The Jet in the Galactic Centre – mm-VLBI

Heino Falcke Radboud University, Nijmegen & ASTRON, Dwingeloo

Jets exist on all scales

Radboud University Nijmegen

stellar mass black holes (x-ray binaries)

Cygnus X-3 on 8 Feb 1997 at 2cm

Cyg X-3 VLBI: Mioduszewski et al. (2003)

Low-luminosity AGN (starving supermassive BHs)

Flat-spectrum radio cores

powerful supermassive black holes (quasars, radio galaxies)

Cyg A: VLA/NRAO

The Spectrum of Jets (Cores): Synchrotron Emission

- Conical flow with constant speed (Mach cone):
 - $n \propto R^{-2} \& B \propto R^{-1}$
- The emission is dominated by the $\tau=1$ surface.
- Synchrotron emission with equipartition naturally predicts:
 - A flat spectrum: S_v const
 - A core shift: R_{core} ∝ v^{-1}
 - Scaling with jet power: $S_v \propto Q_j^{1/4}$ Hotspot

Blandford & Königl (1979) Falcke & Biermann (1995)

Galactic Center

• The Galactic Center is a bright radio source in the plane of the Milky Way

• It contains the small radio source Sgr A*, which is suspected to be THE central black hole in the Milky Way.

A.Delinomine Replacement

Dark Mass in the Galactic Center

Radboud University Nijmegen

- Stellar proper motions have revealed a dark mass in the Galactic Center of 4 Million solar masses within the size of the solar system.
- The center of gravity coincides with Sgr A* within 215 R_s (15 AU).

near-infrared

Genzel, Ghez, Eckart (MPE, UCLA, Cologne...)

X-Ray View: Flares, Hot Gas, and Accretion

Radboud University Nijmegen

Region around Sgr A*

Sgr A* - zoomed view

Chandra, 1-9 keV band

Wang et al. (2013)

First Galactic Center Pulsar

Radboud University Nijmegen

Radio proper motions: Bower et al. (2015, ApJ)

- X-ray transient (NuStar/Swift)
- ~2" from Sgr A*= Bondi Radius!
- Period: P = 3.76354676(2) s
- Dispersion DM=1778+/-3 cm⁻³ pc
- spectrum ~flat, up to 200 GHz!
- Almost 100% linear polarization
- Rotation Measure: $RM=-66,960 +/- 50 \text{ rad m}^{-2}$ Second only to Sgr A* $(RM=-5\times10^5 \text{ rad m}^{-2})$
- Accreting plasma is highly magnetized!

Radio detection: Eatough, Falcke et al. (2013, Nature)

Spectrum of M87, M81*, Sgr A*

BlackHoleCam

Almudena Prieto

Sgr A* Spectrum & Jet Model

Radboud University Nijmegen

The submm-bump: a compact self-absorbed synchroton component

Radboud University Nijmegen

THE ASTROPHYSICAL JOURNAL, 499:731-734, 1998 June 1
© 1998, The American Astronomical Society, All rights reserved, Printed in U.S.A.

THE SIMULTANEOUS SPECTRUM OF SAGITTARIUS A* FROM 20 CENTIMETER TO 1 MILLIMETER AND THE NATURE OF THE MILLIMETER EXCESS

HEINO FALCKE, 1,2 W. M. GOSS, HIROSHI MATSUO, PETER TEUBEN, JUN-HUI ZHAO, AND ROBERT ZYLKA Received 1997 November 6; accepted 1998 January 12

ABSTRACT

We report results of a multiwavelength campaign to measure the simultaneous spectrum of the supermassive black hole candidate Sgr A* in the Galactic center from centimeter to millimeter wavelengths using the Very Large Array, the Berkeley-Illimois-Maryland Array (BIMA), the Nobeyama 45 m, and the Institut de Radioastronomie Millimetrique (IRAM) 30 m telescopes. The observations confirm that the previously detected millimeter excess is an intrinsic feature of the spectrum of Sgr A*. The excess can be interpreted as and effect of the presence of an ultracompact component of relativistic plasma with a size of a few Schwarzschild radii near the black hole. If so, Sgr A* might offer a unique possibility to image the putative black hole against the background of this component with future millimeter VLBI experiments.

The Shadow of a Black Hole

Structure of Sgr A*

Radboud University Nijmegen

- The shorter the wavelength, the smaller the radio source.
- At low frequencies the structure is blurred by scattering with λ^2 -law.
- At λ 7 mm the radio source becomes slightly larger than the scattering.
- Intrinsic size at λ 7 mm seems elliptical as well (~3:1 ratio, Bower+ 2014)

Intrinsic radio size of Sgr A*

The higher the radio frequency – the closer to the black hole. At 230 GHz the emission comes from the event horizon scale.

Two-dimensional structure of Sgr A*: fairly elongated

- Accurate closure
 amplitude measurements
 of 2D-size of Sgr A* with
 the VLBA.
- Size at 43 GHz: (35.4 ±0.4) Rs × (12.6±5.5) Rs at PA (95±4)°

Bower et al. (2014, ApJ)

43 – 22 GHz Time Lag: inside-out (20-40 min)

Radboud University Nijmegen

Yusef-Zadeh et al. (2008)

ALMA+VLA Radio Lags

Radboud University Nijmegen

Higher frequencies, lead lower frequencies ⇒ relativistic outflow

Brinkerink et al. (2015, A&A) See also Yusef-Zadeh et al. (2009)

GRMHD Simulations Where is the Jet?

shows particle density with tracers code: harm2d (Gammie)

Observable "jet" is the sheath not the spine ... Brinkerink, Falcke, Moscibrodzka, Gammie

Importance of electron heating

 $M_{iet} \ll M_{disk}$

Density regions:

Red = low density

Blue = high density

- MHD simulations do not treat electrons heating but use arbitrary fudge factor!
- Only proton temperature fixed.
- Original ADAF/RIAF assumption: $T_e \ll T_p$ everywhere
- ⇒ For T(jet)=T(disk) you can never see jets in ADAFs since $n_{\text{e,iet}} \ll n_{\text{e,disk!}}$
- ⇒ Different physical regimes:
- Jet: low n, high B
- Disk: high n, low B
- ⇒ Unlikely to have same protonelectron coupling mechanisms!
- **⇒** Allow for different proton-ion coupling in disk & jet!

Moscibrodzka & Falcke (2013, A&A) Moscibrodzka, Falcke, Gammie, Shiokawa (2014, A&A)

3D GRMHD with isothermal jet

BlackHoleCam

Jet: Tp/Te=1, Te~const

Disk: hot ADAF (Tp/Te~5)

Jet: Tp/Te=1, Te~const

Disk: "classical" 2-temperature

ADAF (Tp/Te~25)

Sgr A* 3DGRMHD with isothermal jet

BlackHoleCam

Jet: Tp/Te=1

Disk: two-temperature ADAF (Tp/Te>>1)

Moscibrodzka & Falcke (2013, A&AL) Moscibrodzka et al. (in prep.)

B-Field and Density Profile

Density and magnetic field in the GRMHD jet sheath follow the same simple power laws as in Blandford & Königl model for flat radio cores!

⇒ expect flat radio spectrum from (quasi-)isothermal jet.

(hollow cone = filled cone)
Moscibrodzka et al. (2014)

Recovering flat radio spectrum (and size)

BlackHoleCam

GRMHD + GR ray tracing + radiation transport

Moscibrodzka & Falcke (2013, A&AL)

Effect of scatter broadening

3D M87 jet model at 43 GHz **BlackHoleCam** Sgr A* model with and 🛓 perature ... Krichbaum (3mm) 100 100 i=15° 100 -100 Janssen (MSc) 100 x (μas) x (L 0.8 0.2 0.4 0.6 0.8 0.4 0.6 0.2 43 GHz along x at y=25 M 100 (spa) 0 100 i=60° i=90° 100 100 -100 -100 Cross section х (µas) $x (\mu as)$

Moscibrodzka et al. (2015, A&A, subm.)

Jet Position Angle & Spin Axis

BlackHoleCam

Simulated λ3 mm-VLBI observations

Good imaging quality is key to get spin axis ...

Brinkerink et al. (in prep.)

To be tested with recent VLBA+LMT+GBT VLBi run at 3mm ...

Closure phases for jet model

BlackHoleCam

Brinkerink et al., in prep.

VLBA+LMT+GBT @ λ3mm

- Interesting baselines between SW-US, East-Coast, Mexico (2000-3000 km)
- Includes "big guns": LMT& GBT
- Ideal closure-phase triangles
- BF114a&b, May 2015: fringes between VLBA/ LMT/GBT

BlackHoleCam

Brinkerink et al., in prep.

EHT Closure phases at 1 mm

Hawaii-California-Arizona

Fish et al. (2015, ApJ subm.)

See also "Polarization on EH scales": Johnston et al. (2015, Science, in press)

Event Horizon Telescope

VLBI with Africa mm-telescope?

BlackHoleCam

Conclusions

Radboud University Nijmegen

- The radio source Sgr A* is the best supermassive black hole candidate:
 - Mass and distance are accurately determined
 - sub-mm waves comes from event horizon scale
- To constrain GR from BH shadow we need to understand the radio source better
- Jet model is currently the only model that naturally describes all characteristics of the radio source Sgr A* (spectrum, size, lags) and also scales to other AGN.
- mm-VLBI strongly constrains jet model orientation challenge or blessing?
- A jet could fix the BH spin axis, if one can find consistent results.
- Future steps: broad-band equipment (2015+), SouthPole (2017), Alma ...??
- Imaging the BH shadow with mm-VLBI will
 - demonstrate that black holes and event horizons exist
 - test GR and also modified GR
 - allow comparison with simulations and probe accretion & jet physics
 - **⇒** black hole astrophysics becomes testable science!