Flux periodicity in higher order topological superconductors

Sumathi Rao
Harish-chandra Research Institute, Allahabad
EDYTOP, ICTS, Bangalore
June 14, 2019

Work in progress with
Suman Jyoti De (HRI) and
Udit Khanna (Tel Aviv University and Weizmann
Institute)

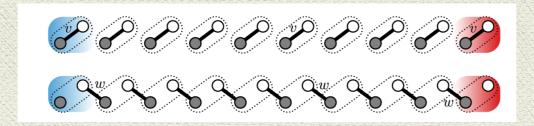
Plan of the talk

- Brief introduction to higher order topological insulators and superconductors
- Flux periodicity of superconducting rings
- Our work and results

What are topological insulators?

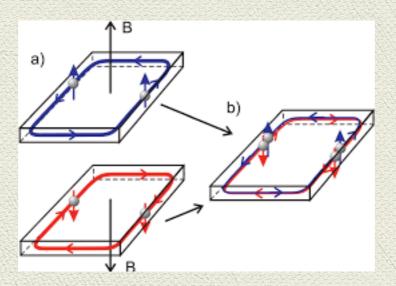
- They are insulators which have some property to which an integer can be assigned which depends only on global properties and cannot be destroyed by impurities or disorder - topological protection
- At boundaries between different topological phases, can have gapless edge or surface states

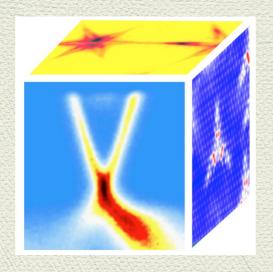
- Standard picture for topological insulators gapped d-dimensional bulk and gapless d-1 dimensional edge states
- Simplest example is the Su-Schrieffer- Heeger model in one dimension (d=1)



* Two distinct phases, one of which has edge states (d-1=1-1=0 dimensional modes) and one of which does not (non-topological phase)

• Quantum Hall effect and quantum spin Hall effect in two dimensions (d=2) with (d-1 =1) dimensional edge states





Topological insulators in three dimensions
 (d=3) with 3-1 = 2 dimensional gapless
 surface states

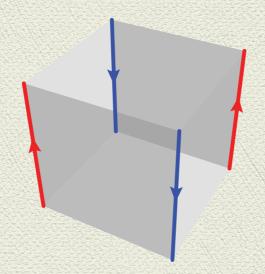
Higher order topological insulators

* d- dimensional gapped bulk with (d-n) dimensional gapless edges - n^{th} order topological insulator

Benalcazar, Bernevig, Hughes, Science, 2017; PRB, 2017 Schindler et al, Science Advances, 2018 Langbehn et al, PRL, 2017 Zhida et al, PRL, 2017

Examples - two dimensional lattices with zero dimensional
 gapless corner states - edge states gapped

Three dimensional lattices with hinge states



 Here surfaces are gapped, only states localised on the hinges are gapless

- So even if band structure of material appears to be topologically trivial at first order, it can still have non-trivial topology
- In a certain sense, the bulk is gapped, and edges are also gapped, but are themselves topological, so that they have edge states 2nd order topology
- Needs crystalline symmetries in the bulk to exist

- Recent claim that Bismuth is a higher order topological insulator
- Not surface of the crystal, but the hinges of the crystal host topologically protected conducting states

Schindler et al, Nat. Phys., 2018

Higher order topological superconductors

- Generalise to Majorana modes at corners of two dimensional topological superconductors and chiral hinge Majorana modes at edges of three dimensional topological superconductors
- Start with a toy model Hamiltonian in terms of Majoranas similar to Kitaev model written in terms of Majoranas

'Usual' topological superconductors

Brief introduction to `usual' topological superconductors and Majorana modes

Simplest case is to study a toy model proposed by Kitaev

$$H = -\mu \sum_{x=1}^{N} c_x^{\dagger} c_x - \frac{1}{2} \sum_{x=1}^{N} (t c_x^{\dagger} c_{x+1} + \Delta c_x c_{x+1} + h.c.)$$

- Here μ is the chemical potential, t is hopping and Δ is the pairing term
- Can rewrite model as follows

$$c_x = \frac{1}{2}(\gamma_{A,x} + i\gamma_{B,x})$$

$$c_x^{\dagger} = \frac{1}{2}(\gamma_{A,x} - i\gamma_{B,x})$$

- * Here $\gamma_{A,x}$ and $\gamma_{B,x}$ are Majorana modes
- They anti-commute like fermions, and are hermitian $\gamma_{A,x}=\gamma_{A,x}^{\dagger}$ and satisfy $\gamma_{A,x}^2=\gamma_{B,x}^2=1$ whereas the fermion operators satisfy $c_x^2=0$
- Pairs of Majoranas form normal fermions

- \bullet One limit: When $\mu < 0$ and $t = \Delta = 0$
- Only bonds between Majoranas at same x

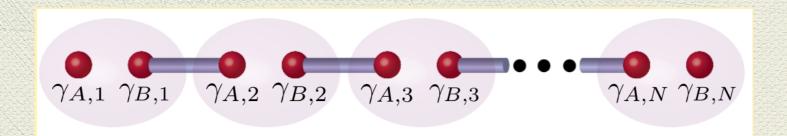
$$H = -\frac{\mu}{2} \sum_{x=1}^{N} c_x^{\dagger} c_x = -\frac{\mu}{2} \sum_{x=1}^{N} (1 + i\gamma_{A,x} \gamma_{B,x})$$

 Ground state is unique and ends of the chain do not play any special role

* Second limit: When $t = \Delta \neq 0$ and $\mu = 0$

$$H = -\frac{t}{2} \sum_{x=1}^{N} (c_x^{\dagger} c_{x+1} + c_x c_{x+1} + h.c.)$$

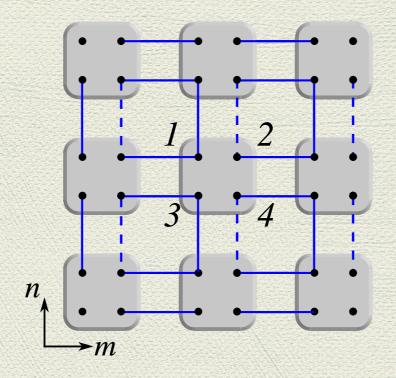
$$= -i\frac{t}{2} \sum_{x=1}^{N-1} \gamma_{B,x} \gamma_{A,x+1}$$



• Here bonds are between Majoranas at adjacent sites, but unpaired Majoranas $\gamma_{A,1}$ and $\gamma_{B,N}$ at the two ends

- Can make a non-local fermion from these two Majoranas - double degeneracy depending on whether or not the state is occupied
- Main point when the model is written in terms of Majoranas, very easy to identify the end states

Back to higher order topological superconductors



Wang, Lin, Hughes, 2018

$$H = -2it \sum_{m,n} [\gamma_{m,n}^2 \gamma_{m+1,n}^1 + \gamma_{m,n}^4 \gamma_{m+1,n}^3 - \gamma_{m,n}^2 \gamma_{m,n+1}^4 + \gamma_{m,n}^1 \gamma_{m,n+1}^3]$$

- Each unit cell has 4 Majoranas
- Hoppings chosen so that one Majorana is left out at each corner - corner Majorana modes
- Pi flux in each plaquette because of change in sign in one hopping

- Pi flux needed to ensure quantisation of the quadrupole moment, which is the essential physics of higher order topological insulators in two dimensions
- Edges are like Kitaev chains with Majoranas at the end (but with a common edge Majorana at corner, not two with one each coming from the x and y edges)

- Here Majorana corner modes by construction
- Choice of grouping the Majoranas to make two complex fermions decides how Hamiltonian splits into normal state band and superconducting pairing gaps.
- So try to choose groupings that give gapless normal bands and pairing terms describing intrinsic superconducting tendency

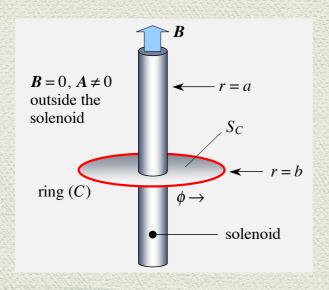
$$H = \int d\mathbf{k} \ \psi_k^{\dagger} \mathcal{H}(\mathbf{k}) \psi_k \text{ with } \psi_k = (c_k, c_{-k}^{\dagger})^T \text{ and}$$

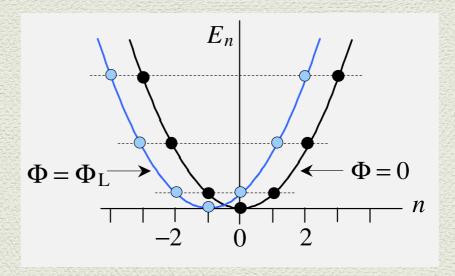
$$\mathcal{H}(\mathbf{k}) = t(\cos k_x \sigma_x \tau_z + \cos k_y 1 + \sin k_x \sigma_x \tau_y + \sin k_y \sigma_x \tau_x)$$

- Can check that this Hamiltonian is the same as the earlier one - has corner Majorana modes by construction
- Can show that the model continues to have corner modes even after perturbations are added provided particle-hole symmetry and some mirror symmetries are respected

Flux periodicity in superconductors

Aharonov-Bohm periodicity in metal rings



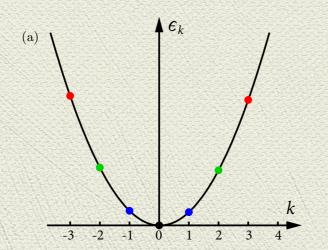


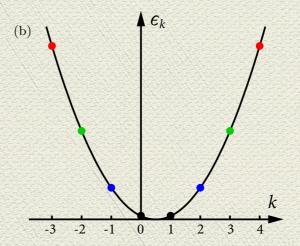
- Current through thin metal ring oscillates with periodicity $\phi_L = \phi_0 = hc/e$
- From $E_n = \frac{\hbar^2}{2mb^2}(n + \phi/\phi_0)^2$ and $I = -\frac{\partial E_n}{\partial \phi}$

Periodicity in superconducting ring

- * But flux periodicity in superconducting rings was seen to be hc/2e
- Naively factor of 2e due to Cooper pairs carrying twice the charge
- Not correct, because Cooper pairs not tightly bound and not clear whether they traverse the ring separately - need better argument

- Two classes of superconducting wavefunctions
- Pairing of electrons with momenta k and -k leading to condensate with q = 0 for $\phi = 0$ and with momenta k and -k+1 leading to condensate with q=1 for $\phi = \phi_0/2$





- But this simple picture not always true
- * s-wave superconducting rings with diameter smaller than coherence length shows hc/e periodicity Loder $et\ al,\ 2007$
- * High temperature d -wave superconducting rings shows hc/e periodicity Loder $et\ al,\ 2007$
- * Topological superconducting rings have hc/e periodicity Liu, Cole, Sau, 2019

Our work and results

Model and symmetries

We start with a four band model defined by

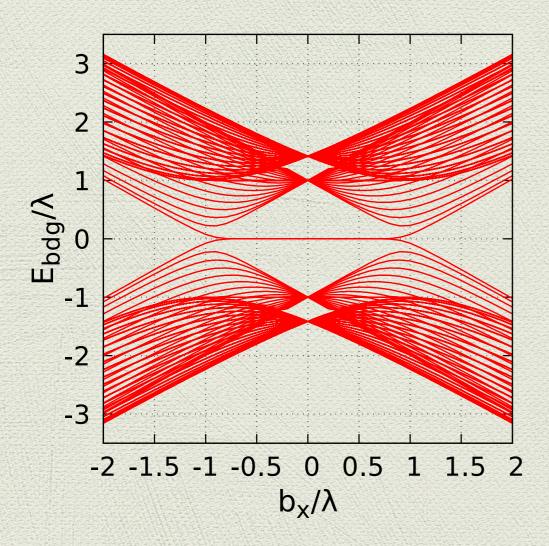
$$\mathcal{H}(\mathbf{k}) = (b_x + \lambda \cos(k_x))\tau_z \sigma_x + \lambda \cos(k_y) 1_\tau \sigma_y + \Delta \sin(k_x)\tau_y \sigma_x + \Delta \sin(k_y)\tau_x \sigma_x,$$

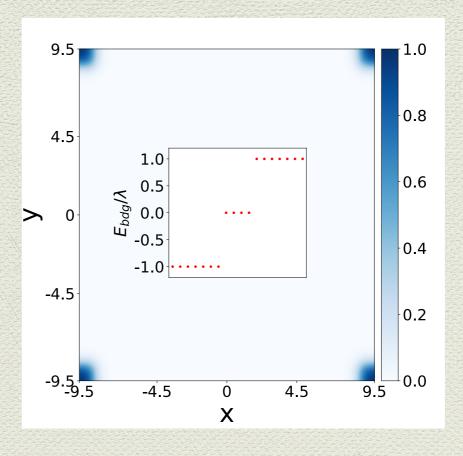
- \bullet σ , τ denote operators in spin/Nambu space
- Particle-hole symmetry $\tau_x \mathcal{H}^T(-k)\tau_x^{-1} = -\mathcal{H}(k)$ and mirror symmetries $\mathcal{M}_{x,y}\mathcal{H}(\mathbf{k})\mathcal{M}_{x,y}^{-1} = \mathcal{H}(\hat{m}_{x,y}\mathbf{k})$ Mirror symmetries anti-commute $\{\mathcal{M}_x, \mathcal{M}_y\} = 0$

- * For $b_x = 0$ and $\lambda = \Delta = t$, this reduces to the earlier model. In fact, can be shown to be topological for $|b_x| < \lambda$
- Normal state of this model, $\Delta = 0$ corresponds to 2 dimensional Dirac metal with 4 mirror symmetric Dirac nodes
- Can then include pairing

- Non-commuting mirror symmetries which are needed to generate higher order topology, only possible for $p_x + ip_y$ superconductors since superconducting gap has to transform non-trivially in both directions.
- Will not work for other possible pairings such as s, d, p_x, p_y

Spectrum

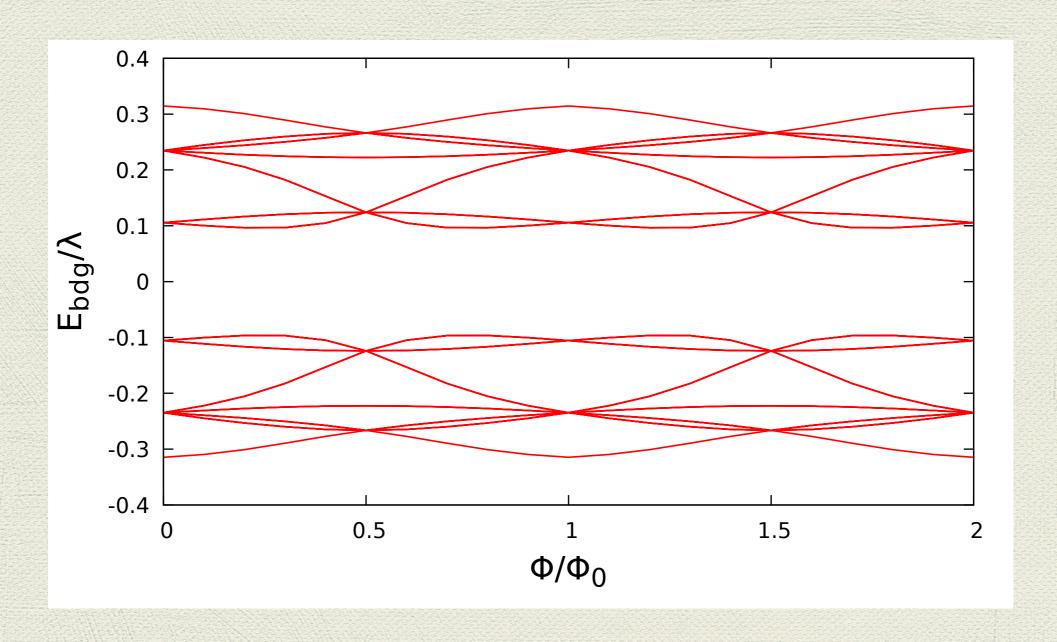




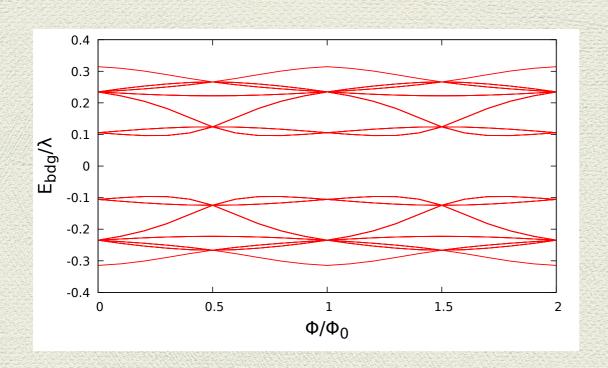
* For $b_x/\lambda < 1$ second order topological TSC_2 superconductor with four corner states

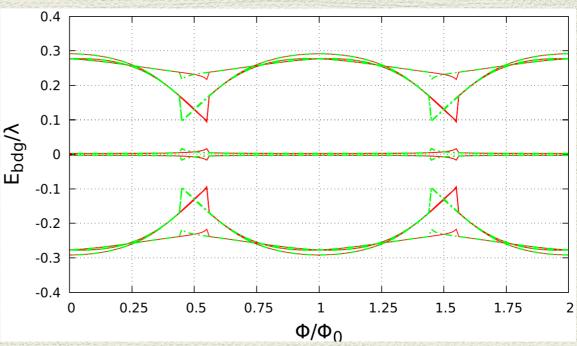
Vortex at the origin

- * Introduce solenoid at origin of 2D sample, so that any closed loop encircling the origin encloses a flux ϕ
- First, we set $\Delta = 0$ i.e. we turn off superconductivity
- * Spectrum shows standard periodicity with respect to ϕ/ϕ_0



- * $\Delta \neq 0$, constant Δ not even qualitatively correct in the presence of vortex
- Need to find self-consistent Δ by solving the BdG equations in the presence of the vortex self-consistently
- * Close to $\phi = \phi_0/2$, find two self-consistent solutions (reminiscent of two classes of wavefunctions)

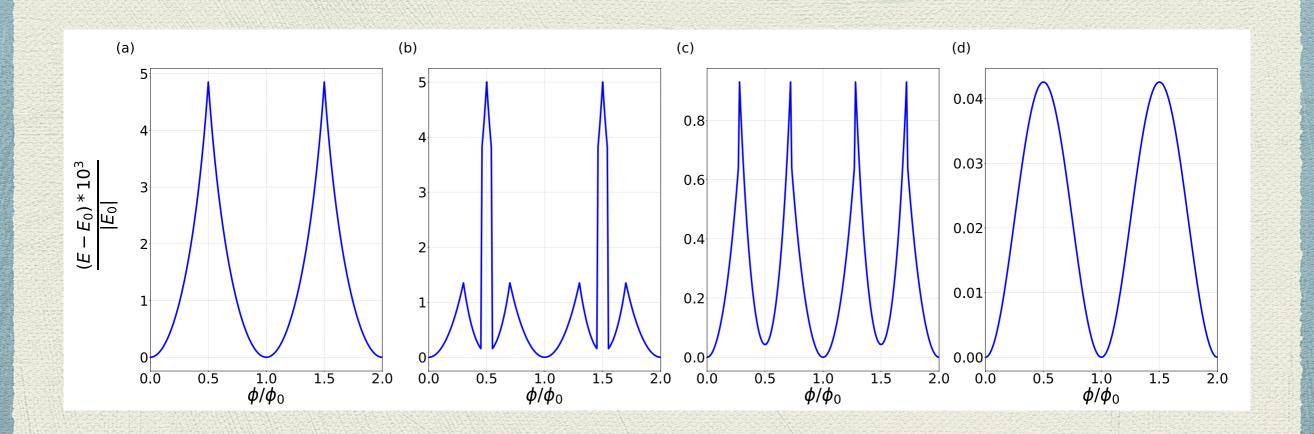




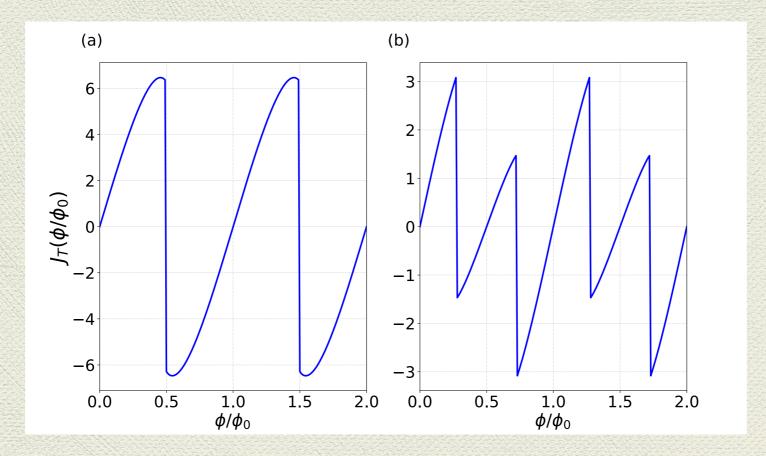
- * Plot of lowest three self-consistent energy eigenvalues for $\Delta = 0$ and $\Delta \neq 0$
- * Besides the zero energy states of the Majoranas, there are also two self-consistent states close to $\phi = \phi_0/2$

* Total energy as function of ϕ/ϕ_0 for different values of $b_x/\lambda = 0, 0.3, 0.8, 1.5$ (no superconductivity)

• Note (almost) degeneracy for $b_x/\lambda = 0.8$



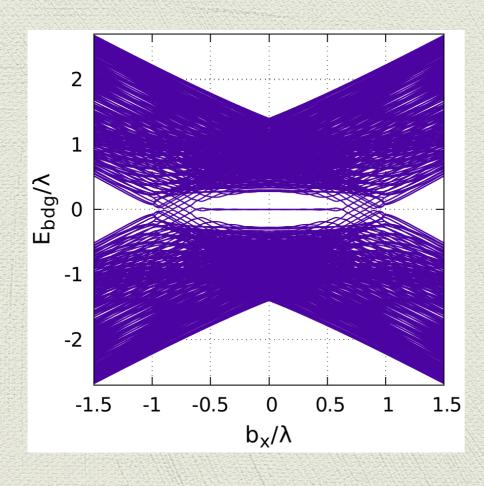
Also computed total circulating current around the vortex for $b_x/\lambda = 0.0$ and 0.7

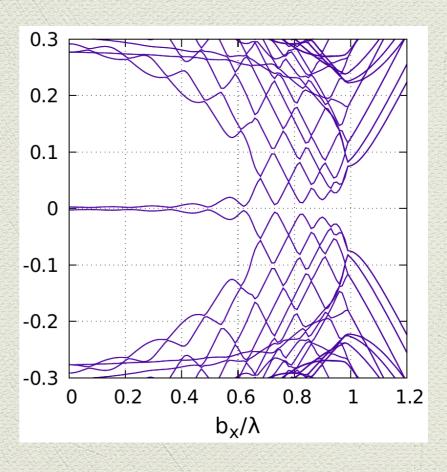


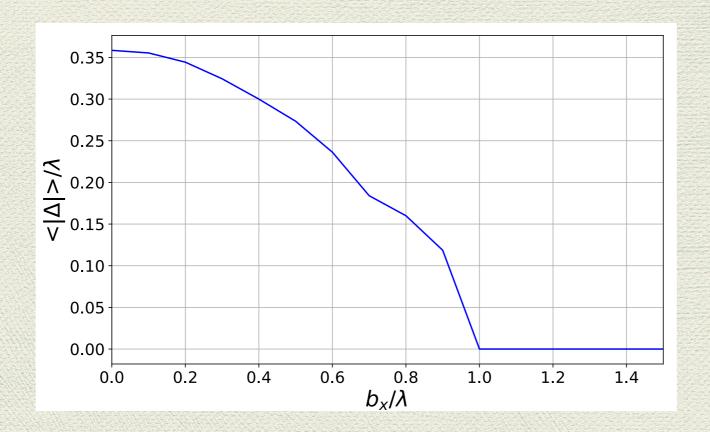
Note change in `periodicity'. Strictly periodic only in ϕ_0 but roughly periodic in $\phi_0/2$

Why does periodicity change?

- Self consistent spectrum in the absence of any vortex
- Shows crossover from TSC to normal superconductor







- * Note that change to normal metal only around $b_x/\lambda \simeq 1$
- * But topological superconductivity only survives till $b_x/\lambda \simeq 0.6$ because of mixing of the zero energy levels with higher energy levels

- * So TSC_2 with ϕ_0 periodicity transitions to normal superconductor with $\phi_0/2$ periodicity to normal metal with ϕ_0 periodicity
- Issue that both topological superconductors and normal metals have ϕ_0 periodicity circumvented by separation via normal superconductor with $\phi_0/2$ periodicity

Tuning the transitions

- If we can tune between these phases, then the change in periodicity of the circulating current can be measured
- Need to change parameters in the Hamiltonian - so one possibility, couple to light

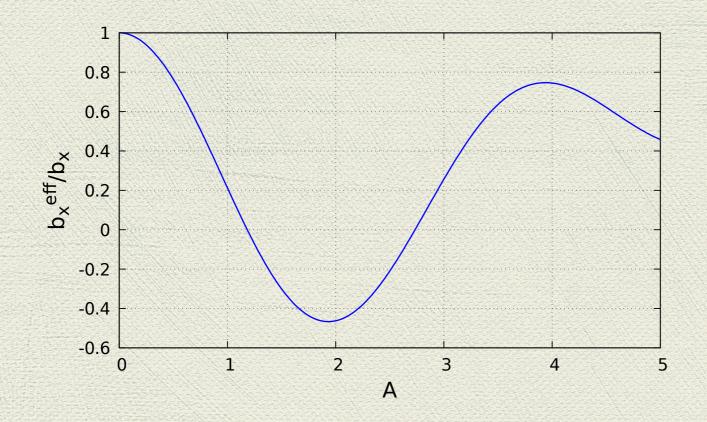
Floquet Hamiltonian

Shine elliptically polarized light

$$A(t) = (A_x \cos(\omega t), A_y \cos(\omega t + \theta), 0), \quad \omega = 2\pi/T$$

For high frequencies, $ω \gg λ$, Δ obtain effective static Hamiltonian by expanding in powers of 1/ω

* Computation to $O(1/\omega^2)$ shows that b_x can be tuned by applying light



$$A_x = A_y = A$$
$$\lambda = \Delta$$
$$\theta = \pi/2$$

So by shining light, can change periodicity of circulating current

Conclusion

- Studied corner Majorana modes in a model of a higher order topological superconductor
- Have introduced a vortex at the origin in a higher order topological superconductor
- * Periodicity of energy levels and circulating current changes from ϕ_0 to $\phi_0/2$ as the superconductor transitions to a normal superconductor
- Change in periodicity can be tuned by coupling to light

Future

- * 2D p+ip superconductors in first order topological superconductors - check whether self-consistent solutions lead to new results.
- Goal to move the corner Majoranas for braiding. Since there are four Majoranas, it should be possible to get non-abelian statistics