On X-ray Emission Process from the radio/optical Knots of Kiloparsec scale Jet of AGN

Knots getting naughtier !!

Astrophysical Sciences Division Bhabha Atomic Research Centre Mumbai

S. Sahayanathan sunder@barc.gov.in

Pesce, J. E. et al., *APJ Letters* (2001), **556**, 79

Sambruna, R. et al., *APJ* (2002), **571**, 206

Sambruna, R. et al., *APJ* (2002), **571**, 206

*Sahayanathan, S., *MNRAS Letters* (2008), **388**, 49

Sambruna, R. et al., *APJ* (2002), **571**, 206

Inverse Compton Process

Possible target photons are:

Synchrotron photon (SSC) CMB photons (IC/CMB)

Tavecchio, F. et al., *APJ* (2000), **544**, 23

Inverse Compton Process

• Possible target photons are: Synchrotron photon (SSC) CMB photons (IC/CMB)

$$N(\gamma)d\gamma = K\gamma^{-p}d\gamma$$

$$F_{syn}(\mathbf{v}_{s}) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^{3} K v_{s}^{-(p-1)/2}$$
(1)

$$F_{ssc}(\mathbf{v}_{ssc}) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^{4} K^{2} v_{ssc}^{-(p-1)/2}$$
(2)

$$F_{ec}(\mathbf{v}_{ec}) \propto u_{cmb} v_{cmb}^{(p-3)/2} \delta^{(p+3)} R^{3} K v_{ec}^{-(p-1)/2}$$
(3)

R – Knot size

Sahayanathan, S., Godamba, S., MNRAS (2012), 419, 1660 Tavecchio, F. et al., *ApJ* (1998), **509**, 608

Inverse Compton Process

• Possible target photons are: - Synchrotron photon (SSC) CMB photons (IC/CMB)

$$N(\gamma)d\gamma = K\gamma^{-p}d\gamma$$

$$F_{syn}(v_s) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^3 K v_s^{-(p-1)/2}$$

$$F_{ssc}(v_{ssc}) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^4 K^2 v_{ssc}^{-(p-1)/2}$$
 (2)

$$F_{ec}(v_{ec}) \propto u_{cmb} v_{cmb}^{(p-3)/2} \delta^{(p+3)} R^3 K v_{ec}^{-(p-1)/2}$$
(3)

 δ - B Relation

$$(2) \div (1)^2$$

(1)

R – Knot size

Inverse Compton Process

• Possible target photons are: - Synchrotron photon (SSC) CMB photons (IC/CMB)

$$N(\gamma)d\gamma = K\gamma^{-p}d\gamma$$

$$F_{syn}(v_s) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^3 K v_s^{-(p-1)/2}$$

$$F_{ssc}(v_{ssc}) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^4 K^2 v_{ssc}^{-(p-1)/2}$$
(2)

$$F_{ec}(v_{ec}) \propto u_{cmb} v_{cmb}^{(p-3)/2} \delta^{(p+3)} R^3 K v_{ec}^{-(p-1)/2}$$
(3)

 δ - B Relation

 $(3) \div (1)$

(1)

R – Knot size

Inverse Compton Process

• Possible target photons are: Synchrotron photon (SSC) CMB photons (IC/CMB)

 $N(\gamma)d\gamma = K\gamma^{-p}d\gamma$

$$mc^{2} \int \gamma N(\gamma) d\gamma = B^{2}/8\pi$$
$$F_{syn}(\nu_{s}) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^{3} K \nu_{s}^{-(p-1)/2}$$

$$F_{ssc}(v_{ssc}) \propto \delta^{(p+5)/2} B^{(p+1)/2} R^4 K^2 v_{ssc}^{-(p-1)/2}$$
(2)

$$F_{ec}(v_{ec}) \propto u_{cmb} v_{cmb}^{(p-3)/2} \delta^{(p+3)} R^3 K v_{ec}^{-(p-1)/2}$$
(3)

<u>δ - B Relation</u>

(0)

(1)

Eliminate K using (0) and (1)

R – Knot size

PKS 0637-752

Tavecchio, F. et al., *ApJ Letters* (2000), **544**, 23

IC/CMBR

Sahayanathan, S. et al., ApJ Letters (2003), 588, 77Sambruna, R. et al., ApJ (2002), 571, 206Sahayanathan, S., Ranjeev Misra, ApJ (2005), 628, 611Kharb, P. et al., ApJ (2012), 748, 81

X-ray Knots : IC/CMBR Failure

PKS 0637-752

Meyer, E. et al., *ApJ* (2015), **805**, 154

Two-population Interpretation

Two-population Interpretation

Shock Compression

- Downtream is compressed by shock
- Assymetric electron injection from the shock front
- Different electron population in downstream and upstream region

Liu, W. et al., *ApJ* (2015), **806**, 188

Two-population Interpretation

Shocked Jet with sheared boundary

- One accelerated at Sheared jet at boundaries*
- Another by a shock

*Sahayanathan, S., *MNRAS Letters* (2009), **398**, 49

Sahayanathan, S., (2015) under preparation

Two-population Interpretation

Shock with a sheared boundary

- One bou However X-ray knots in radio do not show
- Anc such features

Sahayanathan, S., Ranjeev Misra, (2015) under preparation

Allowed range of EC peak

Sahayanathan, S., Ranjeev Misra, (2015) under preparation

Allowed range of target photon frequency (Reverse Engineering)

Sahayanathan, S., Ranjeev Misra, (2015) under preparation

Allowed range of target photon frequency (Reverse Engineering)

Sahayanathan, S., Ranjeev Misra, (2015) under preparation

Single-population - EC Model

PKS 0637-752

Sahayanathan, S., Ranjeev Misra, (2015) under preparation

Single-population - EC Model

-11 radio/optical/x-ray Fermi Upper Limit -12 Synchrotron -13 EC/Radio Pocket Log (vF_v)(erg/cm²/s) -14 -15 SSC -16 Radio Pocket -17 -18 12 22 6 8 10 14 16 18 20 24 26 4 Log (v)(Hz)

Sahayanathan, S., Ranjeev Misra, (2015) under preparation

PKS 0637-752

Thank You!!

IF PEOPLE SAT OUTSIDE AND LOOKED AT THE STARS EACH NIGHT I BET THEY WOULD LIVE A LOT DIFFERENTLY

