

TOPICS

- Super/ultra-massive black holes

Image courtesy (left: Francisco Diez, middle: J.-C. Algaba, right: Greenland telescope)

- Black Hole accretion flows

Registration will be opened soon

- Relativistic Jets from birth to termination
- Co-evolution of galaxy and black hole: AGN feedback
- High energy emissions in LLAGNs and their synergy to γ-ray blazars

SOC: P. Ho (ASIAA, Chair)
L. Ho (KIAA, Vice-chair, Keynote talk on SMBH)
R. Blandford (Stanford, Keynote talk on BH jet)
A. Fabian (loA, Keynote talk on AGN feedback)
R. Narayan (CfA, Keynote talk on BH accretion)
K. Asada (ASIAA, Secretary)
M. Nakamura (ASIAA, Secretary)

Invited Speakers: To be announced

Magnetohydrodynamic Model of the M87 Jet

Outline

- Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation
- MHD Jet global structure and dynamics under the BH gravitational influence and beyond
- Lessons learned from M87; "jet break" in AGNs may be norm in the BH-galaxy co-evolution?
- Summary

M87 (Virgo A; NGC4486)

- The 2nd brightest galaxies in Virgo cluster
- The $1^{\text {st }}$ jet discovered (Curtis 1918)
- "Rosetta Stone" of AGN jet
- Nearby: ~ 16.7 Mpc (1 mas ~ $125 r_{s}$)
- M•~(3.2-6.6)×10 ${ }^{9}$ 。
- FR I / Misaligned BL Lac $\left(\theta_{v} \sim 14^{\circ}\right)$

1. $2^{\text {nd }}$ largest BH shadow ($\sim 40 \mu \mathrm{as}$)
2. Relativistic outflows ($\leqslant 6 c ; 0.99 c$)
3. VHE TeV emissions (core/HST-1)
4. AGN feedback (radio mode) in action

Greenland Telescope (GLT)

Wavelength: $\lambda(\mathrm{mm})$
A baseline 9,000+ km, giving a resolution $\theta \sim 20 \mu \mathrm{as}$ to image the BH shadow in M87($\left.\sim 2.5 R_{\mathrm{s}} \mathrm{w} / 6.6 \times 10^{9} M_{\odot}\right)$ Shipping the GLT to Thule (2016-) for VLBI commissioning (86/230GHz)

Puzzle Has Remained Unsolved During decades

Distance from the nucleus: z (arcsec)

Q. What is a large gap?

Junor+ (1999), Nature

Q. Collimation is real (i.e. the jet is cylindrical or not)?

No clear view of jet acceleration/collimation even in the most studied AGN source...

Outline

- Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation
- MHD Jet global structure and dynamics under the BH gravitational influence and beyond
- Lessons learned from M87; "jet break" in AGNs may be norm in the BH-galaxy co-evolution?
- Summary

GRMHD (1st ever) Steady Inflow/Outflow Solutions for a Parabolic Streamline

GRMHD Simulation ($\mathrm{a} / \mathrm{M}=0.9375$)
B_{p} field lines and characteristic surfaces

McKinney (2006)

Steady GRMHD (cold) solution ($\mathrm{a} / \mathrm{M}=0.9375$)
B_{p} field: parabolic solution (Blandford \& Znajek 1977)

+ perturbation (Beskin \& Nokhrina 2006)

$\mathrm{Pu}, \mathrm{MN},+(2015), \mathrm{ApJ}$

Fate of GRMHD Jets: How Acceleration/ Collimation is Terminated?

separation point

- Capability of cold RMHD jet acceleration can be measured by the total (matter + Poynting)-to-matter energy flux ratio:

$$
\frac{\mu}{\gamma}=1+\sigma
$$

σ : Poynitng-to-matter energy flux ratio

$$
\begin{aligned}
& \gamma_{\infty} \simeq \mu\left(\sigma_{\infty} \simeq 0\right) \\
& \mu \simeq 10^{1-3}
\end{aligned}
$$

(Beskin 2010; Nokhrina+ 2015)

$$
\begin{gathered}
\mu \simeq 10 \quad \text { would be } \\
\sigma_{\infty} \simeq 0 \quad \text { norm? }
\end{gathered}
$$

Transition found in MOJAVE AGNs

Lister+ (2013) (see also Kellermann 2004; a tendency can been seen)

Projected Linear Distance (pc)

- A transition from positive to negative acceleration seems to locate at $\sim 10 \mathrm{pc}$ (Lister+ 2013; Homan+2015) $\Rightarrow \sim 100$ pc or longer in de-projection
- Non-ballistic flows are strongest at < 10 pc ; jets are expanding less rapidly than $z \propto r$, so that jets is still being collimated (Homan+ 2014; also Pushkarev \& Kovalev $2012 \mathrm{w} / T_{\mathrm{b}}$ analysis)

A Missing Link Has Been Filled

Asada, MN+ (2014), ApJL

Jet Structure and Dynamics in M87

Deprojected distance from the nucleus: z (pc)

Asada \& MN (2012), ApJL; MN \& Asada (2013), ApJ; Asada, MN, +(2014), ApJL

Trails of Components?

Trails of MHD Shocks?

Hints by Jet Opening Angle

Deprojected distance from the nucleus: z (pc)

Outer Boundary of GRMHD Jets

- A power-law dependence of the current density on the equatorial plane (McKinney \& Narayan 2007):

$$
\begin{array}{lll}
\frac{\mathrm{d} I_{\phi}}{\mathrm{d} r} \propto \frac{1}{r^{2-\nu}} & \begin{array}{ll}
\nu & =1 \\
\nu & =3 / 4 \\
& \\
& \text { (Parabolic, BZ77) } \\
& =0 \\
\text { (split-monord \& Payne 1982) }
\end{array}
\end{array}
$$

- GRMHD simulated jet agrees well with the force-free field solution for a thin disc with an $r^{5 / 4}$ (i.e., BP82)
- Strong BH B-field squeeze the accretion flow vertically down to $h / r \sim 0.05$ near the EH from $\sim(0.3-1)$ at large distances (Tchekhovskoy 2015)

HARM Ver. 1.0 (Gammie+ 2003; Noble+ 2006); 256^{2} grids
$a=0.9375$

$t=2500 c^{3} / G M$

$t=5000 c^{3} / G M$

$t=7500 c^{3} / G M$

HARM Ver. 1.0 (Gammie+ 2003; Noble+ 2006); 512^{2} grids

Comparison w/ Observations in M87

VSOP (1997~2005).

Dodson+ 2006, PASJ
\checkmark No evidence for significant motions
\checkmark Core T_{B} is well below the IC limit, suggesting that the emission is not strongly Doppler boosted

Spine-Sheath Resolved by Space-VLBI
 $J 1230+12$ at 4.866 GHz 2000 Mar 23

Asada et al., in prep.

Comparison w/ Observations in M87

A Constraint of BH Spin w/ BZ77 \& BK79

$M_{\bullet}=6.6 \times 10^{9} M_{\odot} \quad($ Gebhardt +2011$)$

Blandford \& Königl (1979); Hada+ (2011)

The inflow/outflow stagnation surface:

- A origin of the jet, depending on the black hole spin (MN \& Pu, in prep.)
- A natural site of pair formation/particle acceleration? (Broderick \& Tchekhovskoy 2015)

Outline

- Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation
- MHD Jet global structure and dynamics under the BH gravitational influence and beyond
- Lessons learned from M87; "jet break" in AGNs may be norm in the BH-galaxy co-evolution?
- Summary

Case 2: FRI RG

NGC 6251 $\left(0.5 \mathrm{pc} / \mathrm{mas}=8700 \mathrm{r}_{\mathrm{s}}\right), \log M_{\bullet}=8.78, \theta_{\mathrm{v}}=19^{\circ}$

Tseng, Asada, MN+, submitted to ApJL

Case 3: Blazar

Summary

- M87: The best observable for examining the AGN jet with the highest angular resolution (1 mas $\sim 125 r_{s}$)
1.Sub-mm VLBI will reveal the origin of the jet in M87 as well as the jet inner structure for blazers (non-BK79?) 2.VSOP obs. reveals the jet spine (BZ77), while the jet sheath may be the outermost streamline (BP82) from BH 3.Jet acceleration/collimation takes place in the parabolic stream up to $\sim 10^{5} r_{\mathrm{s}}$ (inside the sphere of BH influence)
4.We propose that the "Jet break" (from parabolic to conical) may be norm (see also, Potter's talk) in AGNs
\Rightarrow MHD jet paradigm in a realistic galactic environment will be examined in the coming years

