Decay Spectroscopy at GSI and FAIR - I

J. Gerl GSI Darmstadt, Germany

presented at

INUP 2011

Goa, India, NOVEMBER 9 – 11, 2011

1

Towards a predictive (and unified) description of nuclei

Nuclear shell structure

Shell structure of exotic nuclei changes !!!

Woods-Saxon potential (WS) \rightarrow harmonic oscillator (HO)

Nuclear density distribition

Nuclear shapes

Nuclear Physics in the Universe

For the understanding of nucleosynthesis and stellar dynamics we need to know properties of many exotic nuclei.

7

NUclear STructure Astrophysics and Reactions

Decay studies using Rare Isotope Beams and high-resolution γ Spectroscopy

Nuclear Shell structure :

- N = Z: ⁵⁶Ni and ¹⁰⁰Sn
- N>>Z: 78 Ni, 132 Sn

Nuclear shapes :

- Quadrupole, Octupole, Triaxiality
- High K-isomers
- **Collective modes:**
- N>>Z: GDR soft mode

Nuclear Symmetries :

mirror-isospin, pn-pair correlation

Decay Spectroscopy: Production

Projectile fragmentation or fission in radioactive isotopes production ?

Decay Spectroscopy: Selection

In-flight separation of Rare Isotope Beams

Advantages of In-flight Separation using Projectile Fragmentation and - Fission

High luminosity	Secondary reactions in thick targets ~ g/cm ²
In-flight separation	Short half-lives (Lower time limitation by ToF , 200 ns) High selectivity and sensitivity Single-atom spectroscopy Universal separation Mono-isotopic beams of all elements Cocktail beams optional
Kinematic focusing	Experiments with high-energy stored nuclei Effective injection into storage rings Full solid angle coverage, complete kinematics
Favorable Reaction Mechanism	Sudden appoximation, Glauber model

The fragment separator FRS

Radioactive isotope selection at FRS $(B\rho - \Delta E - B\rho \text{ technique})$

Decay Spectroscopy: Identification

FRS Identification

identification F2-F4: $\Delta E => Z$ $B\rho(x,x',\alpha') = \beta \gamma A/q m_0 c$ q = Z $TOF => \beta$

FRS Identification

at focal plane F2

0

TIC2

Por o

0

TIC

3

SC22

Isotope identification

24

Decay Spectroscopy: Implantation

Atomic Background Radiation Bremsstrahlung

Radiative electron capture (REC) capture of target electrons into bound states of the projectile:

 $\sigma \sim Z_p^2 \cdot Z_t$ > Primary Bremsstrahlung (PB) capture of target electrons into continuum states of the projectile:

 $\sigma \sim Z_p^2 \cdot Z_t$ > Secondary Bremsstrahlung (SB) Stopping of high energy electrons in the target: $\sigma \sim Z_p^2 \cdot Z_t^2$

> Low Z catcher High granularity γ detector

Passive Stopper

Decay Spectroscopy: γ detection

RISING Stopped Beam set-up

105 Ge crystals, 3 rings Energy resolution (FWHM): 0.2% Total efficiency: \approx 15 % [at E_y = 1.3 MeV] digital signal processing, time stamped data

Isotope selection: ⁸⁸Zr

31

⁸⁸Zr E_{γ} - t_{γ} correlation

⁸⁸Zr E_v after prompt flash

RISING: Stopped beam – physics focus 2006

Gamma Energy-Time Correlations

Ge Single Spectra

⁵⁴Ni gated, time range 0.05 – 1.00 μs after implantation

D. Rudolph

γγ Coincidence Spectra

Nigated 0.05 - 1.00μs

D. Rudolph

Decay Scheme of ⁵⁴Ni

D. Rudolph

Decay Scheme of ⁵⁴Ni

Unexpected scaling of $(g_{9/2})^{-2}$ two-body interaction

²⁰⁴Pt populated via 4-proton-knockout from ²⁰⁸Pb

27⁺ state populated in ¹⁴⁸Tb

Zs. Podolyák et al., Phys. Lett. B632 (2006) 203.

The Principle of the Active Stopper

Focal plane implantation detector sensitive to electron emission

The waiting time between particle implantation and β -particle (or i.c. electron) emission is a measure of the decay half-life. Gamma rays emitted following these decays are detected by the RISING array.

Active Stopper RISING

Goal: Isomer spectroscopy and β -delayed spectroscopy on fragments

5 x 5 cm² DSSSD (16 x 16 strips = 256 pixels) 3 positions across focal plane, 2 layers possible

Detect ~10 GeV implantation signal and measure ~200 keV β-decay in the same pixel

How do you measure signals with 0.1 MeV & 20 GeV in the same detector ?

Passive Stopper measurements: γ -rays from isomer with $T_{1/2}$ for 10 ns \rightarrow 1 ms. Active Stopper measurements: β -particles, i.c. electrons, $T_{1/2}$ ms \rightarrow mins

Implantation detector SIMBA (TU München)

events

decay time [s]

2 x 10 layers + x,y layer

and how it looks inside

N. Al-Khomashi, PhD thesis

Conversion electron spectroscopy in ²⁰⁵Au

g-factor measurements at RISING

(a) g-factors \rightarrow reveal information about the nuclear single particle structure: wave function, spin, magnetic dipole operator, ...

 \rightarrow unique probe to study changes in nuclear shell structure far from stability

→ second step: quadrupole moments (deformation)

(b) spin-alignment in relativistic fission

 \rightarrow never experimentally proven !

 \rightarrow exotic neutron rich nuclei become accessible for moments studies

WHY AT THE FRS ? = unique facility to study g-factors and quadrupole moments of spinaligned isomeric beams not accessible at other places:

- lifetime range 100 ns 100 μs (not at ISOL facilities)
- in neutron rich nuclei with mass A>70

(not with intermediate energy fragmentation)

(not with fusion-evaporation)

Time Differential Perturbed Angular Distribution

THE EXPERIMENTAL SET-UP AT GSI: g-RISING

Spin-aligned secondary beam selected (S2 slits + position selection in SC21)

SC41 gives t=0 signal for γ -decay time measurement

Implantation: plexiglass degrader + 2 mm Cu (annealed)

SC42 and SC43 validates the event

4 clusters with BGO anticompton shields and short collimators
4 clusters with the former RISING shields
Total efficiency (Eu source) = 1.9 - 2.3 % (from Liliya Atanosova, Sofia)

RISING collaborators are committed and highly motivated

 $R(t) = \frac{I_1 - \varepsilon I_2}{I_1 + \varepsilon I_2} \quad I_1 = (A+L)\uparrow + (D+G)\downarrow$ $I_2 = (A+L)\downarrow + (D+G)\uparrow$

Choice of the magnetic field

B = 0.12 T

g = - 0.1

Structure of 127Sn investigated

