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Abstract. We introduce a random bit-string model of post-transcriptional genetic regulation based on
sequence matching. The model spontaneously yields a scale free network with power law scaling with
v = —1 and also exhibits log-periodic behaviour. The in-degree distribution is much narrower, and exhibits
a pronounced peak followed by a Gaussian distribution. The network is of the smallest world type, with
the average minimum path length independent of the size of the network, as long as the network consists
of one giant cluster. The percolation threshold depends on the system size.

PACS. 87.10.4+e General theory and mathematical aspects — 89.75.Hc Networks and genealogical trees

1 Introduction

Although biology on the whole is a “knowledge based”
discipline, with a strong traditional bias towards a reverse
engineering “form follows function” approach to evolu-
tion, prominant workers in the field have stressed that
natural selection could very well have operated on com-
plex structures already present in the pre-biotic world.
Eigen [1] pointed out that non-linear out of equilibrium
systems were capable of amplifying random fluctuations
participating in feed-back loops, while Kauffman [2,3] in-
troduced random Boolean networks as null models of
the genetic regulatory mechanism, and showed that they
could spontaneously give rise to a great degree of com-
plexity. Meanwhile, within the last two decades, we have
learned a great deal about Self-Organized Criticality [4],
namely the spontaneous emergence of scale free structures
in open systems far from equilibrium, driven by conserved
fluxes. Thus, within a statistical mechanics context, it
is much more natural to consider an ensemble of differ-
ent states among which complex structures arise sponta-
neously. Evolutionary processes can be regarded as induc-
ing dynamics on the distribution of states in this high
dimensional phase space.

In this paper we introduce a null model for gene in-
teractions resulting in the regulation of gene expression.
This model is based on sequence matching on a random
bit-string representation of the chromosome and is there-
fore radically different from the random Boolean networks
which have been considered before [2,3,5-8]. It can be
considered as an out of equilibrium system subject to a
constant mutation rate, achieving a steady state invariant
under further mutations.

® e-mail: erzan@gursey.gov.tr

We present simulation results which display many
qualitative features of gene regulation networks found
in nature [9,10]. We find that the in- and out-degree
distributions are qualitatively different from each other,
the out-degree distribution exhibiting power law decay
n(kout) ~ ki, with v = —1 and log-periodic oscillations
for relatively small k. The in-degree distribution, on the
other hand, is much more localized.

The network has smallest world characteristics, with
the cluster diameter, or the average minimum path length
being essentially independent of the cluster size as long as
the network consists of one cluster.

The average clustering coefficients for the in and out
bonds have been calculated as 0.648 and 0.034 respec-
tively. It is interesting to note that the clustering coeffi-
cients for the in-bonds behave much like for classical ran-
dom networks [11], while the out-bonds have a clustering
coefficient typical of scale free networks. [12,13]

In Section 2, we will first motivate and then define the
model. In Section 3, we will present our simulation results.
In Section 4, we consider a toy model which mimics some
of the features we observe in our simulations, and indicate
ways in which this toy model may be improved in order to
provide insights into how our basic model works. Section 5
contains our conclusions and a discussion.

2 Modelling RNA interference
2.1 Genomic regulatory networks
Protein networks, which are an important component of

transcriptional gene regulation networks [14,15], display
a scale free structure, with the out-degree distribution
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characterised by a power law n(k) ~ k7, with the expo-
nent v ~ —2.5 [9,10]. Gene regulation networks actually
operate at many different levels [16]. Post-transcriptional
gene regulation may involve many different mechanisms,
among which are the formation of secondary structures on
mRNA, the action of RNA binding proteins, the control
of RNA lifetimes, or RNA interference [17]. The latter
is a mechanism where RNA strips may go and directly
bind upon complementary segments on messenger RNA
destined to be translated into some protein, thereby sup-
pressing the production of this protein. Although we are
not aware of a scaling analysis of post-transriptional gene
interaction, it would be a fair guess to assume that inter-
action complexes of various sizes may arise in this type of
interaction as well.

In many protein-protein or intra-genomic interactions,
as well as the translation mechanism itself, essential lock-
and key mechanisms are in operation. For normal trans-
lation to take place, rRNA in the ribosomes must be able
to recognize and match the different amino acids and the
corresponding three-letter anti-codon on the mRNA. In
this, the rRNA is aided by the intermediary tRNA, which
assumes a very specific three dimensional structure de-
pending on the amino acid to which it binds. In RNA
interference, the short interfering RNA (siRNA) strips
bind onto complementary sequences on the mRNA, via
Watson-Crick base pairing [17-19].

It should be realised that many of these lock-and-key
mechanisms eventually match linear codes, even though
this matching may take a few intermediary steps. The
three dimensional structures (so called secondary or ter-
tiary structures) which come into play in tRNA can also
be said to be determined by the sequence of ribo-nucleic
acids on the tRNA. Clearly the simplest is direct Watson-
Crick base pairing between complementary nucleic acid
sequences, and it is this latter, as it appears in RNA in-
terference, which we will take to be the paradigm for our
model. In fact we will further simplify the matching con-
dition to consist of the identity relation rather than com-
plementarity, since both are one-to-one, we believe that
this should not change our results.

2.2 The model

The model is defined as follows. We postulate a “chromo-
some” to consist of a sequence of fixed length L, of in-
dependently and identically distributed random numbers
with the probability distribution

P(z) =pi(z —2)+ (1 —p)/200(x - 1) +d(x)]. (1)
We define a “gene” to consist of a sequence of 0’s and

1’s situated between the 7th and 7 + 1st occurance of the
symbol “2,” and we will denote the ith gene by

(2)

where z;, # 2, p=1,...¢; and ¢; is the length of the
1th gene. We have used periodic boundary conditions, but

Gi = {Ii,l,Ii,g,...l‘i,gi} 7= 1,...,8
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Fig. 1. The random sequence of symbols representing a chro-
mosome. The “2” represents a start or stop sign for a gene,
and the 0’s and 1’s code the genes. The arrows indicate that
one gene sequence is embedded in another one.

one could just as well agree to end the chromosome always
with a “2” at the L + 1st site. Then

S

> li=L-s,

%

(3)

where s is the number of genes (the number of times the
symbol 2 appears) on the chromosome. Let ny be the num-
ber of genes of length £. It obeys the sum rule

L—s
E ng = 8.
=0

For a given number s of genes, the number of possible
realisations of a given set {ny} is

(4)

Kl{n}] = =,
¢=0 T

(5)

and the most probable distribution 7(¢) can easily be
found by using Lagrange multipliers, to be m(¢) = Lp?(1—
p)’, in the limit of large L.

With these definitions we obtain a sequence of genes,
seperated from each other by the symbol 2. (See Fig. 1.)
In case there are more than one consecutive 2’s, they will
be considered to bracket null genes. Clearly, for large L,
the number of non-null genes, N, will fluctuate around
N = Lp — Lp>.

Each of the non-null genes constitutes a node in our
gene regulation network. The interactions do not depend
on the proximity of the genes along the chromosome. We
define the adjacency matrix w;; by the matching condition

such that
1 G, CqG;
wij = { ! (6)

0 otherwise.

By G; C G we mean z;, = xj,4, for p =1,...4; for
at least one integer v such that 0 < v < ¢; — ¢;. Note
that w;; = 1 implies that ¢; < ¢;; in the case of the equal-
ity, w;; = 1 if and only if the two sequences G; and G
are identical, i.e., congruent. Thus, two genes are said to
interact if the sequence G; occurs at least once as an un-
broken subsequence of Gj, i.e., if one can be embedded in
the other at least once.

Clearly this adjacency (or connectivity) matrix is di-
rected. Moreover connectivity is “transitive” in the sense
that w;; = w;r = 1 implies that w;, = 1. The latter con-
dition gives rise to a preferential attachment of incoming
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bonds to large genes, while small genes have an enhanced
distribution of out-bonds. However, we will see in the next
section that the degree distribution is scale free for the
out-bounds, but not for the in-bonds.

A simple argument tells us that our network is of the
smallest world [12] type. If we take the out-bonds, we see
that due to the transitivity, any two successive edges link-
ing say vertex ¢7 and jk, necessarily imply the existence

of another directed edge ¢k. Thus lI(I?i)n =1, as long as the

network consists of a single cluster. The in-bonds follow
the same argument, giving lfgn = 1 for a network with
one giant cluster.

The question of whether a giant cluster always exists
or whether we can identify the analog of a “percolation
threshold” we will address in the next section, where we
will also report numerical results for the minimum path
length for undirected bonds (i.e., ignoring the directional-
ity of the edges). We expect that the qualitative behaviour
of the network should not depend on p as long as p is
bounded away from the percolation threshold. Requiring
the number of vertices, N, to be larger than unity, i.e.,
N = Lp— Lp? = Lp(1—p) > 1 gives p(1 —p) > 1/L (how-
ever this lower limit turns out not to be tight enough,
ie., p. > 1/L). The average gene size, again in the limit
of large L is (¢) = (1 — p)/p. The obvious requirement
for a non-trivial network, that (¢) > 1 yields p < 1/2.
We therefore expect to find scaling behaviour, if any, for
pe <p<1/2.

The elements w;; of the connectivity matrix are equal
to unity with probabilities

Py = P4, 45), (7)

which depend on the lengths (¢;,¢;) through ¢; and v =
£; — £;. It is trivial to see that

P(,0) = (%)e (s)

We may make a mean field theory type of approxima-
tion to P(¢,¢ + v) by neglecting the correlations between
overlapping subsequences of G;, and obtain,

P60+ 1) = (%)e(l—i—u). ()

In the Appendix we have computed P(¢, ¢+ v) explicitly
for v = 1,2. However, so far it has not been possible to
extract the form of the degree distribution analytically.

The directed graph gives rise to different kinds of ver-
tices, shown in Figure 2, which allow different classes of
clustering coefficients C. Let kout(2), kin(), k(7), be, re-
spectively, the out- degree, in-degree and the total degree
of the vertex i. The clustering coefficient at a given ver-
tex ¢ is defined as

28(i)
k(i) [k (i) — 1]

where E(i) is the number of edges connecting the nearest
neighbors of 4. Thus it is the number of pairs of nearest

C; = (10)
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Fig. 2. Different kinds of vertices allowed on our directed ran-

dom network. While the in or out-neighbors of a vertex may

or may not be connected to each other, in the case of the third

configuration, with a pair of mixed bonds, the neighboring
nodes are necessarily connected as shown, due to transitivity.

neighbors directly connected to each other, normalized by
the largest number of such connections possible. We may
extend this concept to directed graphs and define,

2F (1)
kout (i)[kout (Z) - 1]

and similarly for Ci,, where Eo,ut(i) (respectively Eiy(i))
are the number of edges connecting out (in) nearest neigh-
bors of i. Note that any pair of incoming and outgoing
bonds passing through i necessarily defines a triangle, due
to transitivity, as shown in Figure 2. Thus, the clustering
coeflicient may be conveniently decomposed as

Kin () kout (1) + Ein(i) + Eout (4)
k(i) k(i) —1]/2

This is a null model in the sense that no assumptions
have been made as to the fitness of any particular type
of interaction; the resulting interactions depend only on
the random sequences coded in the genes and on the dis-
tribution of gene lengths. This random network provides
the “tabula rasa” on which we assume natural selection
will subsequently act. As such, it is of great interest to
determine the properties of the null network, which turn
out to be highly non-trivial. This is the task to which we
turn in the next section.

Cout(i) = (11)

Ci=

(12)

3 Simulation results

To characterize the network defined by our model, we gen-
erated random chromosomes as defined above. The statis-
tical properties of the network obtained from the totally
random chromosome were checked to be invariant under
a constant mutational load, with a mutation probability
of 0.01. A mutation is affected as follows. If the symbol (z)
occupying the site to be mutated happens to be a 0 or 1,
then it is flipped, i.e., we set & = moda(z + 1). If z = 2,
then it exchanges places with either its right or left near-
est neighbor, with equal probability. It should be noted
that the first case corresponds to a substitutional muta-
tion, whereas the second to a shifting of the position of
the start sign which shifts the reading frame of the gene.
The latter gives rise to far-reaching modifications, since
the three-letter codes corresponding to the different amino
acids will be completely modified along the whole gene if
the reading frame is shifted.

The most remarkable property of the random network
generated in this way is that it has a scale free out-degree
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p=0.1, L=5000
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Fig. 3. The out degree distribution, for p = 0.1 and L = 5000.
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Fig. 4. The out degree distribution for p = 0.05 and L =
15000.

distribution, and a qualitatively different in-degree dis-
tribution which is much less broad, with a pronounced
narrow peak followed by a Gaussian peak. These quali-
tative behaviours match the results found on protein and
genomic networks to a surprising extent [9,10].

We display in Figures 3, 4 the out-degree distribu-
tion n(kout) for two sets of parameters, namely L =
5000, p = 0.1 and for L = 15000 p = 0.05, with, the num-
ber of genes fluctuating around N = 450 and N = 712, re-
spectively. The data have been averaged over 500 indepen-
dent realizations. The distributions, which are strongly log

periodic, with a power law envelope ., (kout) ~ k., have
the same characteristic behaviour for the two cases. The
fits to the envelope of the peaks are shown in Figures 5, 6.
We see a marked break in the log-log fit for larger p, with
a crossover from 7' ~ —1 to 4/ = —0.45 + 0.06 at about
In(kout) = 2.5. This crossover behavior is just off-scale
in Figure 6, as can be seen in Figure 7, with the incip-
ient scaling with a power of —1 again extending out to
ln(kout) ~ 2.

It is also worthwhile mentioning that the integral over
the peaks to the rightmost of the out-degree distribution

The European Physical Journal B

p=0.1, L=5000

In{n(k_)]

In[k_, ]

Fig. 5. The log-log fit to the envelope of the out-degree dis-
tribution shown in Figure 3. The slopes of the dashed and
continuous lines are —0.9 and —0.39, respectively.
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Fig. 6. The log-log fit to the envelope of the out-degree dis-

tribution for p = 0.05, L = 15000 (Fig. 4). The fit is to a slope
of —0.46.

out

simply gives the network size N, as it should, because
these peaks come from the smallest genes of unit length
which are embedded in all the other genes. Introducing
a larger lower cutoff to the gene size (i.e., a cutoff bigger
than unity) would somewhat restrict the range of koyt, but
also yield cleaner scaling behaviour for large values of koyt
by effectively eliminating these peaks.

It should be noticed that for kqy < 100, the dips in
the degree distribution are about evenly spaced on the
logarithmic scale, with a scale factor of 1/2. We conjec-
ture that each individual peak corresponds to a particular
gene-length ¢. (This conjecture is borne out by comparing
the integrals under the peaks with ny for p = 0.1, L =
5000 but is much more noisy for p = 0.05, L = 15000.)
Increasing ¢ by unity, exactly halves the leading contribu-
tion to the to koyut, from genes of length £.

To get a better grip on the degree distribution, we nu-
merically integrated the curves in Figures 3, 4. The result
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Fig. 7. The initial peak of the out-degree distribution for p =
0.05 and L = 15000, and the double logarithmic graph of the
same, showing incipient power law behaviour with the power
—0.89.
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Fig. 8. The wavy line is the cumulative out degree distribution
for p = 0.05, L = 15000. The dashed line is a logarithmic fit,

while the continuous one ~k2LL.

is shown for p = 0.05 in Figure 8. We find that

Eout
N (kout) = / n(z)dz ~ In(kout), (13)

or a very small power, ~ kJt' where numerically v +

1 < 0.1, at least for koy that are not too large. Thus we
are led to believe that the overall out degree distribution
scales like

n(kout) ~ kguef (kout/ﬁ) )

with v = —1.0 & 0.1. The scaling function f(z) ~ const.
for x < 1, and is log-periodic for intermediate values of its
argument. Scaling breaks down for z ~ O(1). Note that
v is smaller in absolute value than that reported for real
gene regulation networks [9,10,15], thus evolution seems
to have narrowed the distribution somewhat, restricting
the number of genes that may be affected by any one gene.

(14)
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Fig. 9. The in-degree distribution for p = 0.1 and L = 5000.

The in-degree distribution is much narrower that the out-
degree distribution and displays two peaks.

p=0.1, L=5000
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Fig. 10. The second peak of the in-degree distribution for
p=0.1 and L = 5000 can be fit to a Gaussian.
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The in-degree distribution, which we display in Fig-
ure 9 shows two peaks. The second can be fit to a Gaus-
sian, as shown in Figure 10. The first peak is more skewed
than a Poissonian, but may be fitted reasonably well by a
distribution of the form f(z) ~ (z — x0)°® exp[—&(x — )],
where § = 2.2 and £ = 0.15. (Fig. 11).

The total degree distribution again displays a modu-
lated structure, as can be seen in Figure 12.

We have already discussed that the network will be-
have trivially either for very small N (all very large genes
with very small probabilities for interaction) or for large p
(i.e., p > 1/2) where most of the chromosome will be occu-
pied by non-coding partitions (the symbol 2), and many
null genes. We have determined the threshold value, p.,
below which the the genes are too few and too long, such
that the single giant cluster breaks up into more than one
component. The results are reported in Table 1, for L
ranging from 15000 to 1000, and undirected edges. Al-
though we have only a few points, the dependence (see
Fig. 13) fits a power law, with p. ~ L™% with o ~ 3/4,
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Fig. 11. The first peak of the in-degree distribution, with
the tail of the Gaussian distribution subtracted. The fits are
to a Poisson distribution (continuous line) exp(—z)z"/k! with
z = k computed from the data points, and the function f(k) =
0.09(k — 10)*? exp[—0.15(z — 10)] (dashed line).
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Fig. 12. The total degree distribution for p = 0.05, L = 15000.

within the range explored. In the limit of L — oo, p. — 0,
but less fast than 1/L.

On the other hand our expectations that there is a
reasonably large interval of p’s (p. < p < 1/2) where the
results do not depend quantitatively on the precise value
of p are borne out, as can be seen from our calculations for
the minimum average path length for undirected edges.

We argued in Section 2 that as long as there is a single
giant cluster, the directed minimum path length is identi-
cally 1. For undirected paths this is no longer true and we
must determine (/i) numerically. Nevertheless, we can
show that [,y < 4. Note that for p > p., there will be an
abundance of short genes of unit length, which will con-
tain the symbol 0 or 1 with equal probability. These will
have outgoing edges to all the typical genes which have
an admixture of Os and 1s, so that most such genes will
be certainly linked by paths of length at most equal to 2.
The “worst case” is that of atypical cases of all 1’s all
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Fig. 13. Dependence of the “percolation threshold” on L. The
power law fit gives p. ~ L—3/4,

Table 1. The “percolation threshold” for strings of different

length L. The average number of non-null genes at the perco-
lation threshold is also reported.

L <]V> De
15000 177 0.012
5000 112 0.023
1500 83 0.059
1000 54 0.086

Table 2. The average minimum path length for undirected
edges, with p = 0.05, for different L.

L () ()
15000 717 1.669
10000 479 1.670
5000 239 1.670
2500 120 1.670
2000 95 1.669
1750 83 1.672
1650 79 1.673

or all 0’s which require at least one intermediate typical
gene to link up (11111 — 1 — 011100 — 0 — 00000), which
gives max(lmin) = 4. We have calculated (Imin) for fixed
p and different L. We consider undirected edges and find
that it at most depends very weakly on N, the number of
vertices. We find, e.g., for L ranging from 1650 to 15000,
and p = 0.05 that (I;nin) ranges only from 1.673 to 1.699.
(Tab. 2)

Fixing the length L and varying p (Tab. 3) shows again
that as long as (lyin) is defined, i.e., just above the “per-
colation threshold” it is already very close to the value it
will have for larger p.

The clustering coefficients are markedly different for
the in- and out-degree distributions, as well as the to-
tal connectivity. We find, for p = 0.05 and L = 15000,
(Couty = 0.034, (Ci) = 0.648 and (C) = 0.534. We
have verified in the last case that this clustering coeffi-
cient is reproduced by computing the average total degree
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Table 3. The average minimum path length (Imin) for undi-
rected edges, for different p and L. Note that (Imin) varies very
little over the entire range from p ~ p. to p ~ 1/2.

P L (N) (win)
0.013 15000 194  1.858
0.014 15000 209 1.851
0.016 15000 237  1.84
0.018 15000 267  1.82
0.02 15000 295 1.81
0.05 15000 717  1.669

0.1 10000 452  1.543
0.48 1500 374  1.360

per node and deviding by the total number of nodes, i.e.,
(C) ~ (k)/N. Thus, the total connectivity behaves very
much like in classical random graphs.

4 Analytical results on toy model

In this section we would like to present a number of the re-
sults which may be obtained from a hierarchical model. In
particular, we would like to exploit the transitivity prop-
erty, to compute certain properties of a toy version of our
original model.

Let us consider a tree network, with a branching
ratio b. Take all connections emanating from nodes at
the mth generation to the ones at the (m + 1)st gener-
ation, to be directed. If one applies the transitivity rule,
then this automatically generates further connections that
link directly a node at the mth generation to all the nodes
below it on the same branch of the tree. Then, the out de-
gree (we will drop the index “out” from now on) of a node
at the mth level will be

M—m—1

;opMmm—
k = = = 15
m="3 )
where M is the total number of levels and k(m) ~ pM—™

for large M — m, which we may safely assume. The fre-
quency of the nodes at the mth level is ™. This gives, for
the out-degree distribution,

o)~ o (1),

We now introduce redundancies within the same level.
Let a fraction r of the b downstream neighbors emanating
from any node be identical to each other, with r = a™,
b~! < a < 1 being some constant. The nodes that are iden-
tical within any given level are connected to each other by
two-way bonds within the sub-branch where they are lo-
cated. I will call this subset of nodes the clones at any
given level. This means that the out-degree k£ of any one
of these nodes is now k' = (a™b)b™ ™ since each inter-
connected node inherits all the downstream neighbors of
the a™b clones to which it is connected. The interconnec-
tions between nodes further downstream do not introduce

(16)
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any further change in k’(m), since all the nodes that they
can connect are already connected to the nodes at level m.
The number of clone-nodes (not all identical to each other,
but only in groups of a”b) is clearly a™b™. Then, the out-
degree distribution of the nodes belonging to the clone-sets

becomes,
1 k/ Y
N Y= no 1
n(k')=0b <N> (17)
where N = b and with
Ina+1Inb
=_- - 18
" Ina—1Inb (18)

Note that under our assumptions above, —1 < v < 0. For
large enough k this then becomes the leading contribution
to the out degree distribution, rather than v = —1.

5 Conclusions and discussion

The model we have presented for the scaling behaviour
of gene interaction, more specifically RNA interference,
turns out to be a rich model which is worthwhile to in-
vestigate in its own right, as well as providing a highly
structured starting point on which further evolutionary
pressures could act.

We have checked that the statistical properties of the
network are robust under random point mutations. Thus,
the scale free random network may be seen as the attra-
tor for a process starting from, say, a sequence of uniform
genes, subjected to random point mutations over a very
long time period. The scale free steady state can be con-
sidered as the outcome of a process of self-organization
under random perturbations.

In conclusion it is worthwhile to note that in RNA
interference, longer RNA chains are cut up by the “Dicer”
enzyme into smaller segments, siRNA [17], which can be
conveniently matched with complementary sequences in
a larger number of mRNAs. This trick would change the
power of the out-degree distribution from that found here.

One of us (AE) would like to gratefully acknowledge par-
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Appendix

We would like to compute the probabilities P(¢,¢') in
equation (7). For successive v = ¢/ —¢ > 0, it is convenient
to define subsequences of G of length ¢; with a shift A,

A
0 < X\ < v, such that gij) = {T 140, Tj 242, - - - Tj 0,47}

Then, we can obtain P(¢, ¢’) in terms of joint probabilities
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like P(G; # gzo) G; = gw)), etc. Thus,

P(,0) =P (Gi = gff))

P(£,£+1)=P(G = 4" ) +7>(G £g0.G gfb)

P(£,€+.;)-P<G —g§f>)
+7)(G £ 906G # gD,
4o

G, = G})

Let us display P(G
ity. We have

0
i £ 95),Gy

P(Gi# gy, Gi=g3) =

¢ p—1 £;
Z H 5Ii,m%',m (1 o 517:,;“%',;;) 51i,nﬂﬂj,n+1
n=1

p=1m=1

In particular we find

P t+1)=2""[1+1-27
=27t[2-271
P, 0+2) =273 27t - % (1—272%)

Note that the probabilities P do not depend upon the par-
ticular gene, except through the lengths of the sequences,
as the genes do not overlap, and each of the symbols are in-
dependently and identically distributed, with equal prob-

ability, over 0 and 1.

= gz ) for greater clar-
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