# Cold Gas and AGN Feedback In Galaxy Clusters

#### Deovrat Prasad Indian Institute of Science, Bangalore, India

with Prateek Sharma (IISc) and Arif Babul (Univ. of Victoria)

# Introduction



MS0735.6+7421; McNamara & Nulsen, 2007, ARAA

How AGN heating can keep pace with cooling that increases rapidly with increasing core density? Not completely clear.







### Jets, Bubbles and Multiphase Gas



### Jets, Bubbles and Multiphase Gas





### Jets, Bubbles and Multiphase Gas



# The Cold Torus



# The Cold Torus



#### AGN Jets as source of fast outflows 10000 Jet power (10<sup>41</sup> erg s<sup>-1</sup>) . . . . . . . . . . . . . . . . . . 1000 Normalized quantities 100 10 0.1 222. time (Gyr) 2.5 3.5 1.5 3 .5 ()



### AGN Jets as source of fast outflows



### AGN Jets as source of fast outflows



### AGN Jets as source of fast outflows



## Conclusion

- Cold mode feedback control the catastrophic cooling flow in cluster cores.
- Cold gas in our 3D simulation has two distinct components:

   (a) a centrally concentrated rotationally supported torus.
   (b) extended cold gas outgoing to 30 kpc.
- Massive torus is decoupled from the feedback loop.
- Radially dominant in-falling cold gas closes the feedback cycle.

# THANK YOU



Figure 15. Cross-covariance of various quantities  $(\min[t_{cool}/t_{ff}])$ , jet energy, mass in cold phase,  $\dot{M}_{acc})$  as a function of time lag to show temporal relationship between these various quantities. Cross covariance between two quantities as a function of time, as used here, is defined as:  $cov(a, b; \tau) = \int_0^{T-|\tau|} [\delta a(t + \tau) \delta b(t) dt] / \left[ \sqrt{\int_0^T |\delta a(t)|^2 dt} \int_0^T |\delta b(t)|^2 dt} \right]$ , where  $-T \leq \tau \leq T$  is the time lag and  $\delta a$  and  $\delta b$  are mean-subtracted quantities. Since there is a large variation in various quantities (see Figures 13 and 14), we take log before evaluating cross-covariance. For the 3D cluster run we have used the radially dominant cold gas mass; the cross-covariance is much weaker if we use total cold gas mass.

#### Various Correlations

