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Introduction
– In General Relativity black hole entropy ( for Einstein Gravity ) 
   is given  by the famous “Area Law”.

SBH =

Z
d

D
x

p
h

– For a D+2 dimensional space-time  the horizon entropy is: 

– Ryu-Takayanagi (2006) ( time independent) : 
   For D dimensional entangling  region at the boundary of   
   D+2 dimensional bulk space-time. 

AdS CFT 

�Tr(⇢ ln ⇢)
(Area) D

4G



Entropy in General 
Relativity

I =
1

16⇡G

Z p
�gd

D
xR

Bekenstein,
Hawking

| i

Ryu, Takayanagi

Maldacena, Lewkowycz

S =
(Area)D�2

4G

Lewkowycz -Maldacena Interpretation 
(JHEP 1308(2013)090) 

– Concept of  black hole entropy is being generalized for the cases 
    with no time-like  killing symmetry.

Log(Z(�)) = �Sgravity

– For U(1) symmetry,

(Camps Mainz ’14)

(Bombelli, Koul, Lee, Sorkin, Binachi, Myers …. and many more exploring the 	

relation between black hole entropy with the	


entanglement entropy)



–   When there is no U(1) symmetry in time direction,

Log(Tr⇢̂) = �Sgravity

–   Replica trick tells us,

Tr(⇢Log ⇢) = lim
n!1

Log(Tr⇢n)

n� 1

12

Ways to compute EE

Even in free field theory, EE is 
quite hard to compute.

What is frequently used is the 
Replica Trick. [Callan, Wilczek; Calabrese, 

Cardy]

Friday, June 14, 13

(Covered in details by Justin and Myers)



Generalized Gravitational Entropy 

–  Entanglement entropy from 
            Replica method             : 
   

S = �@n

n

Log

tr(⇢n)

tr(⇢)n

o

|n=1

–  Holographic Input                :  
   

–  Finally we get the  
     Generalized Entropy            :  
   

S = @n (In � n I1)|n=1

In       corresponds to a dual geometry with a time period          2⇡n

   and                                     
   

 (0) =  (2⇡)

tr⇢n

tr(⇢)n
⇡ Zn(Mn)

Z1(M1)n
⇡ e�In(Bn)

e�nI1(B1)



       –        corresponds to a regular geometry    In

Replica manipulations

�n⇥ = �

= �

In I1

S = @n (In � nI1)|n=1

n

Z 2⇡

0
d⌧ =

Z 2⇡n

0
d⌧

       –            
                    corresponds to a conical geometry     
                    Can be thought of  as “n=1” solution  
                    but with a periodicity 

n I1

Replica manipulations

�n⇥ = �

= �

In I1

S = @n (In � nI1)|n=1

n

Z 2⇡

0
d⌧ =

Z 2⇡n

0
d⌧

Z 2⇡ n

0
d⌧ = n

Z 2⇡

0
d⌧

       –   But the “tip” cut off   -  Think of  it as a regularized cone.

Replica manipulations

� �( )

S = @n (In � nI1)|n=1

2⇡n



–   Conical singularity appears ( artifact of  extending the 
     replica symmetry into the bulk ) but they are “mild” singularity 
                              Gravitational Action remains finite. 
        

–    Further claim:- Bulk equation motion has to be satisfied near the 
                               conical singularity. Demanding this we get the 
                                correct “extremal surface” equation.  
        
–    Once we get the extremal surface equation we can solve it 
      and evaluate the entropy formula on that surface and  
      Voilà !!! 
        
             One of  the acid tests for the holographic entropy functionals  
    will be that-extremal surface equation coming from minimizing  
    them  should match with what comes from the  
    “Generalized Entropy” method.  Rest of  the talk will be  
     focused on exploring this issue in some  details. 
!
        



Parametrizing the “Cone”
We start with a most general form of  the metric:- 
!

–  where, 

In cartesian co-ordinate,  

ds

2 =e

2⇢(z,z̄){dz dz̄ + e

2⇢(z,z̄)⌦(z̄ dz � z dz̄)2 + (gij +Krijx
r +Qrsijx

r
x

s)dyidyj

2e2⇢(z,z̄)(Ai + Brix
r)(z̄dz � zdz̄)dyi + · · ·

⇢ = � ✏

2
Log(zz̄), ✏ = n� 1

r, s = 1, 2 & x

1 = z , x

2 = z̄

z = w1 + i w2 , z̄ = w1 � i w2

This bulk space-time has        . Orbifolding by this symmetry leads 
 to a fixed point - a codimension-2 surface with a conical deficit. 

Zn

Entangling surface can be identified with this codimension-2 
 surface in             limit characterized by                       .  
      

n ! 1 w1 = w2 = 0

(LM,Dong,Camps ‘13,  AB Sharma ’14)



–  We consider the Einstein gravity first. Demanding that the bulk  
     equation of  motion is satisfied near the conical singularity we will 
     see that one can obtain correct extremal surface equation.  

Einstein Gravity:- As a Warm up

–  Solve it around the tip of  the cone.  
    And in                               we extract the singular piece, ✏ ! 0 , z(z̄) ! 0

Rzz �
1

2
gzz ) ✏

z
Kz

                           (same for      component)

–  Here we have taken z=0 limit first. ( heavily dependent on the 
    limiting procedure, will be crucial for higher derivative 
     case )

z̄

R↵� � 1

2
g↵�R+ g↵�⇤ = 0



–   This matches  with what comes from minimizing the area  
     functional  for Einstein case. 
!

–  “g” is the bulk metric and “h” is the induce metric on the surface.

SEE =

Z
d

D
x

p
h

hij = eµi e
⌫
j gµ⌫

–  Variation of  the induce metric is encoded in the variation of  the  
    tangent vector.

�eµi = nµ
s ri⇣

s + eµj K
j
si ⇣

s

–  Finally we get,  
�SEE =

Z
d

D
xKs ⇣

s

–  This gives the well known equation for the extremal surface for 
     Einstein gravity Ks = 0

–  Matches perfectly with the “Generalized Entropy” result. 



–   We will consider        theory. This is sufficient for capturing all 
     the main issues . 

Higher derivative Gravity

R2

–  Entanglement area functionals for higher derivative theories 
    containing only polynomials of  curvature tensors are first  
    proposed by Dong and Camps `13.

SEE = 2⇡

Z

ddy
p
h
n @L
@Rzz̄zz̄

+
X

↵

⇣ @2L
@Rzizj@Rz̄kz̄l

⌘

↵

8KzijKz̄kl

q↵ + 1

o

–  To use this formula, perform the functional differentiation,
Rpqij = R̃pqij +KpjkKk

qi �KpikKk
qj

Rpiqj = R̃piqj +KpjkKk
qi �Qpqij

Rijkl = Rijkl +KpilKpjk �KpijKpkl

Q =
1

2
@p@qgij |⌃

and then use the above relations

–         defined as number of                plus one half  of                       .q↵ Qzzij , Qz̄z̄ij Kpqij , Rpqri Rpijk

(Recently it has been extended for theories containing derivative	

of curvature tensors in ArXiv:1411.5579 by Miao and Guo)



 For       theory :-

Entropy functional for Higher Curvature theory- Continue 

@L
@Rzz̄zz̄

Wald Term

“Anomalous 	

term”

Vanishes on Bifurcation	

 surface

R2

 We get the corresponding area functional :-

SR2 =
1

`

3
p

Z
d

5
x

p
g

h
R+

12

L

2
+

L

2

2

�
�1 R↵���R

↵��� + �2 R↵�R
↵� + �3R

2
�i

SEE =
2⇡

`

3
p

Z
d

3
x

p
h

h
1 +

L

2

2

⇣
2�1 {R↵���n

↵
r n

�
sn

�
rn

�
s �KsijKij

s }+ �2 {R↵�n
↵
s n

�
s � 1

2
KsKs}+ 2�3R

⌘i

( fursaev, patrushev, solodukhin,’13, Dong-Camps’13)

⇣ @2L
@Rzizj@Rz̄kz̄l

⌘
KijKkl



Gauss-Bonnet Gravity

\

 - For this we put , �1 = �3 = � , �2 = �4�

-Formula simplifies remarkably because of  the Gauss-Codazzi  
identity.

R = R↵���n
↵
r n

�
sn

�
rn

�
s �KsijKij

s � 2R↵�n
↵
s n

�
s +KsKs +R

-We get the famous Jacobson-Myers entropy functional.

SEE =
2⇡

`

3
p

Z
d

3
x

p
h

⇣
1 + �L

2R
⌘

( Jacobson-Myers’95, Hung,Myers, Smolkin ’10)

-By varying this we get the following extreme surface equation,

K + �L2(RK � 2RijKij) = 0

- Let’s see if  we can derive this from “generalized entropy” method.

( AB,  Kaviraj,Sinha ’13)



Extremal Surface equation For Gauss-Bonnet Theory  
 - We evaluate Gauss-Bonnet equation (a two derivative one) 
   of  motion near the conical singularity and extract all the divergences. 

 - zz-component :- ✏

z

h
�(RK � 2KijRij)

i
+

✏

z

h
e�⇢(z,z̄)�{�K3 + 3K2K � 2K3}

i

 - zi-component :- ✏

z

h

e�2⇢(z,z̄)�
n

2KriK � 2KrjKj
i � 2Kj

irjK + 2KijrkKkj �

2KkjriKkj + 2KjkrjKk
i

oi

.

 - ij-component :- 4✏

z

h

e�4⇢(z,z̄)�
n

2KikKklKlj + hijKK2 �KijK2 � hijK3 �KKikKk
j � 4hijKQzz

+ 4hijKklQkl
zz � 8KkiQk

zzj + 4KijQzz + 4KQzzij

oi

+

2✏2

z2

h

e�4⇢(z,z̄)�
n

2KijK � 2KikKk
j � hijK2 + hijK2

oi

 - Now we have to set all the divergences in all the components to zero. 
     This will prove quite tricky in this case.

( AB, Sharma ’14)



Limiting procedure and the “ambiguity”
–   First we try to take the limit as in the Einstein case i,e z=0 limit 
     first.  
–   We specialize to the AdS background. So “Codazzi-Mainardi” 
      relation gives us,  rkKrij = riKrkj

✏

z

h

e�2⇢(z,z̄)�
n

2KriK � 2KrjKj
i � 2Kj

irjK + 2KijrkKkj �

2KkjriKkj + 2KjkrjKk
i

oi

.

–  Also we get,                               this kills  a portion of  divergences 
                                                       in “ij” component.

Qzzij =
1

4
KikKk

j

4✏

z

h

e�4⇢(z,z̄)�
n

2KikKklKlj + hijKK2 �KijK2 � hijK3 �KKikKk
j � 4hijKQzz

+ 4hijKklQkl
zz � 8KkiQk

zzj + 4KijQzz + 4KQzzij

oi

+

2✏2

z2

h

e�4⇢(z,z̄)�
n

2KijK � 2KikKk
j � hijK2 + hijK2

oi



–   Remaning divergences are:-  

 - zz-component :- ✏

z

h
�(RK � 2KijRij)

i
+

✏

z

h
e�⇢(z,z̄)�{�K3 + 3K2K � 2K3}

i

–   and   

 -ij-component :- 
2 ✏2 � e�4⇢(z,z̄)

z2

h
2KijK � 2KikKk

j � hijK2 + hijK2

i

–   Setting them simultaneously to zero ( and of-course adding the 
     Einstein piece) we get, two condition, 

K + L2�(RK � 2KijRij) = 0

–   Agrees with Jacobson-Myers functional. But wait, we get another 
      “constraint” from the subleading divergences !!!  

�(�K3 + 3K2K � 2K3) = 0

–  System becomes over constrained. To satisfy both, 

(1� 2f1�)K + ↵�L2(K3 � 3KK2 + 2K3) = 0.

↵–           is a variable which can take any value.
( AB, Sharma ’14, Chen et al ‘13)



–   Now the point is that,  can we do better than this? 
!
 –   There are infinite choice. So there lies the “ambiguity”  

–  One can think of  taking the limit as  choosing a specific path in 
     the         plane. ✏, z

z

Ε

Ε! 0

z ! Ε
2

z
5.1

! Ε
5.1

z
2 Ε

z ! 0

Figure 1: Some paths along which limits can be taken in the ✏-z plane. We refer to the blue, red, gray,
magenta and paths as Paths (1), (2), (3) and (4) respectively in the text.

Taking the z ! 0 limit first and then taking the ✏ ! 0 limit will kill o↵ all the terms except
the first which is non-divergent. This is actually equivalent to taking the limit along the ✏ = z

path.

• The new appendix A contains various wrong statements: If the metric (A.1) is time (ie, ⌧) -
independent, both K

rij

and K
⌧ij

are zero (not only K
⌧ij

as claimed). Related to this, the surface is
at r = 0, not (r = 0, ⌧ = 0), which makes no sense r = 0 is a point already. These are elementary
points about polar coordinates. It is also quite unfortunate that the same letter r can appear in a
subindex as a dummy direction variable (r belonging to transverse coordinates and ranging from 1
to 2) and being one radius coordinate.

– Appendix A has been modified to use cartesian coordinates rather than polar coordinates.

To reiterate, our goal for using this particular constraint is simply to get rid of the indices z

and z̄ on the curvature K. Even if don’t use the condition K
zij

= K
z̄ij

our results will remain
unchanged, but it will be extremely cumbersome to write down the expressions for R2 theory.

• The paper is still unclear about which results apply only to AdS. Eg, eq. (3.49) appears to be valid
only in AdS (which is not in the AdS subsection), but the qualification appears in parentheses as
if this was implicit in the. Relatedly, the sentence before eq 3.35 AdS is the relevant backround for
holographic entanglement seems wrong.

• The confusion in the paragraph before eq. (3.41) has not been addressed.

– Unfortunately, this paragraph was left-over as a legacy from the original LM paper. We
went over it again and realized that since we are using a form of the metric that contains
all e2⇢(z,z̄) dependencies explicitly written down, we do not need to consider an extra metric
perturbation: �g

↵�

to our original metric. We have, therefore, removed this paragraph.

To explain: In the Appendix of Ref. [], in Eq. , LM write down the form of the metric for
the spacetime with a conical defect. They next need to compute the divergence in the bulk
equation of motion (which in that case was simply the Einstein equation). To do this their
approach is to break down the metric in two parts: a background that can only to lead to non-
divergent terms and a perturbation that can lead to possibly divergent terms. For example,
the e

2⇢(z,z̄) terms in the metric are expanded as 1 + ✏ log (zz̄) where the first term is part of
the background, while the second term is part of the perturbation. Such factors of e2⇢(z,z̄)

occur in all components of the metric (in Eq. of Appendix B of Ref. [], only the components
of the metric in the r, ⌧ directions are explicitly written with this factor; the rest of the terms

2

–   For Gauss-Bonnet gravity we are lucky , there exist a specific  
      path in which the limit has to be taken. Then we will get the 
       correct result. 



–   If  we demand                and  
        

–  From this two equation we get, (“v” is small)

✏

z
=

1

✏̂

z2✏ ⇡
⇣z
✏

⌘1+v

v > 0

✏

z
e�2⇢(z,z̄)

z2✏ =
⇣
✏̂
⌘1+v

⇣z
✏

⌘v

–  Now in the              limit all this divergences vanish  
   leaving only the      part.  Setting it to zero we get the correct 
    surface equation. 
      

z ! 0
✏

z

K + �L2(RK � 2RijKij)

–  So for Gauss-Bonnet we have a way out.

✏

z
e�4⇢(z,z̄)

( AB, Sinha, Sharma’13, AB, Sharma ’14)

⇣z
✏

⌘1+v



–  Now let’s test this limiting procedure for  general          theory   

General        TheoryR2

R2

 Now let’s see what we get from the “Generalized Entropy” 
 method using the limiting procedure discussed before.  
 This  will be  our next goal.

–  Surface equation derived by minimizing the entropy functional,  

SEE =
2⇡

`

3
p

Z
d

3
x

p
h

h
1 +

L

2

2

⇣
2�1 {R↵���n

↵
r n

�
sn

�
rn

�
s �KsijKij

s }+ �2 {R↵�n
↵
s n

�
s � 1

2
KsKs}+ 2�3R

⌘i

K + L2{�3(RK � 2RijKij �K3 + 3KK2 � 2K3 � 18 f1
L2 K)+

�2(
1
2r

2K � 1
4K

3 + 1
2KK2 � 11 f1

2L2 K)+

�1(2r2K �KK2 + 2K3 � 4 f1
L2 K)} = 0

–  This surface equation straightforwardly reduces to the  
    Jacobson-Myers case if  we put the Gauss-Bonnet values for  
    couplings after using Gauss-Codazzi relations.

( AB, Sharma ’14)



  Surface equation from Generalized Entropy method for        theoryR2

–  Bulk equation of  motion for this theory is not any more a two 
    derivative one.

–  We need third terms             in the metric. O(z3, z̄3)

ds

2 = e

4⇢(z,z̄)�pqrstx
p
x

q
x

r
dx

s
dx

t +Wrspijx
r
x

s
x

p
dy

i
dy

j + 2e2⇢(z,z̄)Crsixr
x

s(z̄dz � zdz̄)dyi

–  Metric coefficients can be found by calculating various curvature 
     quantities. For eg. e4⇢(z,z̄)�pqrst ⌘ �1/6@p(Rµ⌫⇢�n

µ
qn

⌫
rn

⇢
sn

�
t )

Rziz̄j

���
(z=0,z̄=0)

= 1
2e

2⇢(z,z̄)Fij � 2e2⇢(z,z̄)AiAj +
1
4KzikKk

z̄j � 1
2Qzz̄ij–  Also, 

–  Using AdS background we get from this, AiAjKij =
f1K
4L2

+ · · · and

AiAiK =
3f1K
4L2

+ · · ·

@zRz̄z̄

���
(z=0,z̄=0)

= �W + 2e2⇢(z,z̄)KijAiAj � 2e2⇢(z,z̄)⌦K + · · ·–  Again, 

–  Using AdS background we finally get, 

W =
2e2⇢(z,z̄)f1 K

3L2
+ · · · .



–  Now we evaluate the bulk equation of  motion. And list all  
     possible divergences.

Continue……

 - zz-component :- 

✏

z

h

� 1
2 (�2 + 4�3)r2K + (2�1 + �2 + 2�3)rirjKij + �3(RK � 2KijRij) +

4(�2�1 + 3�2 + 14�3)KijAiAj � 6(�2 + 4�3)KAiAi +

8(3�1 + 2�2 + 5�3)K⌦
i

�
✏

z2

h

e�2⇢(z,z̄)
n

(2�1 � �2 � 6�3)K2 +
1
2 (�2 + 4�3)K2 + 2(�2 + 4�3)Q

oi

+

✏

z

h

e�2⇢(z,z̄)
n

� �3K3 + (�2 + 7�3)KK2 � 2(3�1 + 2�2 + 6�3)K3 +

(6�1 + 5�2 + 14�3)KijQij � 3
2 (�2 + 4�3)KQ �

4(�2 + 4�3)W
oi

.

Appearance of  a  new type of divergence.

 -         -component :- zz̄ 2✏

z

h

e�2⇢(z,z̄)
n

(�3 +
1
4�2)K3 + (�1 � 3

2�2 � 7�3)KK2 +

2(�2�1 + �2 + 6�3)K3 + (2�1 � 3�2 � 14�3)KklQkl +

3
2 (�2 + 4�3)KQ+ 8(�2 + 4�3)W

oi

previously not	

there

Becomes unsuppressed



 - zi-component :- 
2✏

z

h

e�2⇢(z,z̄)
n

� 1
2 (2�1 + �2)Kk

i rkK � (3�1 � �2 � 6�3)KklriKkl �
1
4 (3�2 + 8�3)KriK + (5�1 + �2)Kk

i rlKl
k � �1KrkKk

i +

(9�1 + 2�2)KkjrkKji � (�2 + 4�3)riQ� (4�1 + �2)rkQk
i �

(10�1 � 2�2 � 18�3)AiK2 � 1
2 (3�2 + 12�3)AiK2 +

8(4�1 + �2)KijKjkAk � 2(�2 + 4�3)AiQ
oi

4✏

z

h

e�4⇢(z,z̄)
n

( 13�1 +
1
4�2 +

2
3�3)hijK3 � (7�1 + 2�2 + 2�3)KKikKk

j +

2(16�1 + 4�2 + �3)KikKklKlj � (�1 + 3�2 + 10�3)hijKK2 �
(3�1 � 2�3)KijK2 � 1

3 (�1 � 18�2 � 70�3)hijK3 +

2(4�1 + �2)QijK + 2(�2 + 4�3)hijKQ� 8(4�1 + �2)KikQk
j �

(�2 + 4�3)KijQ� 7(�2 + 4�3)hijKklQkl + 32(4�1 + �2)Wij+

32(�2 + 4�3)hijW
oi

 - ij-component :- 

effectively has  a              factor e�2⇢(z,z̄)

–  We take the limit as before i.e z2✏ =
⇣z
✏

⌘1+v

–   This removes all the divergences , except ……. ( AB, Sharma ’14)



The “Mismatch”
 - zz-component :- We are left with 

✏

z

h

� 1
2 (�2 + 4�3)r2K + (2�1 + �2 + 2�3)rirjKij + �3(RK � 2KijRij) +

4(�2�1 + 3�2 + 14�3)KijAiAj � 6(�2 + 4�3)KAiAi +

8(3�1 + 2�2 + 5�3)K⌦
i

�
✏

z2

h

e�2⇢(z,z̄)
n

(2�1 � �2 � 6�3)K2 +
1
2 (�2 + 4�3)K2 + 2(�2 + 4�3)Q

oi

⇣z
✏

⌘v�1

✏

z
– Setting     piece to zero and using, AiAjKij =

f1K
4L2

+ · · · and

AiAiK =
3f1K
4L2

+ · · ·

⌦ = � f1
12L2

K + L2{(2�1 +
1
2�2)r2K + �3(RK � 2KijRij)�Kf1

L2
(4�1 �

11

2
�2 � 18�3)} = 0

Adding the Einstein piece

Comparing K + L2{�3(RK � 2RijKij �K3 + 3KK2 � 2K3 � 18 f1
L2 K)+

�2(
1
2r

2K � 1
4K

3 + 1
2KK2 � 11 f1

2L2 K)+

�1(2r2K �KK2 + 2K3 � 4 f1
L2 K)} = 0

– Everything matches except for these ,        terms.K3



–   Setting the subleading divergence to zero we get further  
     constraints,       

(2�1 � �2 � 6�3)K2 +
1
2 (�2 + 4�3)K2 + 2(�2 + 4�3)Q = 0

 -         -component :- zz̄
2✏

z

h

e�2⇢(z,z̄)
n

(�3 +
1
4�2)K3 + (�1 � 3

2�2 � 7�3)KK2 +

2(�2�1 + �2 + 6�3)K3 + (2�1 � 3�2 � 14�3)KklQkl +

3
2 (�2 + 4�3)KQ+ 8(�2 + 4�3)W

oi

Divergent

–            terms mismatch.K3

–  There are some problematic divergences in       component         zz̄

–  extra      divergences.   1

z2

  So there is a “mismatch” and seems that these two 
    methods are not consistent with each other. 



–   Looking for a new way to interpret the result. 

Cosmic String (Brane) Interpretation  

–   It was first observed by Lewkowycz-Maldacena that equation 
     of  motion of  a cosmic string is same as the extremal surface 
      equation for Einstein Gravity.
–   It produces a space time with a conical defect. For Einstein 
     case  the action is just “Nambu Goto” action. So we get

K = 0
–   The argument has been extended for  higher derivative Gravity 
      case ( Gauss-Bonnet or more generally Lovelock gravity) by 
       Dong ’13. Referred to as “Cosmic Brane”.

–    Like comic string case  it leads to singular space time ( ). ✏

–  Now suppose consider a brane localized at                    and  
    extends in 

z = z̄ = 0
yi



Key Idea 
Main idea is that the cosmic brane will be a solution of the bulk 
 equation of motion with a non vanishing stress tensor in “ij”  
 directions.  As the brane is a localized object , stress tensor will 
 contain delta functions. So by solving the bulk equation of motion 
 in the conical background and identifying the delta functions, one 
 can identify the stress tensor for the brane.

  and hence the action which is expected to  
   be the “Entropy Functional” .

–  Let us know look at the Gauss-Bonnet theory first.

Tij =
2p
h

�S

�hij



   Cosmic Brane to Entropy Functional
–  By the evaluating the Bulk equation of  motion in the singular 
     background we identify the following expression as the stress- 
     tensor for Gauss-Bonnet gravity.

Tij = �(z, z̄)
n

� 4� (hijR� 2Rij)+

� 2� e�2⇢(z,z̄)(hijK2 � hijK2 + 2KijK � 2KikKk
j )
o

This term goes away because of our limit taking procedure

it can be easily seen that this term is coming from Jacobson-Myers functional

�(z, z̄) = e�2⇢(z,z̄)@z̄@z⇢(z, z̄)

– This justifies Jacobson-Myers functional. But now what about  
    general      theory? R2

Tzz = Tz̄z̄ = Tzi = Tz̄i = 0



   Cosmic Brane to Entropy Functional-Continue…

–  We repeat the same game for the       theory.R2

Tij = �(z, z̄)
h

� 4�3 (hijR� 2Rij)� 16(6�1 + 11�2 + 38�3)hij⌦ +

e�2⇢(z,z̄)
n

� (�2 + 2�3)hijK2 + 2(�2 + 3�3)hijK2 �

2(12�1 + 4�2 + 4�3)Qij � 2(�2 + 4�3)Qhij �
2(4�1 + �2 + 2�3)KijK + 2(14�1 + 4�2 + 4�3)KkjKk

j ) +

16(20�1 + 11�2 + 24�3)AiAj

o i

+

e�2⇢(z,z̄)
n

@z�(z, z̄) + @z̄�(z, z̄)
on

� 2(2�1 + �2 + 2�3)Kij + (4�3 + �2)hijK
o

�

4e�2⇢(z,z̄) @z@z̄�(z, z̄)(�2 + 4�3)

    Suppressed

Correctly corresponds to the           	

area functional   R2

–  So far so good. But wait……



Tzz = � 4@2
z�(z, z̄)(2�1 + �2 + 2�3)� 2@z�(z, z̄)(4�1 + �2)K

–  We get additional divergences in other components

and Tzz̄ = � 2
�
@z�(z, z̄) + @z̄�(z, z̄)

 �
2�1 + �2 + 2�3

�
K +

4 @z@z̄�(z, z̄)(2�1 + �2 + 2�3) .

–  For Gauss-Bonnet case obviously they vanish. But in this case 
     these divergences stand. 

 Any attempt to use this method to show that the proposed  
      entropy functional is the correct entropy functional for  

       theory should be able to account for these  
extra delta divergences.    

R2



Conclusions
–   For Gauss-Bonnet theory ( more generally for Lovelock theory) 
      proposed area functional and Generalized entropy method  are 
      in accord with each other. ( though the limit taking procedure 
      is quite artificial )
–  For more general theories, Generalized entropy method does not 
     produce the extremal surface which follows from minimizing the 
     Dong’s( camps) functional.
–  Maybe some subleading terms are missing in the area functional which 
     can cure this problem.-Ambiguity is there. 

–  Modification of  Lewkowycz-Maldacena method ?
                                                        Lot more to explore !!!

– Strong subadditivity and  second law may serve as independent  
    validity check.  ( Work in progress with Menika)


