

Max-Planck-Institut für Radioastronomie

Extreme flaring activity in S50716+714

Bindu Rani [brani@mpifr-bonn.mpg.de] Max Planck Institute for Radio Astronomy, Bonn, Germany

On behalf of the Fermi-LAT Collaboration and F-GAMMA Team

Scientific contributors :

Thomas P. Krichbaum, Jeff A. Hodgson, Lars Fuhrmann, E. Angelakis, J. Anton Zensus [MPIfR, Bonn] Alan P. Marscher, Svetlana G. Jorstad [Boston University, USA] Benoit Lott [CNRS Bordeaux, France] Markus Böttcher [Ohio University, USA] Mark A. Gurwell [Harvard-Smithsonian Center for Astrophysics, USA] David J. Thompson [NASA, GFSC, USA] It is possible that the fast BL Lacs are actually quasars in disguise, with their broad emission lines swamped by the non-thermal optical continuum.

S5 0716+714 : An Extremely Variable Blazar

Mass : ~10⁹ M_o

Redshift : z ~ 0.3

Jet Kinematics : θ<5°

Blazar with a featureless spectrum

Luminosity distance : ~1.5 Gpc (~5 Gly)

A high polarized (~60%) micro flare has been recently reported (Gopal's poster)

GeV spectrum

= N_0 (E/Eb) Γ^{2+1} E>Eb

 N_0 :Prefactor Γ 1:low energy spectral index Γ 2:high energy spectral index Eb:break energy

Change in spectral slope varies between 0.4 to 1.14

No clear correlation between break energy and source brightness

Spectral Modeling : SSC

Spectral Modeling : SSC + EC

Gamma-gamma absorption in a gas deficient BL Lac

High energy photons are absorbed via interaction with the optical/UV photons in the broad-line region (BLR).

Apparent motion

In radial directions, the individual components exhibit extreme apparent speeds as high as ~ 37 c.

Recently, Lister et al. (2013) have reported an apparent speed of 43.6 ± 1.3 c.

These values would even be extreme for a quasar.

Similar spectral features in BL Lacs and FSRQs

Brodband SED cannot be explained via SSC mechanism

Similar apparent speeds

Summary

Similar spectral features in BL Lacs and FSRQs

Brodband SED cannot be explained via SSC mechanism

Similar apparent speeds

It is possible that the fast BL Lacs are actually quasars in disguise, with their broad emission lines swamped by the non-thermal optical continuum.

Thank you for your attention