

pace Telescope

High energy emission from blazars

Bindu Rani brani@mpifr-bonn.mpg.de **Max-Plank Institute for Radioastronomy Bonn, Germany**

On behalf of the <u>Fermi-LAT Collaboration</u>

Extragalactic Relativistic Jets: Cause and Effect

13-10-15

Outline

High-energy emission from blazars

Where and how gamma-rays are produced

Future perspectives

Before we start

Before we start

At arcsecond scales, S5 0716+714 has a core-dominated jet pointing towards the North (15 GHz image) and is pointed at $\theta \leq 5^{\circ}$ to our line-of-sight. A bent jet structure is observed at milli-arcsecond scales (43 GHz image). The jet bending is even more pronounced at micro-arcsecond scales (86 GHz image).

With an angular resolution of ~50µas mas, we can reach scales down to ~700 R_{s} (for a 10⁹ solar mass black hole) at z~0.1

High-energy emission from blazars

Before Fermi – EGRET and others

-20 MeV to 1 GeV : Mapped the Galactic mission (Thompson et al. 1975) and discovered gammarays from Vela pulsar (Fichtel et al. 1975)

COS-B (1975-82) – 2 KeV to 5 GeV: first detection of extragalactic emission from 3C 273 (Bignami et al. 1981) Energetic gamma-ray experiment telescope (EGRET on board CGRO – 1991-2000) – 20 MeV to >10 GeV: detected more than 250 sources at E>100 MeV (Hartman et al. 1999)

The Fermi mission

- energy range: 30 MeV 300 GeV
- large FOV: 2.4 sr
- A_{eff}:~8000 cm² at 1 GeV
- PSF: θ_{68%}~0.8° at 1 GeV
- altitude: 565 km
- inclination: 25.6°
- orbital period: 91 min
- whole sky covered in 2 orbits in survey mode (rocking angle 50°)
- public data, available within 12 h
- operation guaranteed until 2018

The Fermi era

Image credit: NASA/GSFC

Acero et al. 2015 (3FGL catalog)

Since its launch in 2008, the Fermi-LAT (Large Area Telescope) has revolutionized our knowledge of gamma-ray sky with a combination of high sensitivity, wide fieldof-view, and large energy range (about 20 MeV to more than 300 GeV).

The Fermi era – 3rd AGN catalog (3LAC)

Census : 1444 AGNs in Clean sample

415 FSRQs 602 BL Lacs

413 of unknown type (BCUs) 23 other AGNs Non-Blazar/Misaligned AGNs (~2%) 11 FRI 3 FRII 7 SSRQ or CSS 5 Radio-loud NLSyl

6 Other AGNs

Redshift distribution

Luminosity vs. redshift

The Malmquist bias is clearly visible.

Low-luminosity BL Lacs (<10⁴⁵ erg s⁻¹) cannot be detected at z > 0.4. Sources with a luminosity greater than 5*10⁴⁷ erg s⁻¹ (64 are in 3LAC) could still be detected at z > 3.2

Gamma-ray flux and spectral index

Flux and Spectral variations

Constraints on size and location of emitting zone

4 sources show T_{min} close to 3 hr: 3C 454.3, 3C 273, 4C+21.35, PKS 1510-089 $R_{s}/c\sim10^{4} M_{9}$ s

Binned light curves unsuitable to derive T_{min} accurately

Unbinned maximum-likelihood method

Sub-hour variability is found for 3C454.3 and PKS 1510-089, 3C 279

Flux and Spectral variations

 $= N_0 (E/Eb) \Gamma^{2+1} E>Eb$

 N_{0} :Prefactor F1:low energy spectral index F2:high energy spectral index Eb:break energy

The Fermi era

>3000 gamma-ray objects ~60% AGN (98% blazars)

Since its launch in 2008, the Fermi-LAT (Large Area Telescope) has revolutionized our knowledge of gamma-ray sky with a combination of high sensitivity, wide field-ofview, and large energy range (about 20 MeV to more than 300 GeV).

Blazars are considered as the prime candidates for the emission of Ultra High Energy Cosmic Rays (UHECRs).

High-energy radiation seems to be related to relativistic particles accelerated in jets

High-energy radiation seems to be related to relativistic particles accelerated in jets.

- **1. Observed radio-gamma-ray correlations**
- 2. Jet morphology and gamma-ray correlations

3. Coincidence of gamma-ray flare with appearance of new jet components

4. Coincidence of gamma-ray flare with the interaction of moving features with stationary features

5. Polarization angle swings during gamma-ray flares

Radio – gamma-ray correlations

Jet outflow and gamma-ray emission correlations

Rani et al. 2014

Jet outflow and gamma-ray emission correlations

The analysis suggests a strong correlation between high-energy emission and inner jet morphology.

The results imply a strong physical and causal connection between gamma-ray emission and the inner jet morphology in the source.

Coincidence of gamma-ray flares often with appearance of new jet components

Coincidence of gamma-ray flares often with appearance of new jet components has been reported for several blazars (Jorstad et al. 2010, 2013, Marscher et al. 2011, Larinov et al. 2013, Rani et al. 2015)

Coincidence of gamma-ray flares often with appearance of new jet components

Passage of moving features through stationary features

Good agreement between epochs of passage of moving knots through stationary features in the jet and peaks in the gamma-ray light curve has been found for many sources (Hodgson et al. 2014, Schinzel et al. 2012, Marscher et al. 2013)

Polarization angle swings during gamma-ray flares

Coincidence of a smooth rotation of EVPA (>180 degree) with a gamma-ray flare in 3C 279

Polarization angle swings during gamma-ray flares

The close association of the gamma-ray flare with the smooth, continuous change of the optical polarization angle provides evidence for the presence of highly ordered magnetic fields in the regions of gamma-ray production.

High-energy radiation seems to be related to relativistic particles accelerated in jets.

Where?

- Within the broad-line region
- On sub-parsec scales (100-1000 R_s)
- -- Observed gamma-ray -- radio correlations (Marscher et al. 2008,2010, Rani et al. 2013, Fuhrmann et al. 2014)

Credit: NASA's Goddard Space Flight Center/A. Marscher and S.Jorstad (BU)

Coincidence of the enhanced gamma-ray emission with the superluminal knot propagating from the mm-wave core down the jet and places the emission region of the highest gamma-ray flux at ~35 pc from the BH in a distant (z=2.17) blazar 4C+71.07 (Jorstad et al. 2013).

Outside the Broad-line Region

Down stream from the core

Coincidence of gamma-ray flares with

Appearance of new jet components (Jorstad et al. 2010, 2013, Marscher et al. 2011)

Passage of moving components through stationary features in jets (Hodgson et al. 2014, Schinzel et al. 2012, Marscher et al. 2013)

Stationary feature

- Within the broad-line region
- On sub-parsec scales (100-1000 R_s)
- -- Observed gamma-ray -- radio correlations (Marscher et al. 2008,2010, Rani et al. 2013, Fuhrmann et al. 2014)
- -- Observed gamma-ray spectral break at few GeVs (Abdo et al. 2009, Finke & Dermer 2010, Rani et al. 2013a,b, Tanaka et al. 2011)

- Outside the Broad-line Region
- Down stream from the core
 Coincidence of gamma-ray flares with
- -- Appearance of new jet components (Jorstad et al. 2010, 2013, Marscher et al. 2011)
- Passage of moving components through stationary features in jets (Hodgson et al. 2014, Schinzel et al. 2012, Marscher et al. 2013)

How : Leptonic Models

How : Hadronic Models

Significant fraction of jet power converted into acceleration of protons in strongly magnetized (B ~ several tens of Gauss) environments reaching the threshold for $p\gamma$ -pion production (E_p ≥ 10¹⁹ eV).

How – Leptonic vs. Hadronic models

Broadband SEDs of blazars can be well explained via both leptonic and hadronic models; literature is however more biased towards leptonic models.

Near Future Outlook

Coincidence of extraterrestrial neutrinos detected by the IceCube collaboration (Science, Nov. 2013) with high-energy flares

Gamma-ray loud vs. Gamma-ray quiet blazars

-- A large fraction of known blazars (>60%) are still missing their gamma-ray counterpart

-- This leads to an evolving dichotomy of gamma-ray loud (or gamma-ray detected) blazars and gamma-ray quiet (or gamma-ray non-detected) blazars.

Near Future Outlook

Gamma-ray loud vs. Gamma-ray quiet blazars

gamma-ray sources slightly brighter than average in other bands

large overlap in distributions between gamma-ray loud and quiet blazars

Fermi is doing great –

>3000 Fermi-LAT sources (c.f. ~300 GeV sources prior to Fermi)

Many discoveries, many new source classes, many surprises

Pass8 data release June 2015– improved systematics, a significant reduction in background contamination coupled with an increased effective area, a better point-spread function, a better understanding of the systematic uncertainties, and an extension of the energy reach for the photon analysis below 100 MeV and above a few hundred GeV (Atwood et al. 2013)

The future of high-resolution VLBI is also very bright and rich –

The event horizon telescope (EHT) will offer an angular resolution of ~ 10 micro arcseconds

Participation of ALMA will probably bring a new era

The high-energy polarization missions are also on their way – Astro-H, GEMS, X-calibur, PoGOLite, Polar, Harpo, and many more

We certainly have promising tools to solve the mysteries

Thanks for your attention

Compton dominance

FSRQs have higher Compton dominance than BL Lac objects LSP BL Lacs have similar

