Connection between radio activity in BCGs and cluster dynamics

Ruta Kale

National Centre for Radio Astrophysics, Tata Institute of Fundamental Research

Collaborators:

T. Venturi, R. Cassano, S. Giacintucci, S. Bardelli, D. Dallacasa, E. Zucca

- What are the Brightest Cluster Galaxies (BCGs)?
- Does ICM affect occurrence of radio activity in BCGs ?
- Sample of clusters and BCG identification
- ICM morphology as a proxy for dynamical disturbance

Results

- Fractions of radio BCGs in relaxed Vs merging clusters
- Radio luminosity function of BCGs

Kale, R., Venturi, T. et al. 2015, A&A, 581, A23

Brightest cluster galaxies (BCGs)

Most massive and brightest galaxies among all the galaxies reside at the centres of galaxy clusters.

Ellipticals and cDs

Romano et al. 2010

Abell 611

Ruta Kale, Extragalactic relativistic jets, 17th October 2015

Figure from the book: 'X-ray emission from clusters of galaxies ', C. Sarazin.

Properties of BCGs

Typical luminosities $\sim 10 L_{\star}$

(e.g. Sandage & Hardy 1973)

-Larger than typical ellipticals (50-100 kpc halo)

-Have higher velocity dispersion (300-400 km/s)

- More likely to be radio loud than other galaxies of similar stellar mass

(Burns 1990, but see also Best et al 2005b)

(von der Linden et al 07)

- Radio powers between FRI and FRII types

(Owen and Laing 1989)

Does large-scale cluster environment affect the occurrence of (nuclear) radio emission in the BCGs ?

BCG environment

BCG environment: \sim 100 galaxies / Mpc³ and ICM gas Galaxies outside clusters: < 10 galaxies / Mpc³

- BCGs are more likely to be radio loud than other ellipticals of similar stellar mass

(von der Linden et al. 2007; Best et al. 2007; Bagchi & Kapahi 1994; Valentijn & Bijleveld 1983)

Indicates the role of environment.

Radio loudness also depends on mass; this effect needs to be separated from that of environment.

(Best et al. 2006)

Extended GMRT Radio Halo Survey

REFLEX + eBCS X-ray catalogues

Bohringer et al 2004; Ebeling et al. 1998, 2000

66 clusters

Declination $> -31^{\circ}$

x(0.1-2.4 keV)

0.2 < z < 0.4

Bohringer et al. 2013

GRHS: Venturi et al. 2007, 2008; EGRHS: Kale et al. 2013, 2015

Steps:

- Identification of BCGs in the EGRHS clusters:

Use of SDSS where available (44) and DSS otherwise Visual inspection, literature

- Find the radio information for the BCG:

Use of NRAO VLA Sky Survey, FIRST (1.4 GHz surveys) GMRT 610 MHz data

- Morphology parameters for clusters:

Classification into merging and relaxed clusters.

Calculation of the radio loud fractions and RLF separately for merging and relaxed clusters

BCG identification

Z5247More than one BCG

A773, A2163, A2744, RXCJ1314.4-2515, RXCJ1514.9-1523 Visual inspection, optical-X-ray overlays, literature

No BCG

Abell 520

RXCJ2003.5-2323

Also RXCJ1212.3-1816.

No BCGs formed or were displaced from the cluster center.

Radio identification

Radio loud BCG

Radio quiet BCG

Conservative radio flux density upper limits based on NVSS: 2.25 mJy

Morphology (measure of disturbance)

Chandra data – surface brightness maps

Morphological parameters:

Concentration parameter

Centroid shift

Power ratios

W₅₀₀

 P_3/P_0

C₁₀₀

e.g. Buote & Tsai 1995, Santos et al. 2008, Poole et al. 2006; Cassano et al. 2010, 2013

Classification as merger if :

$$C_{100} < 0.2$$
 & $W_{500pe} > 0.012$ & $P_3/P_0 > 1.2e-7$

Taken based on the separation indicated by radio halo occurrence. See Cassano et al 2010, 2013.

BCG distribution

BCG distribution

BCG distribution: comparison with random distribution

BCG sample: R Vs z distribution

Ruta Kale, Extragalactic relativistic jets, 17th October 2015

BCG sample: Radio power Vs X-ray luminosity

Ruta Kale, Extragalactic relativistic jets, 17th October 2015

BCG sample: Radio power histogram

Ruta Kale

Cluster morphology and radio BCGs

Ruta Kale, Extragalactic relativistic jets, 17th October 2015

Radio luminosity function

Method by R. Fanti (Hummel 1981)

Ruta Kale, Extragalactic relativistic jets, 17th October 2015

Radio power scales as strength of cooling time

Radio power scales as strength of cooling time

Radio power scales as strength of cooling time

Optical spectra (Ongoing work)

SDSS spectra are available for 28 BCGs.

relaxed

Emission lines found in optical spectra of 11 out of 19 radio loud BCGs. All of these are in relaxed clusters.

merging

relaxed

All BCGs with mini-halos show emission lines.

Ruta Kale, Extragalactic relativistic jets, 17th October 2015

merging

Summary and Conclusions

We extracted a sample of BCGs from the EGRHS sample of galaxy clusters (0.2 < z < 0.4, Lx > 5×10^{44} erg/s, dec>-31 degrees).

Morphological parameters based on X-ray maps were used to classify the cluster sample into merging and relaxed clusters.

Radio BCGs occur in ~71% of relaxed clusters whereas ~81% of BCGs in merging clusters are radio quiet.

Fractional radio luminosity function also shows this difference in the likelihood of finding a radio loud BCG in relaxed versus that in merging cluster. Larger sample needed to find if there is a difference in the two BCG populations.

This work provides support for a strong link between the radio properties of BCGs and the dynamical state of the host cluster.

Morphological parameter definitions

C₁₀₀ The ratio of the central (<100 kpc) over the ambient surface brightness

W_{500pe}

 P_{3}/P_{0}

- The projected separation between the peak and the centroid of aperture
- The power ratio is a multipole decomposition of the two-dimensional, projected mass distribution inside a given aperture Rap.

The lowest power ratio moment that provides a measure of substructure in the cluster.

References: Cassano et al. 2010 and references therein.

R