

Peter Egelhof GSI Darmstadt, Germany

Workshop on Advances in Nuclear Physics, ANUP 2011

Goa, India November 7 – 8, 2011

- I. Introduction
- II. Intermediate Energy Elastic Proton Scattering- a Tool to Study the Radial Shape of Exotic Nuclei
- III. Recent Results on Halo Structures in Exotic Be and C Isotopes
- IV. Perspectives at the Future Facility FAIR: The EXL Project*
- V. Conclusions

^{*} **EXL**: **EX**otic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

I. Introduction

11

Gas jef

Charged

Beam in Storage Ring

classical method of nuclear spectroscopy:

- \Rightarrow light ion induced direct reactions: (p,p), (p,p'), (d,p), ...
- \Rightarrow to investigate exotic nuclei: inverse kinematics
- \Rightarrow Important information at low momentum transfer

past and present experiments:

- \Rightarrow light neutron-rich nuclei: skin, halo structures
- \Rightarrow only at external targets
- \Rightarrow new technology: concept of active target

future perspectives at FAIR:

- \Rightarrow profit from intensity upgrade (up to 10⁴ !!)
- \Rightarrow explore new regions of the chart of nuclides and new phenomena
- \Rightarrow use new and powerful methods:

EXL: direct reactions at internal NESR target

⇒ high luminosity even for very low momentum transfer measurements

Halo-Nuclei – a New Phenomenon of the Structure of Nuclei

Density Distribution of Nuclear Matter

extremely neutron-rich nuclei: neutron halo stable nuclei:

neutrons and protons equally distributed

<u>kaetyFuetaucetioFrascility FAIR:</u>

new information:

- total absorption cross section
 explore new regions of the chart of nuclides and new phenomena
 broakup reactioner kneck out
 broakup reactioner kneck out
- = bseakew, powers of halo (skin) structure reactions, transfer reactions - single particle (few body) structure
- elastic, inelastic scattering
- resonant states beyond the dripline

II. Intermediate Energy Elastic Proton Scatteringa Tool to Study the Radial Shape of Exotic Nuclei

The <u>radial shape and size of nuclei</u> is a <u>basic nuclear property</u> ! \Rightarrow of high interest for nuclear structure physics

method: intermediate energy elastic proton scattering

- ⇒ well established method for determination of nuclear matter distributions (of stable nuclei)
- \Rightarrow what about exotic nuclei?

Intermediate Energy Elastic Proton Scattering - a Tool to Study the Radial Shape of Halo Nuclei

aim: quantitative information on the nuclear matter distributions

<u>method:</u> intermediate energy (700 – 1000 MeV) elastic proton scattering

of special interest: light isotopes with halo-structure: ⁶He, ⁸He, ¹¹Li, ¹⁴Be, ⁸B, ¹⁷C(?)

for low momentum transfer:

- high sensitivity on the halo structure
- \Rightarrow determination of matter radii
- ⇒ determination of the radial shape of the nuclear matter distribution

Sensitivity of Elastic Proton Scattering on the Radial Shape of the Nuclear Matter Distribution

curvature of log (d σ /dt) \rightarrow halo structure

experimental conditions:

investigation of exotic nuclei
 ⇒ method of "Inverse Kinematics"

- high incident energies (E = 700 MeV/u)

 ¬¬ produce beam of exotic nuclei by projectile fra
 - \Rightarrow produce beam of exotic nuclei by projectile fragmentation at GSI: Fragment Separator FRS
- low beam intensities: $10^2 10^4 \text{ sec}^{-1}$
- low recoil energies: $T_R \le 10 \text{ MeV}$
 - ⇒ needs thin target and large solid angle detector solution: recoil detector <u>"IKAR"</u> as <u>active target</u>

The TPC-Ionization Chamber IKAR as Active Target

(provided by PNPI St. Petersburg) <u>detection principle:</u> H₂-target = detector for recoil protons

 H_2 -pressure:10 atmentrance window:0.5 mm Beryliumtarget thickness:30 mg/cm² (6 independent sections)beam rate: $\leq 10^4$ /sec

<u>but</u>: method limited to $Z \le 6!$

The IKAR Experimental Setup

Concept of the Data Analysis

- Glauber multiple-scattering theory for calculation of cross sections:
 - use measured free pp, pn-cross sections as input (in medium effects negligible)
 - fold with nucleon density distribution
 - take into account multiple scattering (all terms!) (small for region of nuclear halo!)
- variation of the nucleon density distribution:
 - a) phenomenological parametrizations (point matter densities):
 - G: 1 Gaussian
 - SF: Symmetrized Fermi
 - GG: 2 Gaussians
 - GO: Gaussian + Harmonic Oscillator
 - b) "model independent" analysis:

SOG: Sum Of Gaussians

(standard method for electron scattering data:

I. Sick, Nucl. Phys. A 218 (1974) 509)

Investigation of Nuclear Matter Density Distributions of Halo Nuclei by Elastic Proton Scattering at Low Momentum Transfer

nuclear matter radii:

nuclear matter

distributions:

nucleus	R _{matter} , fm	R _{core} , fm	R _{halo} , fm	
⁴ He	1.49 (3)			
⁸ He	2.53(8)	1.55 (15)	3.22 (14)	
⁹ Li	2.44 (6)			
¹¹ Li	3.71 (20)	2.53 (3)	6.85 (58)	

- extended neutron distribution in ⁸He and ¹¹Li obtained
- size of core, halo and total matter distribution determined with high accuracy
- the picture of a ⁹Li (⁴He) core + 2 (4) valence neutron-structure is confirmed for ¹¹Li and ⁸He

- needs input on proton (charge) distributions
 - \Rightarrow use data from laser spectroscopy (isotope shift measurements):
 - for ⁶He: L.-B. Wang et al., PRL 93, 142501 (2004)
 - for ^{8,9,11}Li: R. Sanchez et al., PRL 96, 033002 (2006)

M. Puchalski et al., PRL 97, 1330016 (2006)

• neutron radius:

$$R_n^{2} = \frac{1}{N_n} * \left(A R_m^{2} - N_p R_p^{2} \right)$$

• neutron skin size:

$$\delta_{np} = R_n - R_p$$

Summary of all Data on Nuclear Radii

nucleus	R _m , fm	R _{core} , fm	R _{halo} , fm	R _p *, fm	R _n , fm	δ_{np} , fm
⁶ He	2.45 (10)	1.88 (12)	3.31 (28)	1.91 (2)	2.60 (7)	0.69 (7)
⁸ Li	2.50 (6)			2.15 (3)	2.69 (9)	0.54 (10)
٩Li	2.44 (6)			2.06 (4)	2.61 (9)	0.55 (10)
¹¹ Li	3.71 (20)	2.55 (12)	6.85 (58)	2.33(4)	3.75 (15)	1.42 (16)

* R_p from laser spectroscopy, unfolded from proton charge radius

III. Recent Results on Halo Structures in Exotic Be and C Isotopes

- two experiments with primary ¹²C and ¹⁸O beams were successfully performed
- data on ¹²Be $\begin{pmatrix} 14Be \\ 14Be \end{pmatrix}$ and $\begin{pmatrix} 8B \\ 15C \end{pmatrix}$, $\begin{pmatrix} 17C \\ 17C \end{pmatrix}$ were taken: S.Ilieva et al., S. Tang et al.

one-neutron halo

candidates for halo nuclei

Elastic Proton Scattering from ¹⁴Be

differential cross section:

- ¹⁴Be exhibits a pronounced core-halo structure
- the picture of a ¹²Be-core + 2 valence neutron structure is confirmed
- the present data favour a relatively large s-wave component (see I. Thompson et. al, Phys. Rev. C53 (1996) 708)

Elastic Proton Scattering from ¹²Be

differential cross section:

- ¹²Be exhibits an extended matter distribution
- the contribution of (sd) intruder states is confirmed (see I. Thompson et al., Phys. Rev. C53 (1996) 703)

The IKAR-Collaboration

F. Aksouh, G.D. Alkhazov, M.N. Andronenko, L. Chulkov, A.V. Dobrovolsky, P. Egelhof, H. Geissel, M. Gorska, S. Ilieva, A. Inglessi, A.V. Khanzadeev, O. Kiselev, G.A. Korolev, C. L. Le, Y. Litvinov, G. Münzenberg, M. Mutterer, S.R. Neumaier, C. Nociforo, C. Scheidenberger, L. Sergeev, D.M. Seliverstov, H. Simon, S. Tang, N.A. Timofeev, A.A. Vorobyov, V. Volkov, H. Weick, V.I. Yatsoura, A. Zhdanov

> Gesellschaft für Schwerionenforschung, Darmstadt, Germany Petersburg Nuclear Physics Institute, Gatchina, Russia Kurchatov Institute, Moscow, Russia Institut für Kernchemie, Universität Mainz, Germany Institut für Kernphysik, TU Darmstadt, Darmstadt, Germany

The IKAR Collaboration

IV: Perspectives at the Future Facility FAIR: The EXL Project

FAIR: Facility for Antiproton and Ion Research

FAIR: Facility Characteristics

Key Technical Features

Cooled beams

•Rapidly cycling superconducting magnets

Primary Beams

- 10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present in intensity
- 2(4)x10¹³/s 30 GeV protons
- 10^{10} /s 238 U⁷³⁺ up to 35 GeV/u
- up to 90 GeV protons

Secondary Beams

- •Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- •Antiprotons 3 30 GeV

Storage and Cooler Rings

- •Radioactive beams
- •e A collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

Perspectives at the GSI Future Facility FAIR

regions of interest:

⇒ towards the driplines for medium heavy and heavy nuclei

physics interest:

- matter distributions (halo, skin...)
- single-particle structure evolution (new magic numbers, new shell gaps, spetroscopic factors)
- NN correlations, pairing and clusterization phenomena
- new collective modes (different deformations for p and n, giant resonance strength)
- parameters of the nuclear equation of state
- in-medium interactions in asymetric and low-density matter
- astrophysical r and rp processes, understanding of supernovae

Light-Ion Induced Direct Reactions

- elastic scattering (p,p), (α,α), ...
 nuclear matter distribution ρ(r), skins, halo structures
- inelastic scattering (p,p'), (α,α'), ...
 deformation parameters, B(E2) values, transition densities, giant resonances
- charge exchange reactions (p,n), (³He,t), (d, ²He), ...
 Gamow-Teller strength

 transfer reactions (p,d), (p,t), (p, ³He), (d,p), ... single particle structure, spectroscopic factors spectroscopy beyond the driplines neutron pair correlations neutron (proton) capture cross sections

knock-out reactions (p,2p), (p,pn), (p,p ⁴He)...
 ground state configurations, nucleon momentum distributions, cluster correlations

- R³B: <u>Reactions with Relativistic Radioactive Beams</u> ⇒ High Energy Branch
- EXL: <u>EX</u>otic Nuclei Studied in <u>L</u>ight-Ion Induced Reactions at the NESR Storage Ring ⇒ Ring Branch
- ELISe: ELectron Ion Scattering in a Storage Ring e-A Collider ⇒ Ring Branch

<u>The R³B experiment:</u> a universal setup for kinematical complete measurements

Experiments with Stored Exotic Nuclei

<u>The R³B experiment:</u> a universal setup for kinematical complete measurements

EXL: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Light-Ion Induced Direct Reactions at Low Momentum Transfer

- elastic scattering (p,p), (α,α), ...
 nuclear matter distribution ρ (r), skins, halo structures
- inelastic scattering (p,p'), (α,α'), ...
 deformation parameters, B(E2) values, transition densities, giant resonances
- transfer reactions (p,d), (p,t), (p, ³He), (d,p), ... single particle structure, spectroscopic factors, spectroscopy beyond the driplines, neutron pair correlations, neutron (proton) capture cross sections
- charge exchange reactions (p,n), (³He,t), (d, ²He), ...
 Gamow-Teller strength
- knock-out reactions (p,2p), (p,pn), (p,p ⁴He)...
 ground state configurations, nucleon momentum distributions

for almost all cases:

region of low momentum transfer contains most important information

Speciality of EXL:

measurements at very low momentum transfer

 \Rightarrow complementary to R³B !!!

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - \Rightarrow in combination with electron scattering (ELISe project @ FAIR):

separate neutron/proton content of nuclear matter (deduce neutron skins) method: elastic proton scattering \Rightarrow at low q: high sensitivity to nuclear periphery

- Investigation of the Giant Monopole Resonance:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering <u>at low q</u>

- Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process

 \Rightarrow electron capture rates in the presupernova evolution (core collaps) method: (³He,t), (d,²He) charge exchange reactions <u>at low q</u>

Kinematical Conditions for Light-Ion Induced Direct Reactions in Inverse Kinematics

- required beam energies: E ≈ 200 ... 740 MeV/u (except for transfer reactions)
- required targets: ^{1,2}H, ^{3,4}He
- most important information in region of low momentum transfer
 - ⇒ <u>low recoil</u> energies of recoil particles
 - \Rightarrow need thin targets for sufficient angular and energy resolution

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- low threshold and high <u>resolution</u> due to: beam cooling, thin target (10¹⁴-10¹⁵ cm⁻²)
- gain of <u>luminosity</u> due to: continuous beam accumulation and recirculation
- low <u>background</u> due to: pure, windowless ^{1,2}H₂, ^{3,4}He, etc. targets
- experiments with <u>isomeric beams</u>

Experiments at very low momentum transfer can only be done at EXL (except with ACTAR, but with lower luminosity)

Only the world-wide unique combination of Super-FRS and NESR provides high resolution experiments with high luminosity
External Target Versus Internal Target

The EXL Detector Setup - Concept and Design Goals

Detection systems for:

- Target recoils and gammas $(p,\alpha,n,\gamma...)$
- Forward ejectiles (p,n,γ)
- Beam-like heavy ions

Design goals

- Universality: applicable to a wide class of reactions
- High energy and angular resolution
- Fully exclusive kinematical measurements
- High luminosity (> 10^{28} cm⁻² s⁻¹)
- Large solid angle acceptance
- UHV compatibility (in part)

The EXL Recoil and Gamma Array

The EXL Recoil and Gamma Array

elastifectultgeticescalatering

CsI crystals \Rightarrow E, γ High efficiency, high resolution,20 cm thick

Specifications of the Silicon Detectors for EXL

Angular region	Θ _{lab} [deg]	Detector type	Active area [mm²]	Thickness [mm]	Distance from target [cm]	Pitch [mm]	Number of detectors	Number of channels
A	89 - 80	DSSD Si(Li)	87 x 87 87 x 87	0.3 9	59 60	0.1 -	20 20	34800 180
В	80 - 75	DSSD Si(Li) Si(Li) Si(Li)	50 x 87 50 x 87 50 x 87 50 x 87 50 x 87	0.3 9 9 9	50 52 54 56	0.1 - - -	20 20 20 20	27400 180 180 180
С	75 - 45	DSSD DSSD	87 x 87 87 x 87	0.1 0.3	50 60	0.1 0.1	60 60	104400 34800
D	45 - 10	DSSD DSSD Si(Li)	87 x 87 87 x 87 87 x 87	0.1 0.3 9	49 59 60	0.1 0.1	60 80 80	104400 139200 720
E	170 - 120	DSSD Si(Li)	50 x 50 50 x 50	0.3 5	25 26	0.5 -	60 60	6000 240
E'	120 - 91	DSSD Si(Li)	87 x 87 87 x 87	0.3 5	59 60	0.1	60 60	104400 540
Total		DSSD Si(Li)					420 280	555400 2220

Specifications of the Silicon Detectors for EXL

- low threshold ≤ 40 keV
 (⇒ constraints on thickness of entrance windows)
- high energy resolution $\leq 20 \text{ keV}$
- pitch size ≥ 0.5 mm
- active area 65 X 65 mm²
- large dynamic range: 100 keV to 50 MeV
- readout of energy, time, PSA??
- self triggering
- moderate count rates
- UHV (HV) compatibility (partly)

Design Study of the Gamma-Calorimeter

The EXL Forward Ejectile Detector

Kinematically complete measurements:

- detection of forward light particles emitted from the projectile (momenta measured)
- excitation energy of projectile residue, momentum (angular) correlations

- High-resolution TOF and position measurements
- Full solid angle (forward focus)
- Calorimeter: scintillator + iron converter (similar to LAND)

Ion-optical mode for NESR as fragment spectrometer 3 heavy-ion detector stations:

- in front of first dipole magnet for 'reaction tagging' (main mode)
- inserted into dipole section for 'tracking' of fragments
- inserted into quadrupole section for 'imaging' properties of magnetic Spectrometer (limited acceptance)

Predicted Luminosities

Target: 10¹⁴ H atoms cm⁻²; beam losses included

740 A.MeV 100 A.MeV

Nucleus	production rate at S-FRS target [1/s]	Lifetime including losses in NESR [s]	Luminosity [cm ⁻² s ⁻¹]	Luminosity [cm ⁻² s ⁻¹]
¹¹ Be	2 x 10 ⁹	36	> 10 ²⁸	> 10 ²⁸
⁴⁶ Ar	6 x 10 ⁸	20	> 10 ²⁸	> 10 ²⁸
⁵² Ca	4 x 10⁵	12	2 x 10 ²⁶	4 x 10 ²⁵
⁵⁵ Ni	8 x 10 ⁷	0.5	6 x 10 ²⁶	5 x 10 ²⁵
⁵⁶ Ni	1 x 10 ⁹	3800	> 10 ²⁸	> 10 ²⁸
⁷² Ni	9 x 10 ⁶	4.1	2 x 10 ²⁷	3 x 10 ²⁶
¹⁰⁴ Sn	1 x 10 ⁶	51	3 x 10 ²⁷	6 x 10 ²⁶
¹³² Sn	1 x 10 ⁸	93	> 10 ²⁸	> 10 ²⁸
¹³⁴ Sn	8 x 10 ⁵	2.7	3 x 10 ²⁵	5 x 10 ²⁴
¹⁸⁷ Pb	1 x 10 ⁷	34	> 10 ²⁸	3 x 10 ²⁷

Options to be explored: Deceleration, Multi-charge state operation *(increase luminosity)*?

Expected Performance

Elastic proton scattering ¹³²Sn (Matter Distribution)

Skin and halos in heavy neutron-rich nuclei

High sensitivity of the method (simulation of experimental conditions as expected at the NESR with a luminosity of 10^{28} cm⁻² s⁻¹)

at present ESR: needs 500 days !!!

Inelastic alpha scattering on Sn isotopes (Giant Monopole Resonance)

Collective modes in asymmetric nuclei, nuclear matter compressibility

at present ESR: needs 10000 days !!!

R&D and Feasibility Studies for EXL:

a) First Feasibility Demonstration for EXL performed at the ESR

experimental conditions:

- 136 Xe beam, E = 350 MeV/u
- 10⁹ circulating ions in ring \Rightarrow L \approx 6 10²⁷ cm⁻² sec⁻¹

Si-Strip Detector for Applications under UHV Conditions

- design:
 - active area: 40 x 40 mm²
 - thickness: 1 mm
 - 40 strips (pitch: 1mm) connected for readout in groups of 8
 - bakeable to 250° Celsius
 - cables: home made
- performance:
 - energy resolution 35 keV FWHM
 - low outgasing rate

Selected Results

H. Moeini and S. Ilieva et al., NIM A634 (2011)77

<u>Recoil Detector in UHV:</u> Differential ¹³⁶Xe(p,p) cross section

data are consistent with nuclear matter radius: $R_m = 4.89$ (10) fm (expected from data on the charge radius)

In-Ring Detectors: Identification of reaction channels

identified reaction channels : ¹³⁶Xe(p, pn)¹³⁵Xe ¹³⁶Xe(p, 2pxn)^{132,133}I

R&D on Silicon Detectors for the Recoil Detector

- Detectors: 1st series of DSSDs from PTI St. Petersburg (8 sensors delivered April 2008/ September 2009) 2nd series of DSSD`s with larger size (65 x 65 mm²) (5 sensors delivered January 2010)
- Tests:2008/2009: GSI:α sources2008: Edinburgh:α sourcesApril 2009: KVI Groningen:protons of 50 MeVJuly 2009: TU München:α particles E < 30 MeV</td>September 2009: GSI:protons of 100 and 150 MeVApril 2010: KVI Groningen:protons of 135 MeV

Status and Perspectives of R&D

Production – PTI St. Petersburg (Russia) Si wafer (300µm thick, 4")

Available DSSDs

pitch	P+ N+	No
300µm	16 × 16 (FP):	20
300µm	16 x 16 (P+):	20
300µm	64 x 16:	4
300µm	64 x 64:	4
100µm	256 x 16:	4
100µm	256 x 256:	4
	PIN:	30

Detector Construction at GSI

- Construction of prototype DSSDs at GSI: **16**x**16** (*4*), **64**x**64** (*4*) + **64**x**16** (*4*)
- Both types use FR-4 PCB with epoxy-glued DSSD chips
- Wedge bonded

Status and Perspectives of R&D

Si - Detectors: DSSD`s

sensors provided by PTI St. Petersburg (V. Eremin et al.)

setup of working detectors (PCB-board, bonding, readout) at GSI \Rightarrow 9 detectors: 16X16, 64X16, 64X64 strips, d=300 µm

Status and Perspectives of R&D

Si - Detectors: DSSD`s

sensors provided by PTI St. Petersburg (V. Eremin et al.)

setup of working detectors (PCB-board, bonding, readout) at GSI \Rightarrow 9 detectors: 16X16, 64X16, 64X64 strips, d=300 µm

detector tests with α -source performed at GSI and Edinburgh \Rightarrow up to 128 channels read out, up to 99% working strips, $\Delta E=16 keV$

 $\begin{array}{l} \mbox{front-rear correlation analysis} \\ \Rightarrow \mbox{energy resolution and efficiency for} \\ \mbox{p-side and n-side injection} \end{array}$

 \Rightarrow results to be used as input for design of next generation detectors

Front-Rear Side Correlation Analysis

In-Beam Tests with the EXL Demonstrator

- 3 x 3 crystals with the individual readout

The EXL Demonstrator

In-Beam Tests at KVI Groningen with 50 MeV Protons

Pulse-Shape Discrimination with DSSD's

test with p, d, ⁴He from ¹²C + ¹²C @ 70 MeV TU Munich

M. von Schmid et al. NIM A629 (2011)197

Strip & Interstrip

Strip (stopped α 's)

DSSD strip-strip events show PSD comparable with single PIN diodes

Response to very low energy recoil particles

Y. Ke et al. to be published

- 1503keV protons scattered from C target (37µg/cm²)
- Spectrum shows strip #11 (p side)
- 818keV H₂ scattered from
 - C target (37µg/cm²),
 - ~3.5µm Mylar degrader in front of DSSD
- Spectrum shows strip #11 (p side)

UHV Capability of the EXL Silicon Ball: Concept: using DSSD's as high vacuum barrier

• Differential pumping proposed to separate NESR vacuum from EXL instrumentation (cabling, FEE, other detectors)

UHV-Barrier DSSD Prototype Design

P-side: in UHV

N-side

21 x 21 mm² DSSD with 64x64(16) strips mounted into AIN PCB of 60 x 60 mm²

P-side towards UHV

N-side and spring-pin connectors at auxiliary vacuum

Cup springs

- Differential vacuum test using real DSSD as a vacuum barrier
 - ◆ 6 orders of magnitude difference between low and UH vacuum in wide pressure region
- Vacuum of **1.2** * **10**⁻¹⁰ **mbar** reached pumping limit of the station

B. Streicher et al., NIM A654 (2011)604

Pespectives: 2nd Series of DSSD`s from PTI St. Petersburg: 64 X 64 mm²

65 x 65 mm²

Specification:

Single-crystal silicon: 7 - 20 kOhm×cm Diode structure: p+ (strips) – i - n+ (strips), orthogonal, n+ - strip insulation, p+ implant Diode area: 65 x 65 mm² Diode topology: Strips on p+ side, 128 Strips on n+ side, 64 Diode thickness: 300 μm Operational reverse voltage limit: > 100 V

Impact from GSI tests: Improved p-side layout: •P-side inplantation depth reduced •Smaller contact stips at p-side •Interstrip gap reduced to 10 μm

2nd Series of DSSD`s from PTI St. Petersburg: 64 X 64 mm²

System Integration

System Integration

Support Structure

Outside

Flat cutouts to support detector and make it vacuum tight Thread holes for rods to mount detectors

Inside

Proposal for Feasibility Studies and First Experiments with RIB`s

(p,p), (³He,t), (α , α) reactions with ⁵⁸Ni and ⁵⁶Ni beams

M. Lindemulder, KVI

DSSD – SiLi –SiLi telescope

R. Borger¹, T. Davinson², P. Egelhof³, V. Eremin⁴, S. Ilieva³ N. Kalantar¹, Y. Ke³, H. Kollmus³, T. Kröll⁶, X. C. Le³, M. Lindemulder¹, M. Mutterer³, C. Rigollet¹, M. von Schmid⁶, B. Streicher⁵ P. Woods²

KVI Groningen
 Univ. Edinburgh
 GSI Darmstadt
 PTI St. Petersburg
 Univ. Mainz
 TU Darmstadt

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- gain of <u>luminosity</u> due to: continuous beam accumulation and recirculation
- high <u>resolution</u> due to: beam cooling, thin target
- low <u>background</u> due to: pure, windowless ^{1,2}H₂, ^{3,4}He, etc. targets
- separation of *isomeric states*

<u>but</u>: lifetime limit for very short lived exotic nuclei $T_{1/2} \ge 1$ sec

An Active Target for R³B

- \Rightarrow well suited as alternative technique to EXL for:
 - short lifetimes (T \leq 1 sec)
 - low RIB intensities ($\leq 10^5 \text{ sec}^{-1}$)

V. Conclusions

- elastic proton scattering at intermediate energies is a powerful tool to study nuclear matter distributions of halo nuclei
 ⇒ new data on ¹²Be^{,14}Be and ¹⁷C
 ⇒ new data on charge radii in ⁸He and ¹¹Li allow to deduce R_n and R_n R_p
- the Future Facility NuSTAR@ FAIR will allow to reach unexplored regions in the chart of nuclei, where new and exciting phenomena are expected
- the EXL setup is designed as universal detection system providing high resolution and large luminosities for measurements at low momentum transfer
- the use of stored cooled radioactive beams within the EXL project will have considerable advantage over external target experiments in many cases

Univ. São Paulo

TRIUMF Vancouver

IPN Orsay, CEA Saclay

The EXL Collaboration 14 countries, 33 institutes, ~ 135 participants

GSI Darmstadt, TU Darmstadt, Univ. Frankfurt, FZ Jülich, Univ. Mainz, Univ. Munich

INR Debrecen

SINP Kolkata

KVI Groningen

INFN/Univ. Milano

Univ. Osaka

JINR Dubna, Univ. St Petersburg, Moscow

CSIC Madrid, Univ. Madrid

Univ. Lund, Mid Sweden Univ., TSL Uppsala

Univ. Basel

Univ. Birmingham, CLRC Daresbury, Univ. Surrey, Univ. York, Univ. Liverpool

The EXL Collaboration

Basel, Switzerland, Universität Basel - K. Hencken, B. Krusche, T. Rauscher, F. Thielemann Birmingham, United Kingdom, University of Birmingham - M. Freer Daresbury, United Kingdom, CLRC Daresbury Laboratory - P. Coleman-Smith, I. Lazarus, R. Lemmon, S.Letts, V. Pucknell Darmstadt, Germany, Gesellschaft für Schwerionenforschung - T. Aumann, F. Becker, K. Beckert, K. Boretzky, A. Dolinski, P. Egelhof, H. Emling, H. Feldmeier, B. Franczak, H. Geissel, J. Gerl, S. Ilieva, C. Kozhuharov, Y. Litvinov, T. Neff, F. Nolden, C. Peschke, U. Popp, H. Reich-Sprenger, H. Simon, M. Steck, T. Stöhlker, K.Sümmerer, S. Typel, H. Weick, M. Winkler Darmstadt, Germany, Technische Universität Darmstadt - G. Schrieder Debrecen, Hungary, Institute of Nuclear Research (ATOMKI) - A. Algora, M. Csátlos, Z. Gáski, J. Gulyás, M. Hunyadi, A. Krasznahorkay Dubna, Russia, Joint Institute of Nuclear Research - A.G. Artukh, A. Fomichev, M. Golovkov, S.A. Klygin, G. A. Kononenko, S. Krupko, A. Rodin, Yu.M. Sereda, S. Sidorchuk, E. A. Shevchik, Yu.G. Teterev, A.N. Vorontsov Frankfurt, Germany, Universität Frankfurt - R. Dörner, R. Grisenti, J. Stroth Gatchina, Russia, St. Petersburg Nuclear Physics Institute and St. Petersburg State University - V. Ivanov, A. Khanzadeev, E. Rostchin, O. Tarasenkova, Y. Zalite Göteborg, Sweden, Chalmers Institute - B. Jonson, T. Nilsson, G. Nyman Groningen, KVI, The Netherlands - M. N. Harakeh, N. Kalantar-Nayestanaki, H. Moeini, C. Rigollet, H, Wörtche Guildford, United Kingdom, University of Surrey - J. Al-Khalili, W. Catford, R. Johnson, P. Stevenson, I. Thompson Jülich, Germany, Institut für Kernphysik, Forschungszentrum Jülich - D. Grzonka, T. Krings, D. Protic, F. Rathmann Kolkata, India, Saha Institute of Nuclear Physics - S. Bhattacharva, U. Datta Pramanik Liverpool, United Kingdom, University of Liverpool - M. Chartier, J. Cresswell, B. Fernandez Dominguez, J. Thornhill Lund, Sweden, Lund University - V. Avdeichikov, L. Carlén, P. Gobulev, B. Jakobsson Madrid, Spain, CSIC, Instituto de Estructura de la Materia - E. Garrido, O. Moreno, P. Sarriguren, J. R. Vignote, C. Martínez-Pérez, R. Alvarez Rodriguez, C. Fernandez Ramirez Madrid, Spain, Universidad Complutense - L. Fraile Prieto, J. López Herraiz, E. Moya de Guerra, J. Udias-Moinelo Mainz, Germany, Johannes Gutenberg Universität - O. Kiselev, J.V. Kratz Milan, Italy, Universitá da Milano and INFN - A. Bracco, P.F. Bortignon, G. Coló, A. Zalite Moscow, Russia, Russian Research Centre, Kurchatov Institute - L. Chulkov Mumbai, India, Bhabha Atomic Research Center - S. Kailas, A. Shrivastava Munich, Germany, Technische Universität München - M. Böhmer, T. Faestermann, R. Gernhäuser, P. Kienle, R. Krücken, L. Maier, K. Suzuki Orsay, France, Institut de Physique Nucléaire - D. Beaumel, Y. Blumenfeld, E. Khan, J. Peyre, J. Pouthas, J.A. Scarpaci, F. Skaza, T. Zerguerras Osaka, Japan, Osaka University - Y. Fujita São Paulo, Brasil, Universidade de São Paulo - A. Lépine-Szily St. Petersburg, Russia, V. G. Khlopin Radium Institute - Y. Murin St. Petersburg. Russia. loffe Physico-Technical Institute (PTI) – V. Eremin, Y. Tuboltcev, E. Verbitskava Sundsvall, Sweden, Mid Sweden University - G. Thungström Tehran, Iran, University of Tehran - M. Mahjour-Shafiei Uppsala, Sweden, The Svedberg Laboratory - C. Ekström, L. Westerberg Vancouver, Canada, TRIUMF - R. Kanungo

