\phi * \rho) d$$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

6

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i \mathbf{u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho) (\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

$$\mathsf{d}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathsf{d} + \mathsf{trace}(D^2) = \overbrace{\phi * \mathsf{div}_{\mathbf{x}}(\rho \mathbf{u})}^{\bullet} - (\phi * \rho) \, \mathsf{d} - \mathbf{u} \cdot \nabla_{\mathbf{x}}(\phi * \rho)$$

$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}}) d + \operatorname{trace}(D^2) = -(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})(\phi * \rho) - (\phi * \rho) d$$

$$(\mathsf{d} + \phi * \rho)' + = -(\phi * \rho) \,\mathsf{d},$$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

0

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i \mathbf{u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho) (\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

$$\mathbf{d}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{d} + \operatorname{trace}(D^2) = \overbrace{\phi * \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u})}^{\mathsf{T}} - (\phi * \rho) \, \mathbf{d} - \mathbf{u} \cdot \nabla_{\mathbf{x}}(\phi * \rho)$$
$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{d} + \operatorname{trace}(D^2) = -(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})(\phi * \rho) - (\phi * \rho) \, \mathbf{d}$$

$$(d + \phi * \rho)' + \frac{d^2 + \eta^2}{2} = -(\phi * \rho) d,$$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

6

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- ullet Why spectral gap? $D=(\partial_i \mathbf{u}_j), \quad \eta(D):=\lambda_2(D)-\lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho)(\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

$$d_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} d + \operatorname{trace}(D^2) = \overbrace{\phi * \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u})}^{\mathsf{y}} - (\phi * \rho) d - \mathbf{u} \cdot \nabla_{\mathbf{x}}(\phi * \rho)$$

$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}}) d + \operatorname{trace}(D^2) = -(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})(\phi * \rho) - (\phi * \rho) d$$

$$(d + \phi * \rho)' + \frac{d^2 + \eta^2}{2} = -(\phi * \rho) d, \quad \eta^2(D) \equiv \eta^2(\mathcal{S}) - \frac{1}{2}\omega^2 \rightsquigarrow$$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

1

- C-S hydrodynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \phi * (\rho \mathbf{u}) \mathbf{u} \phi * \rho$
- Why spectral gap? $D = (\partial_i \mathbf{u}_j), \quad \eta(D) := \lambda_2(D) \lambda_1(D)$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \phi * \partial(\rho \mathbf{u}) - (\phi * \rho) (\partial \mathbf{u}) - \mathbf{u} \otimes \partial(\phi * \rho)$$

• Now take the trace — trace(D) = div_x \mathbf{u} =: d ...

$$d_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} d + \operatorname{trace}(D^2) = \overbrace{\phi * \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u})}^{\tau} - (\phi * \rho) d - \mathbf{u} \cdot \nabla_{\mathbf{x}}(\phi * \rho)$$

$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}}) d + \operatorname{trace}(D^2) = -(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})(\phi * \rho) - (\phi * \rho) d$$

$$(\mathsf{d} + \phi * \rho)' + \frac{\mathsf{d}^2 + \eta^2}{2} = -(\phi * \rho) \,\mathsf{d}, \quad \eta^2(D) \equiv \eta^2(\mathcal{S}) - \frac{1}{2}\omega^2 \iff$$

• Global regularity (+ flocking) provided: $\begin{cases} \operatorname{div}_{\mathbf{x}}(\mathbf{u}_0)(x) \geqslant -\phi * \rho_0(x), \\ \max_{x} |\eta(\mathcal{S}_0(x))| \leqslant \frac{1}{2}M_0\phi_{\infty} \end{cases}$

¹⁶S. He & ET, Global regularity of 2D flocking hydrodynamics (2017)

Back to the fundamentals¹⁷

R. Shvydkoy

¹⁷Vicsek & Zaferis, Collective motion (2012); Chate et. al. (2004,2008); Cavagna et. al., The starflag project (2008), Bialek et. al. (2013); E. O Wilson (ants) Sociobiology (1975) I. Couzin (locust, fish)

Back to the fundamentals¹⁷

Dynamics is based on the notion of geometric neighborhoods.
 Observations reveal dependence on topological neighborhoods

 ¹⁷Vicsek & Zaferis, Collective motion (2012); Chate et. al. (2004,2008);
 Cavagna et. al., The starflag project (2008), Bialek et. al. (2013);
 E. O Wilson (ants) Sociobiology (1975) I. Couzin (locust, fish)

Back to the fundamentals¹⁷

R. Shvydkoy

- Dynamics is based on the notion of geometric neighborhoods.
 Observations reveal dependence on topological neighborhoods
 - New paradigm (with R. Shvydkoy): interaction between agents does not only depends on the distance between them, but mainly on how crowded is the region of influence between them

 ¹⁷Vicsek & Zaferis, Collective motion (2012); Chate et. al. (2004,2008);
 Cavagna et. al., The starflag project (2008), Bialek et. al. (2013);
 E. O Wilson (ants) Sociobiology (1975) I. Couzin (locust, fish)

Back to the fundamentals¹⁷

R. Shvydkoy

- Dynamics is based on the notion of geometric neighborhoods.
 Observations reveal dependence on topological neighborhoods
 - New paradigm (with R. Shvydkoy): interaction between agents does not only depends on the distance between them, but mainly on how crowded is the region of influence between them
- Flocking behavior for global kernels.
 What about more realistic short-range interactions?

 ¹⁷Vicsek & Zaferis, Collective motion (2012); Chate et. al. (2004,2008);
 Cavagna et. al., The starflag project (2008), Bialek et. al. (2013);
 E. O Wilson (ants) Sociobiology (1975) I. Couzin (locust, fish)

Back to the fundamentals¹⁷

R. Shvydkoy

- Dynamics is based on the notion of geometric neighborhoods.
 Observations reveal dependence on topological neighborhoods
 - New paradigm (with R. Shvydkoy): interaction between agents does not only depends on the distance between them, but mainly on how crowded is the region of influence between them
- Flocking behavior for global kernels.
 What about more realistic short-range interactions?
 - (with R. Shvydkoy): Singular kernels which are adapted to the density. Regular kernels: if the variation of the density $\max \rho \min \rho$ is not too large relative to $1 \widehat{\phi}(k)$ but independent of $supp \, \phi$

 ¹⁷Vicsek & Zaferis, Collective motion (2012); Chate et. al. (2004,2008);
 Cavagna et. al., The starflag project (2008), Bialek et. al. (2013);
 E. O Wilson (ants) Sociobiology (1975) I. Couzin (locust, fish)

J. Morales

• A key point: in the discrete case requires propagation of connectivity; the density is bounded away from vacuum $\int_0^\infty \rho_-(t)dt = \infty$

J. Morales

- A key point: in the discrete case requires propagation of connectivity; the density is bounded away from vacuum $\int_0^\infty \rho_-(t)dt = \infty$
- Self-organized dynamics different type of "traits"
 Agents are equipped with traits that interact with the environment;
 there are 'genotype' traits that affect their readiness to interact.

J. Morales

- A key point: in the discrete case requires propagation of connectivity; the density is bounded away from vacuum $\int_0^\infty \rho_-(t)dt = \infty$
- Self-organized dynamics different type of "traits"
 Agents are equipped with traits that interact with the environment;
 there are 'genotype' traits that affect their readiness to interact.
 - (with J. Morales) agents adjust to their own (internal) intensities but they synchronize the group orientations; unifying Cucker-Smale and Kuramoto

J. Morales

- A key point: in the discrete case requires propagation of connectivity; the density is bounded away from vacuum $\int_0^\infty \rho_-(t)dt = \infty$
- Self-organized dynamics different type of "traits"
 Agents are equipped with traits that interact with the environment;
 there are 'genotype' traits that affect their readiness to interact.
 - (with J. Morales) agents adjust to their own (internal) intensities but they synchronize the group orientations; unifying Cucker-Smale and Kuramoto
- How different 'rules of engagement' dictate large time behavior?

KI-Net: Kinetic description of emerging challenges in multiscale problems of natural sciences

THANK YOU

Acknowledgment. Work was supported by NSF, Ki-Net and ONR.