Theoretical Study Of The Effects Of Magnetic Field Geometry On The High-Energy Emission of Blazars

Dr. Manasvita Joshi
Institute for Astrophysical Research, Boston University (BU)

Collaborators:

Alan Marscher \& Svetlana Jorstad (BU)
Markus Boettcher (Northwestern University,
Potchefstroom, South Africa)

Layout

- Motivation
- Goal
- Internal shock scenario \& MUZORF
- Magnetic field geometry
- Parameter Study
- Future Work

Motivation

- Phenomena near black holes => understanding of the structure of the magnetic field (B) \& particle acceleration.
- Many bright γ-ray blazars show variations in both their flux and linear polarization (Gabuzda et al., 2006, MNRAS).
- Degree of polarization usually higher at optical than at radio frequencies => originating from smaller volumes with more uniform Bs than the ones responsible for radio emission.
- Knowledge of the structure of the B inside a blazar jet, as deduced from polarization observations at radio to optical wavelengths, closely related to the formation and propagation of relativistic jets.
- Yet B-geometry - largely unexplored aspect of blazar jet emission physics models (Lyutikov et al. (2005), Jamil \& Boettcher (2012), Chen et al. (2014), Zhang \& Boettcher (2013)).

Goal

- Consider various magnetic geometries that can exist inside a blazar jet: parallel, transverse, oblique, toroidal, helical, and tangled.
- Investigate the effects of changing each of these orientations on the resulting high-energy (HE) spectral energy distributions (SEDs), spectral variability patterns (SVPs), and spectral hysteresis of a typical blazar.
- Use the MUlti-ZOne Radiation Feedback (MUZORF) model of Joshi et al. (2014) to carry out this study \& relate the B-geometry, as indicated by multiwavelength polarization monitoring campaigns, to the observed HE SEDs and SVPs.

Internal Shock Scenario - Basic Assumptions

- Central engine (Black hole + accretion disk) ejects relativistic shells of plasma with different mass, energy, \& velocity intermittently into the jet.
- Faster inner shells, closer to central engine, catch up with slower outer shells.
- Undergo inelastic collision to produce internal shocks.
- These shocks accelerate particles, which then radiate.

$$
\delta t=\frac{R_{o}-R_{i}-\Delta_{i}}{c\left(\beta_{i}-\beta_{o}\right)}
$$

1. AGN (lab) frame - nonprimed quantities.
2. Plasma frame (comoving frame of shocked fluid) primed quantities.
3. Unshocked fluid frame - quantities with an overline (not shown here) but:
$\bar{\rho}=\frac{\rho}{\Gamma}$

Shocks propagate => emission regions keep increasing until shocks hit their respective boundaries of the merged shell.

Multi-zone Radiation Feedback (MUZORF)

Illustration of the scheme used to calculate radiation spectra resulting from the emission regions.

 zones throughout the FS \& RS emission regions.

Face-on

Joshi M. \& Boettcher M., 2011, ApJ, 727, 21

Disk + BLR + DT Schematic

Illustration of the three sources of external radiation influencing the high-energy emission from a blazar jet.

Magnetic Field Geometry

- Step 1 - Include the angle between B and photon direction, corrected for relativistic aberration, in the calculation of synchrotron emission coefficient: $j^{\prime}{ }_{v} \propto\left(B^{\prime} \sin \chi^{\prime}\right)^{(1+\alpha)} ; \alpha=$ photon energy spectral index.
- Step 2 - calculate the above dependence for various orientations, parallel, transverse, oblique, toroidal, \& helical, by obtaining $\widehat{n^{\prime}} \cdot \widehat{B^{\prime}}$ product in emission region frame (comoving frame).
- Step 3 - calculate the corresponding SSC emission resulting from the modified synchrotron emission due to each of these geometries.
- Step 4 - analyze the effects on the resulting SEDs and SVPs.
- Step 5 - fit the actual data....

Relevant Expressions - B-field orientation wrt z-axis in comoving frame

- Parallel: $\sin \chi^{\prime}=D \sin \theta_{o b s}$ - Dependence on Doppler factor \& observing angle
- Transverse: $\sin \chi^{\prime}=\sqrt{1-\left(D \sin \theta_{o b s} \cos \phi_{x y}^{\prime}\right)^{2}}$ - Dependence on the angle in the $x-y$ plane
- Oblique: $\sin \chi^{\prime}=$

$$
\begin{aligned}
& \sqrt{1-D^{2}\left[\sin \theta_{o b s} \sin \psi_{z}^{\prime} \cos \phi_{x y}^{\prime}+\Gamma \cos \psi_{z}^{\prime}\left(\cos \theta_{o b s}-\beta\right)\right]^{2}} \\
& \text { - Dependence on the angle with z-axis }
\end{aligned}
$$

contd...

- Toroidal: $\sin \chi^{\prime}=\sqrt{1-\left(D \sin \theta_{o b s} \sin \phi^{\prime}\right)^{2}}$ - Dependence on azimuthal angle
- Helical: $\sin \chi^{\prime}=$
$\sqrt{1-D^{2}\left[\Gamma \cos \psi_{z}^{\prime}\left(\cos \theta_{o b s}-\beta\right)-\sin \theta_{o b s} \sin \psi_{z}^{\prime} \sin \phi^{\prime}\right]^{2}}-$
Dependence on combination of azimuthal angle and angle with z-axis

Parameter Study:

Base Set - Generic blazar with
 corresponding to that of 3 C 454.3

Tangled B-field
Input Parameters:

$$
\begin{gathered}
\theta_{\text {obs }}=1.3^{0} ; \Gamma=16 ; D=28 \\
L_{\text {kin }}=10^{48} \frac{\mathrm{erg}}{\mathrm{~s}} ; Z=0.859 \\
z_{c}=1.2 \times 10^{17} \mathrm{~cm}=0.04 \mathrm{pc} \\
\gamma_{\min }=1.12 \times 10^{3} ; \\
\gamma_{\max }=3.9 \times 10^{4}
\end{gathered}
$$

$$
B=1.43 \mathrm{G}
$$

$$
\theta_{o b s}=\frac{1}{\Gamma}=3.6^{0}
$$

Limitations \& Future Work

- In this treatment, electron distribution considered to be isotropic.
- Magnetic field generation not dealt here \& strength and orientation assumed to not revert back to their original values once the shock leaves a particular zone.
- Together => over estimation of field strength and degree of polarization.
- Include SSC calculation using full KN cross section.
- Include radio emission calculation in the model to enable the study of spectral features at pc scale jets.

