Amplitudes and hidden symmetries in N=2 Chern-Simons Matter theory

Karthik Inbasekar

Nov 22, 2017
International Centre for Theoretical Sciences

Based on

K.I, S.Jain, P.Nayak, V.Umesh, arXiv:1710.04227 (BCFW)

K.I, S.Jain, S.Majumdar, P.Nayak, T.Neogi, T.Sharma, R.Sinha, V.Umesh, arXiv: 1711.02672 (Dual Superconformal symmetry)

K.I, S.Jain, P.Nayak, T.Sharma, V.Umesh, arXiv: 1712.nnppq (Yangian)

References:

K.I, S.Jain, S.Mazumdar, S.Minwalla, V.Umesh, S.Yokoyama, **arXiv:** 1505.06571, JHEP 1510 (2015) 176.

S.Jain, M.Mandlik, S.Minwalla, T.Takimi, S.Wadia, S.Yokoyama, **arXiv:** 1404.6373, JHEP 1504 (2015) 129.

Part I Introduction

N=2 Chern-Simons matter theory

• General renormalizable $\mathcal{N}=2$ theory with one fundamental multiplet

$$S_{\mathcal{N}=2}^{L} = \int d^{3}x \left[-\frac{\kappa}{4\pi} \epsilon^{\mu\nu\rho} \text{Tr} \left(A_{\mu} \partial_{\nu} A_{\rho} - \frac{2i}{3} A_{\mu} A_{\nu} A_{\rho} \right) + \bar{\psi} i \mathcal{D}\psi - \mathcal{D}^{\mu} \bar{\phi} \mathcal{D}_{\mu} \phi + \frac{4\pi^{2}}{\kappa^{2}} (\bar{\phi}\phi)^{3} + \frac{4\pi}{\kappa} (\bar{\phi}\phi)(\bar{\psi}\psi) + \frac{2\pi}{\kappa} (\bar{\psi}\phi)(\bar{\phi}\psi) \right]$$

The theory exhibits a strong-weak self duality under the duality map

$$\kappa' = -\kappa$$
, $N' = |\kappa| - N + 1$, $\lambda' = \lambda - \operatorname{Sgn}(\lambda)$

- · K.I, Jain, Mazumdar, Minwalla, Umesh, Yokoyama $2 \to 2$ scattering amplitudes to all orders in the 't Hooft coupling.
- In the (non-anyonic) symmetric, anti-symmetric and adjoint channels of scattering the amplitude is tree-level exact to all orders in λ .
- In the (anyonic) singlet channel the coupling dependence is extremely simple.

2→2 scattering amplitude to all orders in λ

Tree level super amplitude

$$T_{\text{tree}} = \frac{4\pi}{\kappa} \frac{\langle 12 \rangle}{\langle 23 \rangle} \delta(\sum_{i=1}^{4} p_i) \delta^2(\mathcal{Q})$$
$$\delta^2(Q) = \sum_{i < j=1}^{n} \langle ij \rangle \eta_i \eta_j$$

All loop super amplitude

$$T_{
m all-loop}^{
m non-anyonic} = T_{
m tree}$$

$$T_{
m all-loop}^{
m anyonic} = N \frac{\sin(\pi \lambda)}{\pi \lambda} T_{
m tree}$$

$$S^{\text{non-anyonic}} = I + i T_{\text{all-loop}}^{\text{non-anyonic}}$$
$$S^{\text{anyonic}} = \cos(\pi \lambda) I + i T_{\text{all-loop}}^{\text{anyonic}}$$

Passes all consistency checks: Unitarity and Duality

Motivation

- Why is the 2 → 2 particle scattering in the non-anyonic channels tree level exact? and why does it have a very simple coupling dependence in anyonic channel?
- Maybe some powerful symmetry that protects the amplitude from renormalization.
- Is it possible to compute all loop m → n scattering amplitudes in the N=2 theory at least in the planar limit?
- Does the non-renormalization results of the 2 → 2 scattering continue to persist for arbitrary higher point amplitudes?
- What are the generalization of the crossing rules for the anyonic channels in an arbitrary m →n scattering.
- These computations would test the duality in regions un-probed by large N perturbation theory yet.

What we do

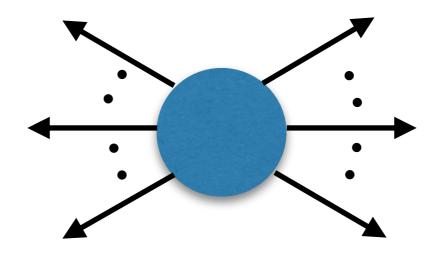
- As a first step towards the all loop m→n scattering, is it possible to write down arbitrary m → n tree level amplitudes?
- We are able to achieve this via BCFW recursions K.I, Jain, Nayak, Umesh
- As a first step towards thinking about higher point loop amplitudes we identify a hidden symmetry in the 2 → 2 amplitude computed earlier that might explain the non-renormalization.
- This symmetry is known as dual superconformal symmetry.

K.I, Jain, Majumdar, Nayak, Neogi, Sharma, Sinha, Umesh

- The superconformal symmetry and dual superconformal symmetry
 together generate an infinite dimensional symmetry known as the Yangian.

 K.I, Jain, Nayak, Sharma, Umesh, to appear
- If this is true for all higher point amplitudes, This suggests that the theory
 we are dealing with may be integrable!

Part II All tree level amplitudes



K.I, S.Jain, P.Nayak, V.Umesh, arXiv:1710.04227

BCFW recursions in 2+1 dimensions

 Recursion relations enable to construct n point tree level scattering amplitudes from lower point tree level amplitudes.

Britto, Cachazo, Feng, Witten

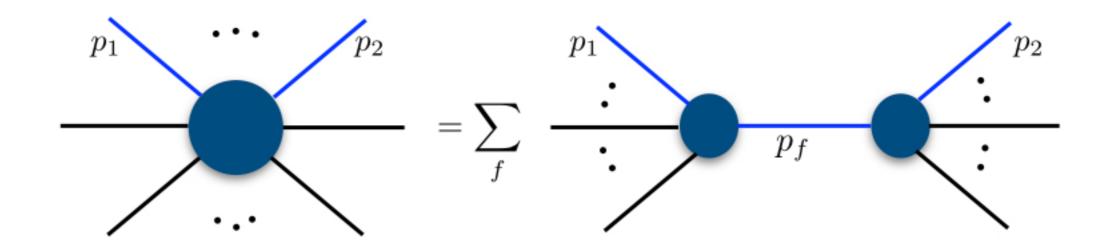
- · Central idea: Dixon
 - Tree level amplitudes are continuously deformable analytic functions of momenta.
 - Only type of singularities that can appear at tree level are simple poles.
 - One can reconstruct amplitudes for generic scattering kinematics knowing its behavior in singular kinematics.
 - In these singular regions amplitudes factorize into causally disconnected amplitudes with fewer legs, connected by an intermediate onshell state.
 - We will focus on situation where the external particles are massless.

BCFW recursions in 2+1 dimensions

Promote the amplitude into a one complex parameter family of amplitudes

$$A(z) = A(p_1, \dots, p_i(z), p_{i+1}, \dots, p_l(z), \dots, p_{2n})$$

- The necessary and sufficient conditions are:
 - The momentum deformation should preserve on-shell conditions and momentum conservation.
 - The amplitude should be asymptotically well behaved under the deformation.



A higher point amplitude factorizes into lower point amplitudes!

Preserving the onshell conditions

In 3d the momentum shift is non-linear in z

$$\begin{pmatrix} \hat{\lambda}_1 \\ \hat{\lambda}_2 \end{pmatrix} = R \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \qquad R = \begin{pmatrix} \frac{z+z^{-1}}{2} & -\frac{z-z^{-1}}{2i} \\ \frac{z-z^{-1}}{2i} & \frac{z+z^{-1}}{2} \end{pmatrix}$$

$$p_i \to \frac{p_{ij}}{2} + qz^2 + \tilde{q}z^{-2} \qquad q^{\alpha\beta} = \frac{1}{4}(\lambda_2 + i\lambda_1)^{\alpha}(\lambda_2 + i\lambda_1)^{\beta}$$

$$p_j \to \frac{p_{ij}}{2} - qz^2 - \tilde{q}z^{-2} \qquad \tilde{q}^{\alpha\beta} = \frac{1}{4}(\lambda_2 - i\lambda_1)^{\alpha}(\lambda_2 - i\lambda_1)^{\beta}.$$

The momentum deformations preserve the onshell conditions

$$p_i^2 = 0 , p_j^2 = 0$$

$$q.\tilde{q} = -\frac{1}{4}p_i.p_j$$
, $q + \tilde{q} = \frac{1}{2}(p_i - p_j)$, $q.p_{ij} = 0$, $\tilde{q}.p_{ij} = 0$

Gang, Huang, Koh, Lee, Lipstein

Asymptotic behavior

- Onshell susy methods, encode the component amplitudes into a superamplitude.
- Susy ward identities relate various component amplitudes and reduce the number of independent amplitudes.
- Susy also ensures that if the independent component amplitudes are well behaved then the entire superamplitude is well behaved.
- Using two independent methods we showed that the superamplitude is well behaved
 - Background field expansion.
 Arkani-Hamed, Kaplan
 - Explicit Feynman diagram computation of component amplitudes.
- The recursion formula then follows from Cauchy residue theorem.

The recursion formula for an arbitrary 2n point amplitude

Write a contour integral representation for the amplitude

$$\frac{1}{2\pi i} \oint_{C_{z=1}} \frac{dz}{z-1} A(z)$$

• Deform the contour to $z\rightarrow\infty$, If A(z) has no poles, the integral vanishes

$$A(z=1) = -\sum_{\text{poles}:z^i} \text{Res}_{z=z^i} \frac{A(z)}{z-1}$$

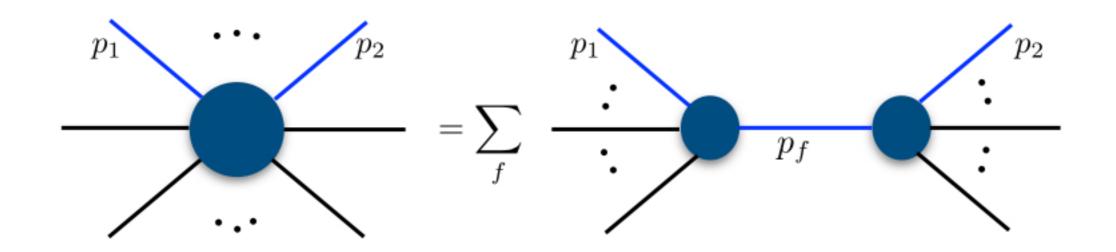
remember that all the deformed momenta satisfy the onshell conditions!

$$A(z=1) = -\sum_{f} \sum_{\text{poles}: z_f^i} \text{Res}_{z=z_f^i} \frac{1}{z-1} \frac{A_L(p_1 \dots p_i(z), \dots p_n) A_R(p_{n+1} \dots p_j(z), \dots p_{2n})}{\hat{p}_f^2(z)}$$

 We have used the fact that at tree level the only possible singularities are simple poles!

The recursion formula for arbitrary 2n point superamplitude

$$A_{2n}(z=1) = \sum_{f} \int \frac{d\theta}{p_f^2} \left(z_{a;f} \frac{z_{b;f}^2 - 1}{z_{a;f}^2 - z_{b;f}^2} A_L(z_{a;f}, \theta) A_R(z_{a;f}, i\theta) + (z_{a;f} \leftrightarrow z_{b;f}) \right)$$



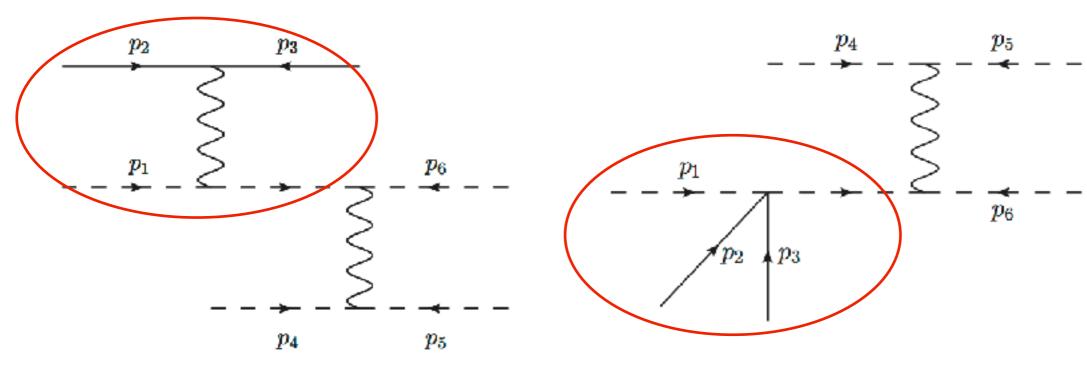
- $z_{a;f}, z_{b;f}$ are zeroes of $p_f^2(z) = 0$
- The formula can be recursively applied to write down any higher point superamplitude in terms of products of the four point superamplitude.

Eg: Six point amplitude as product of four point amplitudes

$$\begin{split} \langle \bar{\phi}_{1} \psi_{2} \bar{\psi}_{3} \phi_{4} \bar{\phi}_{5} \phi_{6} \rangle &= \\ \left(z_{a;f} \frac{z_{b;f}^{2} - 1}{z_{a;f}^{2} - z_{b;f}^{2}} \langle \hat{\phi}_{1} \hat{\phi}_{f} \bar{\phi}_{5} \phi_{6} \rangle_{z_{a;f}} \langle \hat{\bar{\phi}}_{(-f)} \hat{\psi}_{2} \bar{\psi}_{3} \phi_{4} \rangle_{z_{a;f}} + (z_{a;f} \leftrightarrow z_{b;f}) \right) \frac{i}{p_{f}^{2}} \Big|_{p_{f} = p_{234}} \\ &+ \left(z_{a;f} \frac{z_{b;f}^{2} - 1}{z_{a;f}^{2} - z_{b;f}^{2}} \langle \hat{\phi}_{1} \hat{\psi}_{f} \bar{\psi}_{3} \phi_{4} \rangle_{z_{a;f}} \langle \hat{\bar{\psi}}_{(-f)} \hat{\psi}_{2} \bar{\phi}_{5} \phi_{6} \rangle_{z_{a;f}} + (z_{a;f} \leftrightarrow z_{b;f}) \right) \frac{i}{p_{f}^{2}} \Big|_{p_{f} = p_{256}} \\ &+ \hat{\phi}_{1} \\ &\hat{\phi}_{1} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{4j} \\ &\hat{\phi}_{5k} \\ &\hat{\phi}_{5k$$

Eg: Six point amplitude: Asymptotic behavior

- The Asymptotic behavior involves very precise cancellations of divergences in the Feynman diagram approach.
- For eg, the process $\langle \bar{\psi}_1 \phi_2 \bar{\phi}_3 \psi_4 \bar{\phi}_5 \phi_6 \rangle$ gets contribution from 15 diagrams.
- 5 of them are well behaved, the remaining 10 are individually divergent,
 However the divergences cancel pair wise.
- Typical cancellations are between



$$\sim -\frac{8\pi^2 iz}{\kappa^2} \frac{\langle q3\rangle\langle 45\rangle\langle 56\rangle\langle 46\rangle}{p_{45}^2 p_{123}^2} + \mathcal{O}(\frac{1}{z}) \;,\; \sim \frac{8\pi^2 iz}{\kappa^2} \frac{\langle q3\rangle\langle 45\rangle\langle 56\rangle\langle 46\rangle}{p_{45}^2 p_{123}^2} + \mathcal{O}(\frac{1}{z})$$

Recursion relations for non-supersymmetric theories!

- BCFW does not apply to the non-susy CS coupled to fermions/bosons since the amplitudes do not have good asymptotic behavior.
- It is possible to extract the recursion relations for non-susy fermionic/ bosonic CS matter theories from the N=2 results!! Eg:
 - At tree level, the Feynman diagrams for an all fermion amplitude are same for susy/non-susy theory.
 - Susy ward identity: The four point super amplitude is completely specified by one function, choose it to be the four fermion amplitude.
 - Use this information recursively in the BCFW formula!
- An arbitrary higher point tree level amplitude in the fermionic CS matter theory can be entirely written in terms of 4 fermion amplitude.

Recursion relations for non-supersymmetric theories!

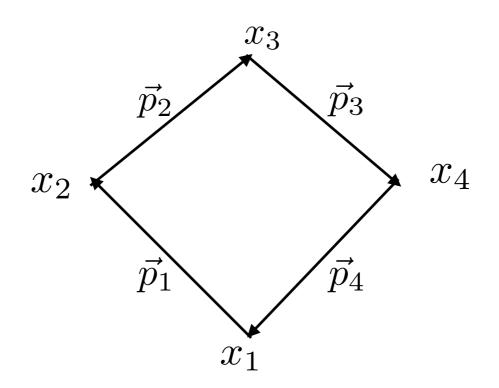
$$\begin{split} \langle \bar{\psi}_{1} \psi_{2} \bar{\psi}_{3} \psi_{4} \bar{\psi}_{5} \psi_{6} \rangle &= \\ \left(z_{a;f} \frac{z_{b;f}^{2} - 1}{z_{a;f}^{2} - z_{b;f}^{2}} \left[-\frac{z_{a;f}^{2} + 1}{2z_{a;f}} + i \frac{z_{a;f}^{2} - 1}{2z_{a;f}} \frac{\langle \hat{1}4 \rangle}{i \langle \hat{f}4 \rangle} \frac{\langle \hat{f}6 \rangle}{\langle \hat{2}6 \rangle} \right] \\ &\qquad \qquad \times \langle \hat{\psi}_{1} \hat{\psi}_{f} \bar{\psi}_{3} \psi_{4} \rangle \langle \hat{\psi}_{(-f)} \hat{\psi}_{2} \bar{\psi}_{5} \psi_{6} \rangle_{z_{a;f}} \\ &+ (z_{a;f} \leftrightarrow z_{b;f}) \right) \frac{i}{p_{f}^{2}} \bigg|_{p_{f} = p_{234}} \\ &- \left(z_{a;f} \frac{z_{b;f}^{2} - 1}{z_{a;f}^{2} - z_{b;f}^{2}} \left[-\frac{z_{a;f}^{2} + 1}{2z_{a;f}} + i \frac{z_{a;f}^{2} - 1}{2z_{a;f}} \frac{\langle \hat{1}6 \rangle}{i \langle \hat{f}6 \rangle} \frac{\langle \hat{f}4 \rangle}{\langle \hat{2}4 \rangle} \right] \\ &\qquad \qquad \times \langle \hat{\psi}_{1} \hat{\psi}_{f} \bar{\psi}_{5} \psi_{6} \rangle \langle \hat{\psi}_{(-f)} \hat{\psi}_{2} \bar{\psi}_{3} \psi_{4} \rangle_{z_{a;f}} \\ &+ (z_{a;f} \leftrightarrow z_{b;f}) \right) \frac{i}{p_{f}^{2}} \bigg|_{p_{f} = p_{256}} \end{split}$$

Main highlights

- We obtained BCFW recursion relations for arbitrary m→n tree level scattering amplitudes in N=2 Chern-Simons matter theory.
- We were also able to extract the recursions for non-supersymmetric Chern-Simons theory coupled to fundamental fermions.
- Similar exercise can also be done for the bosonic theory.
- We saw an explicit example of the recursions for a six point amplitude as a product of four point amplitudes.
- The recursions can be iteratively applied to write all higher point amplitudes in terms of products of four point amplitudes.

Part III

Hidden symmetry: Dual superconformal invariance



K.I, S.Jain, S.Majumdar, P.Nayak, T.Neogi, T.Sharma, R.Sinha, V.Umesh, arXiv: 1711.02672

Dual variables

The dual variables realize momentum conservation linearly in the x variables

$$x_{i,i+1}^{\alpha\beta} = x_i^{\alpha\beta} - x_{i+1}^{\alpha\beta} = p_i^{\alpha\beta} = \lambda_i^{\alpha} \lambda_i^{\beta}$$
$$\theta_{i,i+1}^{\alpha} = \theta_i^{\alpha} - \theta_{i+1}^{\alpha} = q_i^{\alpha} = \lambda_i^{\alpha} \eta_i$$

momentum and supermomentum conservation imply

$$P^{\alpha\beta} = \sum_{i} p_i^{\alpha\beta} = x_{n+1}^{\alpha\beta} - x_1^{\alpha\beta} = 0,$$

$$Q^{\alpha} = \sum_{i} q_i^{\alpha} = \theta_{n+1}^{\alpha} - \theta_1^{\alpha} = 0.$$

The four point super amplitude in dual space

$$\mathcal{A}_4 = \frac{\langle 12 \rangle}{\langle 23 \rangle} \delta(\sum_{i=1}^4 p_i) \delta^2(\mathcal{Q}) \quad \xrightarrow{\text{dual space}} \quad \mathcal{A}_4 = \sqrt{\frac{x_{1,3}^2}{x_{2,4}^2}} \delta^{(3)}(x_1 - x_5) \delta^{(2)}(\theta_1 - \theta_5)$$

 Goal is to show that this is invariant under the superconformal symmetry in the dual variables.

Superconformal algebra in dual space

The N=2 superconformal algebra in dual space is generated by

$$\{P_{\alpha\beta}, M_{\alpha\beta}, D, K_{\alpha\beta}, R, Q_{\alpha}, \bar{Q}_{\alpha}, S_{\alpha}, \bar{S}_{\alpha}\}$$

$$P_{\alpha\beta} = \sum_{i=1}^{n} \frac{\partial}{\partial x_i^{\alpha\beta}}, \quad D = -\sum_{i=1}^{n} \left(x_i^{\alpha\beta} \frac{\partial}{\partial x_i^{\alpha\beta}} + \frac{1}{2} \theta_i^{\alpha} \frac{\partial}{\partial \theta_i^{\alpha}} \right),$$

$$Q_{\alpha} = \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{i}^{\alpha}}, \quad \bar{Q}_{\alpha} = \sum_{i=1}^{n} \theta_{i}^{\beta} \frac{\partial}{\partial x_{i}^{\beta \alpha}},$$

$$M_{\alpha\beta} = \sum_{i=1}^{n} \left(x_{i\alpha}^{\ \gamma} \frac{\partial}{\partial x_{i}^{\gamma\beta}} + \frac{1}{2} \theta_{i\alpha} \frac{\partial}{\partial \theta_{i}^{\beta}} \right), \quad R = \sum_{i=1}^{n} \theta_{i}^{\alpha} \frac{\partial}{\partial \theta_{i}^{\alpha}}$$

The remaining generators can be expressed using the inversion operator

$$I\left[x_i^{\alpha\beta}\right] = \frac{x_i^{\alpha\beta}}{x_i^2}, \quad I\left[\theta_i^{\alpha}\right] = \frac{x_i^{\alpha\beta}\theta_{i\beta}}{x_i^2}$$

$$K_{\alpha\beta} = IP_{\alpha\beta}I, \quad S_{\alpha} = IQ_{\alpha}I, \quad \bar{S}_{\alpha} = I\bar{Q}_{\alpha}I.$$

Dual superconformal invariance N=2 vs ABJM

Note that the delta functions for N=2 transform under the inversion as

$$I\left[\delta^{(3)}(x_1-x_5)\delta^{(2)}(\theta_1-\theta_5)\right] = x_1^4 \delta^{(3)}(x_1-x_5)\delta^{(2)}(\theta_1-\theta_5)$$

 Whereas in the N=4 and ABJM case, the corresponding delta function is invariant under the inversion!

$$A_{ABJM}^{(4)} = \frac{1}{\sqrt{x_{1,3}^2 x_{2,4}^2}} \delta^{(3)}(x_1 - x_5) \delta^{(6)}(\theta_1 - \theta_5)$$

$$\tilde{K}^{\alpha\beta} \mathcal{A}_{ABJM}^{(4)} = \left(K^{\alpha\beta} + \frac{1}{2} \sum_{j=1}^{4} \Delta_j x_j^{\alpha\beta} \right) \mathcal{A}_{ABJM}^{(4)} = 0 , \ \Delta_i = \{1, 1, 1, 1\}$$

Gang, Huang, Koh, Lee, Lipstein

- So it was expected that the superamplitude in the N=2 theory would not have any dual superconformal invariance at all.
- However, in the N=2 case, dual superconformal invariance, still works but the weights become non-homogeneous.

Dual superconformal invariance of the superamplitude

The four point amplitude in the N=2 theory is

$$\mathcal{A}_4 = \sqrt{\frac{x_{1,3}^2}{x_{2,4}^2}} \delta^{(3)}(x_1 - x_5) \delta^{(2)}(\theta_1 - \theta_5)$$

- In this form the translation, Lorentz invariance and supersymmetry invariance of the amplitude is manifest.
- The amplitude is just a function of the square differences in the x variable.
- Under Dilatations it transforms as a eigenfunction of weight 4.
- Under R symmetry it transforms as eigenfunction of weight 2.
- To show the dual superconformal invariance it is sufficient to show the invariance under $K_{\alpha\beta}, S_{\alpha}, \bar{S}_{\alpha}$

Dual superconformal invariance of the superamplitude

$$K_{\alpha\beta} [\mathcal{A}_{4}] = IP_{\alpha\beta}I [\mathcal{A}_{4}]$$

$$= I \sum_{i=1}^{4} \partial_{i\alpha\beta} \left[x_{1}^{4} \sqrt{\frac{x_{2}^{2}x_{4}^{2}}{x_{1}^{2}x_{3}^{2}}} \mathcal{A}_{4} \right]$$

$$= I \left[-\frac{1}{2} x_{1}^{4} \sqrt{\frac{x_{2}^{2}x_{4}^{2}}{x_{1}^{2}x_{3}^{2}}} \left(3 \frac{x_{1}^{\alpha\beta}}{x_{1}^{2}} + \frac{x_{2}^{\alpha\beta}}{x_{2}^{2}} + \frac{x_{4}^{\alpha\beta}}{x_{4}^{2}} - \frac{x_{3}^{\alpha\beta}}{x_{3}^{2}} \right) \mathcal{A}_{4} \right]$$

$$= -\frac{1}{2} \left(3 x_{1}^{\alpha\beta} + x_{2}^{\alpha\beta} + x_{4}^{\alpha\beta} - x_{3}^{\alpha\beta} \right) \mathcal{A}_{4}$$

$$= -\frac{1}{2} \left(\sum_{j=1}^{4} \Delta_{j} x_{j}^{\alpha\beta} \right) \mathcal{A}_{4} \qquad \text{w/} \quad \{\Delta_{j}\} = \{3, 1, -1, 1\}$$

• So the invariance under $K_{\alpha\beta}, S_{\alpha}, \bar{S}_{\alpha}$

$$\tilde{K}^{\alpha\beta}\mathcal{A}^{(4)} = \left(K^{\alpha\beta} + \frac{1}{2}\sum_{j=1}^{4} \Delta_j x_j^{\alpha\beta}\right)\mathcal{A}^{(4)} = 0 \qquad \tilde{\bar{S}}_{\alpha}\left[\mathcal{A}_4\right] = \left(\bar{S}_{\alpha} + \frac{1}{2}\left(\sum_{j=1}^{4} \Delta_j \theta_{j\alpha}\right)\right)\left[\mathcal{A}_4\right] = 0$$

$$S_{\alpha}[\mathcal{A}_4] = IQ_{\alpha}I[\mathcal{A}_4] = IQ_{\alpha}\left[x_1^4\sqrt{\frac{x_2^2x_4^2}{x_1^2x_3^2}} \mathcal{A}_4\right] = 0.$$

Dual superconformal invariance at all loops

We showed that the function A4 is dual superconformal invariant!

$$\mathcal{A}_4 = \sqrt{\frac{x_{1,3}^2}{x_{2,4}^2}} \delta^{(3)}(x_1 - x_5) \delta^{(2)}(\theta_1 - \theta_5)$$

The tree level superamplitude is dual superconformal invariant.

$$T_{tree} = \frac{4\pi}{\kappa} \mathcal{A}_4$$

 The all loop results computed in K.I, Jain, Mazumdar, Minwalla, Umesh, Yokoyama are also dual superconformal invariant.

$$T_{sym}^{all\ loop} = T_{Asym}^{all\ loop} = T_{Adj}^{all\ loop} = T_{tree}^{all\ loop}$$
 $T_{sing}^{all\ loop} = N \frac{\sin \pi \lambda}{\pi \lambda} T_{tree}$

 Now that we know this symmetry exists, can we reverse the argument and do an S matrix bootstrap to fix the general structure of the amplitude?

Constraining amplitudes from dual superconformal symmetry

 The four point amplitude in momentum space can be interpreted as a four point correlator in dual space, then dual conformal invariance fixes

$$\langle \mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})\rangle$$

$$= \frac{1}{x_{12}^{\Delta_{1}+\Delta_{2}}x_{34}^{\Delta_{3}+\Delta_{4}}} \left(\frac{x_{24}}{x_{14}}\right)^{\Delta_{1}-\Delta_{2}} \left(\frac{x_{14}}{x_{13}}\right)^{\Delta_{3}-\Delta_{4}} f(u, v, \kappa, \lambda)$$

$$u = \frac{x_{12}^{2}x_{34}^{2}}{x_{13}^{2}x_{24}^{2}}, \quad v = \frac{x_{14}^{2}x_{23}^{2}}{x_{13}^{2}x_{24}^{2}}.$$

• Since $x_{ij}^2 = p_i^2 = 0$, the correlator is understood in the limit

$$\frac{u}{v}\Big|_{onshell} = \frac{x_{12}^2 x_{34}^2}{x_{14}^2 x_{23}^2}\Big|_{onshell} = \frac{p_1^2 p_3^2}{p_2^2 p_4^2}\Big|_{onshell} = constant$$

 If dual superconformal symmetry is exact it fixes the momentum (x) dependence completely*

$$f(u, v, \kappa, \lambda) = g(\kappa, \lambda)$$

Constraining amplitudes from dual superconformal symmetry

- In general the S matrix could get complicated functions with poles and branch cuts.
- If dual conformal invariance is an exact symmetry at loop level then no such behavior appears.
- · Non trivial momentum dependence could still appear from $x_{i,j}^{\Delta}$ when Δ gets correction from loops.
- This can give rise to log dependence for instance, However these do not appear if there are no IR divergences.
- If we assume that there are no IR divergences (none seen in the calculation), and that the dual conformal invariance is an exact symmetry, then the momentum dependence is fixed.

4 point amplitude as a free field correlator in dual space

- Recall that $\{\Delta_1, \Delta_2, \Delta_3, \Delta_4\} = \frac{1}{2}\{4-1, 1, -1, 1\}$
- The factor of 4 is due to momentum+supermomentum conservation and can be removed. $I\left[\delta^{(3)}(x_1-x_5)\delta^{(2)}(\theta_1-\theta_5)\right]=x_1^4\ \delta^{(3)}(x_1-x_5)\delta^{(2)}(\theta_1-\theta_5)$
- With this identification the operator dimensions are

$$\tilde{\Delta}_1 = \Delta_3 = -\frac{1}{2}$$

$$\Delta_2 = \Delta_4 = \frac{1}{2}$$

 The four point correlator in dual space gets fixed to (cancellations in limiting sense)

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\mathcal{O}_4(x_4)\rangle = g(\kappa,\lambda)\sqrt{\frac{x_{13}^2}{x_{24}^2}}$$

Same as the amplitude without the delta functions!

$$\mathcal{A}_4 = \sqrt{\frac{x_{1,3}^2}{x_{2,4}^2}} \delta^{(3)}(x_1 - x_5) \delta^{(2)}(\theta_1 - \theta_5)$$

4 point amplitude as a free field correlator in dual space

- In a general CFT, in the double light cone limit, only Identity operators are expected to contribute!
- · In the channel where $(\mathcal{O}_1,\mathcal{O}_3)$ and $(\mathcal{O}_2,\mathcal{O}_4)$ are brought together

$$\tilde{\Delta}_1 = \Delta_3 = -\frac{1}{2}$$

$$\Delta_2 = \Delta_4 = \frac{1}{2}$$

$$\mathcal{O}_1$$

$$\mathcal{O}_2$$

$$\mathcal{I}$$

$$\mathcal{O}_3$$

The four point amplitude can be accounted for by an identity exchange.

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\mathcal{O}_4(x_4)\rangle = \langle \mathcal{O}_1(x_1)\mathcal{O}_3(x_3)\rangle\langle \mathcal{O}_2(x_2)\mathcal{O}_4(x_4)\rangle$$
$$= c_1c_2\sqrt{\frac{x_{13}^2}{x_{24}^2}}$$

- This suggests $g(\kappa, \lambda) = c_1 c_2$.
- It would be interesting to understand the CFT interpretation of these operators, and also to see what happens in the cross channel.

Part III Summary

Summary

- We started with a goal of computing arbitrary $m \rightarrow n$ tree level scattering amplitudes in U(N) $\mathcal{N}=2$ Chern-Simons matter theories with fundamental matter.
- We achieved this via BCFW recursion relations, this enabled us to express arbitrary n point amplitudes as products of four point amplitudes!
- We saw an explicit example where the six point amplitude is expressed as a product of two four point amplitudes via two factorization channels.
- The non-susy amplitudes do not satisfy the BCFW requirements.
- However we were able to use the fact that the four point superamplitude in the $\mathcal{N}=2$ theory is specified by one function and that the tree level amplitudes are identical to the non-susy case to write recursions for the non-susy theory as well.
- We saw an explicit example for the six fermion amplitude in the fermion coupled Chern-Simons theory.

Summary

- We showed that the all loop 2→2 scattering amplitude computed in K.I, Jain, Mazumdar, Minwalla, Umesh, Yokoyama is dual superconformal invariant.
- Thus dual superconformal symmetry is all loop exact, at least for the 4 point amplitude.
- The presence of dual conformal symmetry then allows us to interpret the amplitude in momentum space as a correlator in dual space.
- We argued that if dual conformal symmetry was an exact symmetry it fixed the momentum dependence of the amplitude completely.
- We interpreted the four point amplitude in dual space as a free field correlator where the identity operator exchange accounted for it.
- However, general principles such as unitarity, duality and dual conformal symmetry are insufficient to fix the overall coupling dependence.

Yangian Symmetry

- The presence of the superconformal and dual superconformal symmetries indicate a Yangian symmetry in the amplitude.
- A Yangian algebra is an associative Hopf Algebra generated by

$$[J^A, J^B] = f_C^{AB} J^C , [J^A, Q^B] = f_C^{AB} Q^C$$

• J^A take values in a Lie group G, both J^A and Q^A are constrained to obey the Serre relations in addition to Jacobi Identity.

$$[Q^{A}, [Q^{B}, J^{C}]] + [Q^{B}, [Q^{C}, J^{A}]] + [Q^{C}, [Q^{A}, J^{B}]] = \frac{1}{24} f^{ADK} f^{BEL} f^{CFM} f_{KLM} \{J_{D}, J_{E}, J_{F}\}$$

$$[[Q^{A}, Q^{B}], [J^{C}, Q^{D}]] + [[Q^{C}, Q^{D}], [J^{A}, Q^{B}]] = \frac{1}{24} (f^{AGL} f^{BEM} f^{CD}_{K} + f^{CGL} f^{DEM} f^{AB}_{K})$$

$$\times f^{KFN} f_{LMN} \{J_{G}, J_{E}, J_{F}\}$$

 Under repeated commutations the Q's generate an infinite dimensional Symmetry algebra.

Yangian Symmetry in N=2 Chern-Simons theory

The Yangian has a basis (labelled by levels)

$$\mathcal{J}_0^A = J^A , \ \mathcal{J}_1^A = Q^A , \dots, \ \mathcal{J}_n^A$$
$$[\mathcal{J}_{(0)}^A, \mathcal{J}_{(0)}^B] = f^{AB}_{C} \mathcal{J}_{(0)}^C \qquad [\mathcal{J}_{(0)}^A, \mathcal{J}_{(1)}^B] = f^{AB}_{C} \mathcal{J}_{(1)}^C$$

- The generators \mathcal{J}_n^A are "n local" operators. The infinite dimensional symmetry is generated by commutators of \mathcal{J}_n^A .
- For the N=2 theory the spacetime superconformal symmetry is Osp(2|4)

$$\mathcal{J}_{(0)}^{A} = \{ p_{\alpha\beta}, m_{\alpha\beta}, d, k_{\alpha\beta}, r, q_{\alpha}, \bar{q}_{\alpha}, s_{\alpha}, \bar{s}_{\alpha} \}$$

A general ansatz for the Level 1 generators Kazakov et al.

$$\mathcal{J}_{(1)}^A = \frac{1}{2} f_{BC}^A \sum_{j < k} \mathcal{J}_{j,(0)}^C \mathcal{J}_{k,(0)}^B + \sum_k v^l \mathcal{J}_{l,(0)}^A$$
 • The dual generators K and S when restricted to onshell superspace map to

Level 1 Yangian generators of the spacetime superconformal algebra.

$$K_{\alpha\beta}(\lambda_{\alpha}, \eta) \equiv p_{\alpha\beta}^{(1)}$$
$$\bar{S}_{\alpha}(\lambda_{\alpha}, \eta) \equiv \bar{q}_{\alpha}^{(1)}$$

 The remaining restricted dual generators have a trivial automorphism to Level 0 generators of the spacetime superconformal algebra.

K.I, Jain, Nayak, Sharma, Umesh, to appear

Yangian Symmetry in N=2 Chern-Simons theory

 Note that K, S commute!, so how does the infinite dimensional algebra appear?

$$K_{\alpha\beta}(\lambda_{\alpha},\eta) \equiv p_{\alpha\beta}^{(1)}$$

$$\bar{S}_{\alpha}(\lambda_{\alpha},\eta) \equiv \bar{q}_{\alpha}^{(1)}$$

- . The remaining Level 1 generators are obtained by commuting K with the $\mathcal{J}_{(0)}^A$
- These remaining Level 1 (other than [K,S]) generate the Level 2 upon commutation and so on.
- The Yangian works exactly the same way as it did for N=4 SYM and ABJM.
- The Yangian invariance of the amplitude then boils down to the statement

$$\mathcal{J}_{(0)}^A \mathcal{A}_4 = 0 , \ \mathcal{J}_{(1)}^A \mathcal{A}_4 = 0 , \Longrightarrow \mathcal{Y} \mathcal{A}_4 = 0,$$

 Thus superconformal and dual superconformal symmetries generate a Yangian symmetry!

