Aspects of Extremal Surfaces in (A)dS

K. Narayan Chennai Mathematical Institute

- Gauge/string realizations of Lifshitz & hyperscaling violation, and Entanglement Entropy
- A lightlike limit of entanglement
- dS/CFT at uniform energy density and a de Sitter bluewall
- Speculations on de Sitter extremal surfaces

Based on: arXiv:1408.7021, KN, (also 1212.4328, KN, Tadashi Takayanagi, Sandip Trivedi),

1312.1625, Sumit Das, Diptarka Das, KN; to appear.

Introduction

Over the years, we have seen many explorations and generalizations of AdS/CFT: *e.g.* to nonrelativistic systems (holographic condensed matter), time-dependent systems, cosmology, ...

 \rightarrow geometric handle on physical observables.

A striking example is entanglement entropy : entropy of reduced density matrix of subsystem. Ryu-Takayanagi bulk prescription for EE: area of minimal surface in gravity dual.

Introduction

Over the years, we have seen many explorations and generalizations of AdS/CFT: *e.g.* to nonrelativistic systems (holographic condensed matter), time-dependent systems, cosmology, ...

 \rightarrow geometric handle on physical observables.

A striking example is entanglement entropy : entropy of reduced density matrix of subsystem. Ryu-Takayanagi bulk prescription for EE: area of minimal surface in gravity dual.

[Operationally: (i) define a spatial subsystem on the boundary, (ii) consider corresponding constant time slice in the bulk (d + 1)-dim geometry, and a surface bounding the subsystem and dipping into the bulk, (iii) extremize area functional \rightarrow minimal area (in Planck units).]

Non-static situations: extremal surfaces.

Leading EE scaling: *d*-dim area law $\frac{V_{d-2}}{\epsilon^{d-2}}$.

(Hubeny, Rangamani, Takayanagi)

(Bombelli, Koul, Lee, Sorkin; Srednicki)

Nonrelativistic Holography

Generalizations of AdS/CFT with reduced symmetries.

Lifshitz spacetime: $ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. (Kachru, Liu, Mulligan; Taylor) t, x_i -translations, x_i -rotations, scaling $t \to \lambda^z t, x_i \to \lambda x_i$. [dynamical exponent z] (smaller than Schrodinger symmetries: e.g. Galilean boosts broken)

[z = 1 : AdS] 4-dim gravity, $\Lambda < 0$, and massive gauge field $A \sim \frac{dt}{r^z}$

Nonrelativistic Holography

Lifshitz spacetime: $ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. (Kachru,Liu,Mulligan; Taylor) t, x_i -translations, x_i -rotations, scaling $t \to \lambda^z t, x_i \to \lambda x_i$. [dynamical exponent z] [z = 1 : AdS] 4-dim gravity, $\Lambda < 0$, and massive gauge field $A \sim \frac{dt}{r^z}$

 $ds^2 = r^{2\theta/d_i} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right).$ More general gravity phases: θ = hyperscaling violation exponent; d_i = boundary spatial dim (x_i) . [Conformally Lifshitz. Effective Einstein-Maxwell-Dilaton theories (Trivedi et al; Kiritsis et al, ...) $S \sim T^{(d_i - \theta)/z}$. Thermodynamics ~ space dim $d_{eff} = d_i - \theta$: actual space is d_i -dim. $\theta = d_i - 1$: entanglement entropy $\sim \log l$, logarithmic behaviour. Gravity duals of Fermi surfaces? (Ogawa, Takayanagi, Ugajin; Huijse, Sachdev, Swingle) Aspects of hyperscaling violating holography (Dong, Harrison, Kachru, Torroba, Wang) $d_i - 1 \le \theta < d_i$: entanglement entropy shows area law violations. [Energy conditions: $(d_i - \theta)(d_i(z - 1) - \theta) \ge 0, \quad (z - 1)(d + z - \theta) \ge 0.$]

Lif/h.v., gauge/string realizations

Various string constructions involve x^+ -dimensional reduction of $ds^2 = \frac{R^2}{r^2}(-2dx^+dx^- + dx_i^2 + dr^2) + R^2g_{++}(dx^+)^2 + R^2d\Omega_S^2$ where $g_{++} > 0$. In lower dim'nal theory, time is $t \equiv x^-$.

(i) z = 2 Lifshitz (Balasubramanian,KN; Donos,Gauntlett; ...): $AdS + g_{++} [\sim r^0] \xrightarrow{x^+ - \text{dim.redn.}} z = 2$ Lifshitz.

 x^+ -reduction of non-normalizable null deformations of $AdS \times X$.

 $g_{++} \text{ sourced by lightlike matter, } e.g. \ g_{++} \sim (\partial_+ c_0)^2 \text{ with lightlike axion } c_0 = Kx^+:$ $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + K^2 R^2 (dx^+)^2 \longrightarrow ds^2 = -\frac{dt^2}{r^4} + \frac{\sum_{i=1}^{d_i} dx_i^2 + dr^2}{r^2}.$

Lif/h.v., gauge/string realizations

Various string constructions involve x^+ -dimensional reduction of $ds^2 = \frac{R^2}{r^2}(-2dx^+dx^- + dx_i^2 + dr^2) + R^2g_{++}(dx^+)^2 + R^2d\Omega_S^2$ where $g_{++} > 0$. In lower dim'nal theory, time is $t \equiv x^-$.

(i) z = 2 Lifshitz (Balasubramanian,KN; Donos,Gauntlett; ...): $AdS + g_{++} [\sim r^0] \xrightarrow{x^+ - \text{dim.redn.}} z = 2$ Lifshitz.

 x^+ -reduction of non-normalizable null deformations of $AdS \times X$.

- $g_{++} \text{ sourced by lightlike matter, } e.g. \ g_{++} \sim (\partial_+ c_0)^2 \text{ with lightlike axion } c_0 = Kx^+:$ $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + K^2 R^2 (dx^+)^2 \longrightarrow ds^2 = -\frac{dt^2}{r^4} + \frac{\sum_{i=1}^{d_i} dx_i^2 + dr^2}{r^2}.$
- (ii) Hyperscaling violation: AdS_{d+1} plane waves (KN) $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^{d-2} (dx^+)^2 \longrightarrow$ $ds^2 = r^{\frac{2\theta}{d_i}} \left(-\frac{dt^2}{r^{2z}} + \frac{\sum_{i=1}^{d_i} dx_i^2 + dr^2}{r^2} \right), \quad z = \frac{d-2}{2} + 2, \quad \theta = \frac{d-2}{2}, \quad d_i = d-2.$

Normalizable g_{++} mode \Rightarrow dual CFT excited state, energy-momentum density $T_{++} = Q$. Large boost, low temperature limit (Singh) of boosted black branes (Maldacena, Martelli, Tachikawa).

 AdS_5 plane wave: $d = 4, d_i = 2, \theta = 1, z = 3$. Logarithmic behaviour of EE.

Entanglement, AdS plane waves

 AdS_{d+1} plane wave: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^{d-2} (dx^+)^2$

EE here matches EE in hyperscaling violating lower dim'nal theory if upstairs theory entangling surface lies on $x^- = const$ surface (which is t = const below). Null EE?

EE, spacelike strips (width l, $\Delta x^+ > 0 > \Delta x^-$). (KN, Takayanagi, Trivedi)

Non-static spacetime \rightarrow use covariant HEE (Hubeny, Rangamani, Takayanagi). (stationary point of area functional; if several extremal surfaces exist, choose minimal area).

Spacelike subsystem, UV cutoff ϵ : leading divergence is area law $\sim \frac{V_{d-2}}{\epsilon^{d-2}}$

Case A: width direction x_i . Strip along energy flux. Finite EE $\pm \frac{R^{d-1}}{G_{d+1}} V_{d-2} \sqrt{Q} l^{2-d/2}$. $N^2 V_2 \sqrt{Q} \log(lQ^{1/4})$ [d=4]: less than $N^2 T^3 V_2 l$ (thermal entropy), larger than $-N^2 \frac{V_2}{l^2}$ (ground state).

Case B: Strip \perp flux. Phase transition (no connected surface if $\Delta x^+ > 0 > \Delta x^-$). S_A saturated for $l \gtrsim Q^{-1/4}$.

AdS_{d+1} plane waves, EE

Uniformize notation with nonconformal case: redefine $Q \to Q \frac{G_{d+1}}{R^{d-1}}$.

$$\left[Q \to \frac{Q}{N^2} \ (D3), \ Q \to \frac{Q}{N^{3/2}} \ (M2), \ Q \to \frac{Q}{N^3} \ (M5)\right]$$

 $ds^{2} = \frac{R^{2}}{r^{2}} \left(-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2}\right) + \frac{G_{d+1}Q}{R^{d-3}}r^{d-2}(dx^{+})^{2} + R^{2}d\Omega^{2}$

Plane wave excited states: EE^{finite} (strip along flux direction):

 $\pm \sqrt{Q} V_{d-2} l^{2-\frac{d}{2}} \sqrt{\frac{R^{d-1}}{G_{d+1}}} \qquad [+: d < 4, -: d > 4];$ $\sqrt{Q} V_2 N \log(lQ^{1/4}) \text{ (D3), } \sqrt{Q} L \sqrt{l} \sqrt{N^{3/2}} \text{ (M2), } -\sqrt{Q} \frac{V_4}{l} \sqrt{N^3} \text{ (M5).}$

3d, 4d: finite entanglement grows with width l (large for fixed cutoff). [spacelike strip subsystem: leading divergence is area law, $\frac{V_2}{\epsilon^2}$ (4d), $\frac{V_1}{\epsilon}$ (3d)] [Strip \perp flux: phase transition.]

[EE^{fin} scaling estimates \leftarrow approximate r_*, S^{fin} for large Q, l from EE area functional]

[Ground state EE:
$$S_A \sim \frac{R^{d-1}}{G_{d+1}} \left(\frac{V_{d-2}}{\epsilon^{d-2}} - c_d \frac{V_{d-2}}{l^{d-2}} \right)$$
]
[Temperature parameters: $r_0^4 \sim G_{10}\varepsilon_4 \ (D3), \ r_0^6 \sim G_{11}\varepsilon_3 \ (M2), \ r_0^3 \sim G_{11}\varepsilon_6 \ (M5)$
 $\lambda \to \infty, \ \varepsilon_{p+1} \to 0, \quad \text{with} \quad \frac{\lambda^2 \varepsilon_{p+1}}{2} \equiv Q = \text{fixed. Boundary } T_{++} = Q.$]
[$G_5 \sim G_{10}R_{D3}^5, G_{4,7} \sim G_{11}R_{M2,M5}^{7,4}, \text{with} \ R_{D3}^4 \sim g_s Nl_s^4, R_{M2}^6 \sim Nl_P^6, R_{M5}^3 \sim Nl_P^3$]

Nonconformal brane plane waves

(Recall Dp-brane phases, Itzhaki, Maldacena, Sonnenschein, Yankielowicz)

$$ds_{st}^{2} = \frac{r^{(7-p)/2}}{R_{p}^{(7-p)/2}} dx_{\parallel}^{2} + \frac{G_{10}Q_{p}}{R_{p}^{(7-p)/2}} \frac{(dx^{+})^{2}}{r^{(7-p)/2}} + R_{p}^{(7-p)/2} \frac{dr^{2}}{r^{(7-p)/2}} + R_{p}^{(7-p)/2} r^{(p-3)/2} d\Omega_{8-p}^{2}$$

$$e^{\Phi} = g_{s} \left(\frac{R_{p}^{7-p}}{r^{7-p}}\right)^{\frac{3-p}{4}}, \quad g_{YM}^{2} \sim g_{s} \alpha'^{(p-3)/2}, \quad R_{p}^{7-p} \sim g_{YM}^{2} N \alpha'^{5-p} \sim g_{s} N \alpha'^{(7-p)/2}.$$

(KN)

 $\begin{bmatrix} g_{++} \text{-deformation obtained from double scaling limit of boosted black Dp-branes} \\ r_0^{7-p} = (U_0 \alpha')^{7-p} \sim G_{10} \varepsilon_{p+1}; \quad \lambda \to \infty, r_0 \to 0, \text{ with } \frac{\lambda^2 \varepsilon_{p+1}}{2} \equiv Q_p \text{ fixed.} \end{bmatrix}$

Strongly coupled Yang-Mills theories with constant energy flux T_{++} . Dimensionally reducing on S^{8-p} and x^+ , Einstein metric $ds_E^2 = e^{-\Phi/2} ds_{st}^2$ gives hyperscaling violating metrics with $\theta = \frac{p^2 - 6p + 7}{p - 5}, \ z = \frac{2(p - 6)}{p - 5}$ (Singh).

D-brane plane waves, EE

$$\begin{split} ds_{st}^2 &= \frac{r^{(7-p)/2}}{R_p^{(7-p)/2}} dx_{\parallel}^2 + \frac{G_{10}Q_p}{R_p^{(7-p)/2}} \frac{(dx^+)^2}{r^{(7-p)/2}} + R_p^{(7-p)/2} \frac{dr^2}{r^{(7-p)/2}} + R_p^{(7-p)/2} r^{(p-3)/2} d\Omega_{8-p}^2 \\ e^\Phi &= g_s \left(\frac{R_p^{7-p}}{r^{7-p}}\right)^{\frac{3-p}{4}}, \ g_{YM}^2 \sim g_s \alpha'^{(p-3)/2}, \ R_p^{7-p} \sim g_{YM}^2 N \alpha'^{5-p} \sim g_s N \alpha'^{(7-p)/2}. \\ & \left[r_0^{7-p} = (U_0 \alpha')^{7-p} \sim G_{10} \varepsilon_{p+1}; \ \lambda \to \infty, r_0 \to 0, \text{ with } \frac{\lambda^2 \varepsilon_{p+1}}{2} \equiv Q_p \text{ fixed.} \end{split}$$

Strongly coupled Yang-Mills theories with constant energy flux T_{++} .]

Ground state: Ryu-Takayanagi, Barbon-Fuertes

$$S_A = N_{eff}(\epsilon) \frac{V_{d-2}}{\epsilon^{d-2}} - c_d N_{eff}(l) \frac{V_{d-2}}{l^{d-2}} , \quad N_{eff}(\epsilon) = N^2 \left(\frac{g_{YM}^2 N}{\epsilon^{p-3}}\right)^{\frac{p-3}{5-p}}$$

Plane wave excited states (KN): leading divergence as above. Scaling estimates from entanglement entropy area functional:

$$l \sim \frac{R_p^{\frac{7-p}{2}}}{r_*^{\frac{5-p}{2}}}, \qquad S_A^{finite} \sim \frac{V_{p-1}\sqrt{Q}}{(3-p)\sqrt{G_{10}}} \frac{R_p^{7-p}}{r_*^{(3-p)/2}} \qquad \text{(strip along flux)}$$

$$EE^{finite}: \quad \frac{1}{3-p} \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}} N\left(\frac{g_{YM}^2 N}{l^{p-3}}\right)^{\frac{p-3}{2(5-p)}} = \frac{\sqrt{N_{eff}(l)}}{3-p} \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}}$$

$$[\text{involves dimensionless combination } \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}} \text{ and } N_{eff}(l)]$$

9

D-brane plane waves, EE

Plane wave excited states: leading divergence $N_{eff}(\epsilon) \frac{V_{d-2}}{\epsilon^{d-2}}$ as for ground states (area law). $EE^{finite}: \frac{\sqrt{N_{eff}(l)}}{3-p} \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}}, \qquad N_{eff}(l) = N^2 \left(\frac{g_{YM}^2 N}{l^{p-3}}\right)^{\frac{p-3}{5-p}}$

D2-M2: $V_1 \sqrt{l} \sqrt{Q} \sqrt{\frac{N^2}{(g_{YM}^2 N l)^{1/3}}} (D2); \quad V_1 \sqrt{l} \sqrt{Q} \sqrt{N^{3/2}} (M2).$

IIA regime of validity (IMSY) for turning point r_* gives $1 \ll g_{YM}^2 N l_{D2} \ll N^{6/5}$, and so $N^{3/2} \ll \frac{N^2}{(g_{YM}^2 N l)^{1/3}} \ll N^2$. Thus $S_A^{D2,sugra}$ betw free 3d SYM (UV) and M2 (IR) (RG-consistent).

D4-M5:
$$-\frac{V_3\sqrt{Q}}{\sqrt{l}}\sqrt{N^2\frac{g_{YM}^2N}{l}}(D4); -\sqrt{Q}\frac{V_4}{l}\sqrt{N^3}(M5).$$

The finite parts for D4-sugra and M5-phases are actually same expression: D4 is wrapped M5 $(R_{11} = g_s l_s = g_{YM}^2)$ and $V_4 = V_3 R_{11}, Q_{D4} = Q_{M5} R_{11}$. IIA: $1 \ll \frac{g_{YM}^2 N}{l} \ll N^{2/3}$. **D1:** $l\sqrt{Q} \sqrt{\frac{N^2}{(g_{YM}^2 N l^2)^{1/2}}}$

Strip orthogonal to flux: indications of phase transitions, constrained however by IIA regime of validity.

Mutual Information

MI (disjoint subsystems A & B): $I[A, B] = S[A] + S[B] - S[A \cup B]$. $I[A, B] \ge 0$. Cutoff-dependent divergences cancel. Gives bound for correlation fns. Holographic mutual information: find extremal surface for $A \cup B$. Subsystems far, two disjoint minimal surfaces: MI = 0. Subsystems nearby, connected surface has lower area. Ryu-Takayanagi \rightarrow MI disentangling transition (Headrick).

Similar disentanglement for thermal states (Fischler,Kundu,Kundu): $\frac{x_c}{l} \sim 0$ (for $x, l \gg \frac{1}{T}$).

(Mukherjee, KN) MI for AdS plane wave excited states \rightarrow critical separation $\frac{x_c}{l}$ between subsystems smaller than in ground state (pure AdS): e.g. $\frac{x_c}{l} \simeq 0.732$ (AdS_5) whereas $\frac{x_c}{l} \simeq 0.414$ (AdS_5 plane wave). [For wide strips ($Ql^d \gg 1$), critical $\frac{x_c}{l}$ independent of flux Q.] [Narrow strips $Ql^d \ll 1$: perturbative corrections ΔS (\sim EE thermodynamics) \rightarrow MI decreases.] Mutual information disentangling occurs faster. Suggests energy density disorders system.

Lightlike limit of entanglement

AdS_{d+1} null deformation: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 g_{++} (dx^+)^2$ Recall EE here matches EE in lower dim'nal theory if entangling surface in upstairs theory lies on $x^- = const$ surface (which is t = const below).

Subsystem:
$$x^{+} = \alpha \chi, \quad x^{-} = -\beta \chi, \quad -\frac{l}{2} < x \leq \frac{l}{2}, \quad -\infty < \chi, y_{i} < \infty.$$

$$S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{2\alpha\beta + \alpha^{2}g_{++}r^{2}} \sqrt{1 + (\partial_{r}x)^{2}} \quad [V_{d-2} = \int (\prod_{i=1}^{d-3} dy_{i}) d\chi]$$

$$\rightarrow \quad S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_{*}} \frac{dr}{r^{d-1}} \frac{2\alpha\beta + \alpha^{2}g_{++}r^{2}}{\sqrt{2\alpha\beta + \alpha^{2}g_{++}r^{2}} - A^{2}r^{2d-2}} \quad \text{(and width } l \sim r_{*}\text{).}$$

[Spacelike strip $\alpha = \beta = 1 \rightarrow \frac{x^+ + x^-}{\sqrt{2}} \equiv t = const$ surface. $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}$, area law.]

(KN)

Lightlike limit of entanglement

 AdS_{d+1} null deformation: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 g_{++} (dx^+)^2$ Recall EE here matches EE in lower dim'nal theory if entangling surface in upstairs theory lies on $x^- = const$ surface (which is t = const below).

Subsystem:
$$x^{+} = \alpha \chi, \quad x^{-} = -\beta \chi, \quad -\frac{l}{2} < x \leq \frac{l}{2}, \quad -\infty < \chi, y_{i} < \infty.$$

$$S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{2\alpha\beta + \alpha^{2}g_{++}r^{2}} \sqrt{1 + (\partial_{r}x)^{2}} \quad [V_{d-2} = \int (\prod_{i=1}^{d-3} dy_{i}) d\chi]$$

$$\rightarrow \quad S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_{*}} \frac{dr}{r^{d-1}} \frac{2\alpha\beta + \alpha^{2}g_{++}r^{2}}{\sqrt{2\alpha\beta + \alpha^{2}g_{++}r^{2} - A^{2}r^{2d-2}}} \quad (\text{and width } l \sim r_{*}).$$

[Spacelike strip $\alpha = \beta = 1 \rightarrow \frac{x^+ + x^-}{\sqrt{2}} \equiv t = const$ surface. $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}$, area law.]

EE, null time
$$x^-$$
 slices $(\beta = 0)$ $S \sim \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{g_{++}r^2}{\sqrt{g_{++}r^2 - A^2r^{2d-2}}}.$

Lightlike limit of EE \equiv highly boosted limit of EE for spacelike strips: boost $x^{\pm} \rightarrow \lambda^{\pm 1} x^{\pm} \Rightarrow \alpha = \lambda$ and $\beta = \frac{1}{\lambda} \rightarrow 0 \rightarrow$

$$S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2+\lambda^2 g_{++}r^2}{\sqrt{2+\lambda^2 g_{++}r^2 - A^2 r^{2d-2}}}.$$

In regime $\lambda^2 g_{++}(\epsilon) \epsilon^2 \gtrsim 1 \rightarrow \text{EE on null time } x^- \text{ slices } (\beta = 0).$

(KN)

Lightlike limit of entanglement

 $AdS_{d+1} \text{ null deformation:} \qquad ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 g_{++} (dx^+)^2$ Recall EE here matches EE in lower dim'nal theory if entangling surface in upstairs theory lies on $x^- = const$ surface (which is t = const below).

Subsystem:
$$x^+ = \alpha \chi$$
, $x^- = -\beta \chi$, $-\frac{l}{2} < x \le \frac{l}{2}$, $-\infty < \chi, y_i < \infty$.

$$S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2\alpha\beta + \alpha^2 g_{++}r^2}{\sqrt{2\alpha\beta + \alpha^2 g_{++}r^2 - A^2 r^{2d-2}}} \qquad [V_{d-2} = \int (\prod_{i=1}^{d-3} dy_i) d\chi]$$

[Spacelike strip $\alpha = \beta = 1 \rightarrow \frac{x^+ + x^-}{\sqrt{2}} \equiv t = const$ surface. $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}$, area law.]

Lightlike limit of EE (= highly boosted limit of spacelike EE: $x^{\pm} \rightarrow \lambda^{\pm 1} x^{\pm}$) $\xrightarrow{large \lambda} \qquad S \sim \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{\lambda^2 g_{++}r^2}{\sqrt{\lambda^2 g_{++}r^2 - A^2 r^{2d-2}}},$

i.e. EE on null time x^- slices in regime $\lambda^2 g_{++}(\epsilon) \epsilon^2 \gtrsim 1$. Subsystem stretched on x^+ -plane: $x^- = 0, -\frac{l}{2} < x \leq \frac{l}{2}, -\infty < x^+, y_i < \infty$.

Note: leading divergence milder $S^{div} \sim \frac{R^{d-1}}{4G_{d+1}} V_{d-2} \frac{\sqrt{\lambda^2 g_{++}(\epsilon)}}{\epsilon^{d-3}}$. Note also: $g_{++} = 0 \Rightarrow$ lightlike EE (on x^- slices) vanishes. [Similar structure for boosted black branes, nonconformal brane plane waves etc.]

Null EE, AdS_{d+1} plane waves

 $ds^{2} = \frac{R^{2}}{r^{2}} \left[-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2}\right] + R^{2}Qr^{d-2}(dx^{+})^{2}, \text{ dual to CFT excited states,}$ energy-momentum density $T_{++} \sim Q$: spacelike EE gives area law, $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}.$

EE on null time x^- slices if $\lambda^2 g_{++}(\epsilon) \epsilon^2 \gtrsim 1$, *i.e.* $\lambda^2 Q \epsilon^d \gtrsim 1$, *i.e.* elemental lightcone momentum $P_+ = T_{++} \Delta x^+ \Delta^{d-2} x|_{\epsilon}$ after boost is comparable to UV cutoff $\frac{1}{\epsilon}$.

In bulk: UV surface $r = \epsilon$ dips in sufficiently to feel g_{++} presence.

$$S \sim \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{\lambda^2 g_{++}r^2}{\sqrt{\lambda^2 g_{++}r^2 - A^2 r^{2d-2}}} \sim \frac{R^{d-1}}{4G_{d+1}} \frac{V_{d-2}\sqrt{\lambda^2 Q}}{d-4} \left(\frac{1}{\epsilon^{\frac{d}{2}-2}} - c_d \frac{1}{l^{\frac{d}{2}-2}}\right)$$

Milder leading divergence $S^{div} \sim \frac{R^{d-1}}{4G_{d+1}} \frac{V_{d-2}}{\epsilon^{d_{eff}-2}} \qquad [d_{eff} = d - 1 - \theta = \frac{d}{2}]$

[Resembles spacelike EE in hyperscaling violating theory ($\theta = \frac{d-2}{2}$) from x^+ -red'n.]

 $g_{++} = 0$ (ground state) \Rightarrow lightlike EE (on x^- slices) vanishes.

Null EE, AdS_{d+1} plane waves

 $ds^{2} = \frac{R^{2}}{r^{2}} \left[-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2} \right] + R^{2}Qr^{d-2}(dx^{+})^{2}, \quad \text{dual to CFT excited states,}$ energy-momentum density $T_{++} \sim Q$: spacelike EE gives area law, $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}.$

EE on null time x^- slices if $\lambda^2 g_{++}(\epsilon) \epsilon^2 \gtrsim 1$, *i.e.* $\lambda^2 Q \epsilon^d \gtrsim 1$, *i.e.* elemental lightcone momentum $P_+ = T_{++} \Delta x^+ \Delta^{d-2} x|_{\epsilon}$ after boost is comparable to UV cutoff $\frac{1}{\epsilon}$.

In bulk: UV surface $r = \epsilon$ dips in sufficiently to feel g_{++} presence.

$$S \sim \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{\lambda^2 g_{++}r^2}{\sqrt{\lambda^2 g_{++}r^2 - A^2 r^{2d-2}}} \sim \frac{R^{d-1}}{4G_{d+1}} \frac{V_{d-2}\sqrt{\lambda^2 Q}}{d-4} \left(\frac{1}{\epsilon^{\frac{d}{2}-2}} - c_d \frac{1}{l^{\frac{d}{2}-2}}\right)$$

Milder leading divergence $S^{div} \sim \frac{R^{d-1}}{4G_{d+1}} \frac{V_{d-2}}{\epsilon^{d_{eff}-2}} \left[[d_{eff} = d - 1 - \theta = \frac{d}{2}] \right]$

[Resembles spacelike EE in hyperscaling violating theory ($\theta = \frac{d-2}{2}$) from x^+ -red'n.] $g_{++} = 0$ (ground state) \Rightarrow lightlike EE (on x^- slices) vanishes.

Reminiscent of ultralocality in lightcone QFT (Wall).

Ground state: *n*-pt functions (fields at distinct locations) vanish. Suggests vanishing EE. Excited states, $P_+ \neq 0$: can show free-field correlators non-vanishing. Suggests EE nonzero. Boundary space: $ds^2 = -2dx^+dx^- + g^2(dx^+)^2 + \sum_{i=1}^{d-2} dx_i^2$, with $g^2 = T_{++}\epsilon^d \gtrsim 1$. Usual area law $S_{div} \sim N^2 \frac{V_x + V_{yi}}{\epsilon^{d-2}} = N^2 V_{d-2} \frac{\sqrt{T_{++}\epsilon^d}}{\epsilon^{d-2}} = N^2 \sqrt{Q} \frac{V_{d-2}}{\epsilon^{d_{eff}-2}}$.

Null EE, AdS_{d+1} -Lifshitz

 $ds^{2} = \frac{R^{2}}{r^{2}} \left[-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2} \right] + R^{2}K^{2}(dx^{+})^{2},$

 AdS_{d+1} deformed by non-normalizable Lifshitz deformation, at scale K. Lower dim Lifshitz theory arises on lengthscales $\gg \frac{1}{K}$.

Subsystem: $x^+ = \alpha \chi$, $x^- = -\beta \chi$, $-\frac{l}{2} < x \le \frac{l}{2}$, $-\infty < \chi, y_i < \infty$. $\rightarrow S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2\alpha\beta + \alpha^2 K^2 r^2}{\sqrt{2\alpha\beta + \alpha^2 K^2 r^2 - A^2 r^{2d-2}}}$ (and width $l \sim r_*$).

 $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}$, d-dim area law if $\epsilon \ll \frac{1}{K}$ — in this case UV is original CFT_d dual to AdS_{d+1} .

EE, null time
$$x^-$$
 slices ($\beta = 0$) $S \sim \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{K^2 r^2}{\sqrt{K^2 r^2 - A^2 r^{2d-2}}}.$

For larger lengthscales, *i.e.* $\epsilon \gtrsim \frac{1}{K}$, this is approximated as a lightlike limit (EE on null x^- slices) \rightarrow we see Lifshitz structure: $S^{div} \sim \frac{V_{d-2}K}{\epsilon^{d-3}}$. Compactify $\rightarrow V_{d-2} = \int (\prod_{i=1}^{d-3} dy_i) d\chi = V_{d-3}V_+$ and $V_+ \sim \frac{1}{K} \rightarrow$ lower dim area law. Compared with AdS: $S^{fin} \sim \frac{V_{d-2}K}{l^{d-3}}$ larger for $l \gg \frac{1}{K} \rightarrow$ perhaps reflection of more soft modes in Lifshitz theory (recall Lifshitz singularities (Horowitz, Way)).

de Sitter space and dS/CFT

de Sitter space: $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dx_i^2).$ Fascinating for various reasons. dS/CFT: fluctuations about dS encoded thro dual Euclidean non-unitary CFT on *e.g.* boundary at future timelike infinity \mathcal{I}^+ (Witten; Strominger; Maldacena, '01-'02). Still mysterious, but perhaps interesting to explore.

(Maldacena '02) analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from Eucl $AdS_4 \to$ Hartle-Hawking wavefunction of the universe $\Psi[\varphi] = Z_{CFT}$. [Bulk EAdS regularity conditions, deep interior \to Bunch-Davies initial conditions in deSitter, $\varphi_k(\tau) \sim e^{ik\tau}$ for large $|\tau|$).] $[Z_{CFT} = \Psi[\varphi] \sim e^{iI_{cl}[\varphi]}$ (semiclassical)]. [Bulk expectation values $\langle f_1 f'_2 \rangle \sim \int D\varphi f_1 f'_2 |\Psi|^2$.]

Wavefunction $\Psi[\varphi]$ not pure phase \rightarrow complex saddle points contribute to observables. [Operationally, dS/CFT usefully defined by analytic continuation.]

dS/CFT at uniform energy density

(Sumit Das, Diptarka Das, KN)

$$ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} \left(-\frac{d\tau^2}{1+\alpha\tau_0^d\tau^d} + (1+\alpha\tau_0^d\tau^d)dw^2 + \sum_{i=1}^{d-1} dx_i^2 \right),$$

 α is a complex phase and τ_0 is some real parameter of dimension length inverse.

Analog of regularity in the interior for asymptotically AdS solution: Wick rotate $\tau = il$ and demand that resulting spacetime (thought of as saddle point in path integral) in the interior approaches flat Euclidean space in the (l, w)-plane with no conical singularity $\Rightarrow w$ -coordinate angular with fixed periodicity, l is radial coordinate, with

 $\alpha = -(-i)^d, \ l \ge \tau_0, \ w \simeq w + \frac{4\pi}{(d-1)\tau_0}.$

 \Rightarrow complex metric, solving dS gravity $R_{MN} = \frac{d}{R_{dS}^2} g_{MN}$.

This is equivalent to analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from EAdS black brane $ds^2 = \frac{R_{AdS}^2}{r^2} \left(\frac{dr^2}{1 - r_0^d r^d} + (1 - r_0^d r^d) d\theta^2 + \sum_{i=1}^{d-1} dx_i^2 \right).$

$\frac{dS}{CFT} \text{ at uniform energy density}$ $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} \Big(-\frac{d\tau^2}{1+\alpha\tau_0^d\tau^d} + (1+\alpha\tau_0^d\tau^d)dw^2 + \sum_{i=1}^{d-1} dx_i^2 \Big),$

 α is a complex phase and τ_0 real parameter of dimension energy, solves $R_{MN} = \frac{d}{R_{dS}^2} g_{MN}$.

Analog of regularity in the interior for asymptotically AdS solution: Wick rotate $\tau = il$ and demand that resulting spacetime (thought of as saddle point in path integral) in the interior approaches flat Euclidean space in the (l, w)-plane with no conical singularity $\Rightarrow \quad \alpha = -(-i)^d, \ l \ge \tau_0, \ w \simeq w + \frac{4\pi}{(d-1)\tau_0}.$

This is equivalent to analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from EAdS black brane $ds^2 = \frac{R_{AdS}^2}{r^2} \left(\frac{dr^2}{1 - r_0^d r^d} + (1 - r_0^d r^d) d\theta^2 + \sum_{i=1}^{d-1} dx_i^2 \right).$

"Normalizable" metric modes \Rightarrow energy-momentum tensor vev.

 $T_{ij} = \frac{2}{\sqrt{h}} \frac{\delta Z_{CFT}}{\delta h^{ij}} = \frac{2}{\sqrt{h}} \frac{\delta \Psi}{\delta h^{ij}} \propto i \frac{R_{dS}^{d-1}}{G_{d+1}} g_{ij}^{(d)} \rightarrow dS \text{ black brane.}$ $[g_{ij}^{(d)} = \text{coefficient of } \tau^{d-2} \text{ in Fefferman-Graham expn}]. \qquad [dS/CFT: Z_{CFT} = \Psi].$ Note *i* arising from the wavefunction of the universe $\Psi \sim e^{iI_{cl}}$ $\Rightarrow \text{ energy-momentum real only if } g_{ij}^{(d)} \text{ pure imaginary.}$

 dS_4/CFT_3 : $\alpha = -i$, $T_{ww} = -\frac{R_{dS}^2}{G_4}\tau_0^3$ with $T_{ww} + (d-1)T_{ii} = 0$.

de Sitter "bluewall"

$$ds^{2} = \frac{R_{dS}^{2}}{\tau^{2}} \left(-\frac{d\tau^{2}}{1-\tau_{0}^{d}\tau^{d}} + (1-\tau_{0}^{d}\tau^{d})dw^{2} + dx_{i}^{2} \right)$$

Penrose diagram resembles AdS-Schwarzschild rotated by $\frac{\pi}{2}$.

 $[-\infty \le w \le \infty]$ Take $\alpha = -1$ earlier.

Equivalently, analytically continue τ_0^d parameter too.

Using Kruskal coordinates: two asymptotic dS universes $(\tau \rightarrow 0)$. Timelike singularities $(\tau \rightarrow \infty)$. Cauchy horizons $(\tau = \tau_0)$.

 \simeq interior of Reissner-Nordstrom black hole (or wormhole).

de Sitter "bluewall"

$$ds^{2} = \frac{R_{dS}^{2}}{\tau^{2}} \left(-\frac{d\tau^{2}}{1-\tau_{0}^{d}\tau^{d}} + (1-\tau_{0}^{d}\tau^{d})dw^{2} + dx_{i}^{2} \right)$$

Penrose diagram resembles AdS-Schwarzschild rotated by $\frac{\pi}{2}$.

 $[-\infty \le w \le \infty]$ Take $\alpha = -1$ earlier.

Equivalently, analytically continue au_0^d parameter too.

Using Kruskal coordinates: two asymptotic dS universes $(\tau \rightarrow 0)$. Timelike singularities $(\tau \rightarrow \infty)$. Cauchy horizons $(\tau = \tau_0)$.

 \simeq interior of Reissner-Nordstrom black hole (or wormhole).

Trajectories in the de Sitter bluewall and the Cauchy horizon \rightarrow Observers P_1 are static while P_2 has w-momentum p_w ,

crosses the horizon, turns around inside and appears

to re-emerge in the future universe.

Incoming lightrays from infinity "crowd near" Cauchy horizon:

Late time infalling observers P_2 see early lightrays blueshifted.

Infinite blueshift due to Cauchy horizon: instability.

de Sitter extremal surfaces

de Sitter, Poincare slicing: $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dx_i^2).$

A generalization of the Ryu-Takayanagi procedure in dS would start with subregion at future timelike infinity, imagine a bulk extremal surface that dips inward into the bulk (towards past). So consider Eucl time slice, w = const subspace $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dx_i^2)$, bulk area functional

$$S_{dS} = \frac{1}{4G_{d+1}} \int \prod_{i=1}^{d-2} \frac{R_{dS} dy_i}{\tau} \frac{R_{dS}}{\tau} \sqrt{d\tau^2 - dx^2} = \frac{R_{dS}^{d-1} V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{1 - (\frac{dx}{d\tau})^2}.$$

Conserved quantity in extremization $-\frac{\dot{x}}{\sqrt{1-\dot{x}^2}} = B\tau^{d-1}$ i.e. $\dot{x}^2 = \frac{B^2\tau^{2d-2}}{1+B^2\tau^{2d-2}}$.

de Sitter extremal surfaces

de Sitter, Poincare slicing: $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dx_i^2).$

A generalization of the Ryu-Takayanagi procedure in dS would start with subregion at future timelike infinity, imagine a bulk extremal surface that dips inward into the bulk (towards past). So consider Eucl time slice, w = const subspace $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dx_i^2)$, bulk area functional

$$S_{dS} = \frac{1}{4G_{d+1}} \int \prod_{i=1}^{d-2} \frac{R_{dS} dy_i}{\tau} \frac{R_{dS}}{\tau} \sqrt{d\tau^2 - dx^2} = \frac{R_{dS}^{d-1} V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{1 - (\frac{dx}{d\tau})^2}.$$

Conserved quantity in extremization $-\frac{\dot{x}}{\sqrt{1-\dot{x}^2}} = B\tau^{d-1}$ i.e. $\dot{x}^2 = \frac{B^2\tau^{2d-2}}{1+B^2\tau^{2d-2}}$.

Important sign difference from $AdS \Rightarrow$ no real "turning point". $x(\tau)$ is hyperboloid.

Extremal surface = two half-extremal-surfaces joined continuously at τ_0 but with sharp cusp.

$$S_{dS} = \frac{R_{dS}^{d-1}}{4G_{d+1}} V_{d-2} \int_{\epsilon}^{\tau_0} \frac{d\tau}{\tau^{d-1}} \frac{2}{\sqrt{1+B^2\tau^{2d-2}}}.$$

Minimize area w.r.t. parameter $B \rightarrow$ increase B .
 \Rightarrow surface shape saturates, approaches $\dot{x}^2 \rightarrow 1.$

 $B \gg \frac{1}{\epsilon^{d-1}} \rightarrow \text{past lightcone wedge of subregion: } x(\tau) \text{ null surface, vanishing area.}$ $\rightarrow \text{analog of causal holographic information in } AdS \quad (Hubeny, Rangamani).$ $dS/CFT: \text{ complex saddle points} \rightarrow \text{ complex extremal surfaces}?$ Aspects of extremal surfaces in (A) dS, K. Narayan, CMI - p.26/28

de Sitter extremal surfaces, dS/CFT?

$$\begin{aligned} \text{de Sitter (Poincare):} \quad & ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2). \\ & S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{1 - (\frac{dx}{d\tau})^2}, \quad & \dot{x}^2 = \frac{B^2 \tau^{2d-2}}{1 + B^2 \tau^{2d-2}}. \\ & dS_4/CFT_3: \quad B^2 > 0 \Rightarrow \text{ no turning point. Consider } B^2 = -A^2 \rightarrow \\ & i\dot{x} = \frac{\pm A\tau^2}{\sqrt{1 - A^2 \tau^4}}, \quad & \frac{i\Delta x}{2} \equiv \frac{il}{2} = \int_0^{\tau_*} \frac{A\tau^2 d\tau}{\sqrt{1 - A^2 \tau^4}} \sim \tau_* \rightarrow \text{ complex extremal surface.} \\ & \text{Area } \tilde{S}_{dS} = \frac{R_{dS}^2}{4G_4} V_1 \int_{\tau_{UV}}^{\tau_*} \frac{d\tau}{\tau^2} \frac{1}{\sqrt{1 - A^2 \tau^4}} \sim \frac{R_{dS}^2}{4G_4} V_1 (\frac{1}{\tau_{UV}} - c\frac{1}{\tau_*}). \\ & \tau_{UV} = i\epsilon, \ \tau_* \sim il: \quad S_{dS} = -i\tilde{S}_{dS} \sim -\frac{R_{dS}^2}{4G_4} V_1 \left(\frac{1}{\epsilon} - c\frac{1}{l}\right). \\ & \text{(Anninos,Hartman,Stromingr)} \quad \frac{R_{dS}^2}{4G_4} \sim -N: \quad \text{so } S_{dS} > 0, \ \text{real, resembles EE.} \\ & \rightarrow \ \text{analytic continuation from } AdS \ \text{Ryu-Takayanagi extremization.} \\ & S_{AdS}[R, x(r), r] = \frac{R^{d-1}}{4G_{d+1}} V_{d-2} \int \frac{dr}{r^{d-1}} \sqrt{1 + \left(\frac{dx}{dr}\right)^2}, \qquad (x')^2 = \frac{A^2 r^{2d-2}}{1 - A^2 r^{2d-2}} \rightarrow \\ & \dot{x}^2 = \frac{-(-1)^{d-1}A^2 \tau^{2d-2}}{1 - (-1)^{d-1}A^2 \tau^{2d-2}}, \qquad S_{dS} = -i \frac{R_{dS}^{d-1}}{4G_{d+1}} V_{d-2} \int \frac{d\tau}{\tau^{d-1}} \frac{1}{\sqrt{1 - (-1)^{d-1}A^2 \tau^{2d-2}}}. \end{aligned}$$

Although these complex extremal surfaces show up in all dS_{d+1} , resulting analytically continued area is not always real-valued: S_{dS} real in dS_4/CFT_3 . Physical interpretation: EE? $[dS_4$ black brane, CFT_3 at uniform energy density: S_{dS}^{fin} resembles extensive thermal entropy.]

Conclusions, questions

Some gauge/string realizations of Lifshitz & hyperscaling violation involve x⁺-reduction of AdS deformations with g₊₊.
 Entanglement in lower dim'nal theory arises on null time x⁻ slices upstairs → lightlike limit of entanglement entropy.
 Better understanding in lightcone QFT, ultralocality, ...

• Deeper understanding of dS/CFT at uniform energy density.

• Deeper understanding of extremal surfaces in de Sitter, their physical interpretation (if any!).