Near Barrier Reactions – many-body quantum dynamics in action

Part IV –Time scales in break-up and in quasi-fission

Mahananda Dasgupta

**Department of Nuclear Physics** 

Australian National University, Canberra



Australian National University • Studies using weakly bound stable beams

<sup>6</sup>Li, <sup>7</sup>Li, <sup>9</sup>Be - weakly bound (breakup threshold 1.5, 2.5, 1.6 MeV)

- charged clusters ( $\alpha$ -d,  $\alpha$ -t,  $\alpha$ - $\alpha$ -n)  $\longrightarrow$  detection easier
- accurate measurements possible (beam intensity)
- average fusion barrier can be determined experimentally
- no halo

First definitive demonstration of suppression of complete fusion at above barrier energies

Dasgupta et al., PRL 82 (1999) 1395

Many groups working in this area – Posters: Palshetkar, Pradhan, Rath, Thakur

Reference calculations – what causes the largest uncertainties?

 Nuclear Potential → Barrier energy Solution: Get centroid of barrier distribution

Couplings

Solution: make above barrier comparison

#### Suppression of complete fusion at E>V<sub>b</sub>



- <sup>9</sup>Be + <sup>208</sup>Pb measurements
- Expt. Determination of average barrier
- Comparison with reaction with well-bound nuclei forming the same CN



<sup>6,7</sup>Li, <sup>9</sup>Be: Dasgupta et al., PRC 70 (2004) 024606

#### Weakly bound stable nuclei- complete fusion systematics





Expectations:  ${}^{6}\text{Li} \rightarrow \alpha + d \text{ (Q= -1.475 MeV)}$  ${}^{7}\text{Li} \rightarrow \alpha + t \text{ (Q= -2.467 MeV)}$ 

**Observations:** 

- <sup>6</sup>Li, <sup>7</sup>Li incident on <sup>58</sup>Ni, <sup>118</sup>Sn low numbers of d and t compared to α Pfeiffer et al., NP A206, 545 (1973)
- <sup>7</sup>Li + <sup>65</sup>Cu: yield of  $\alpha$ -d >  $\alpha$  t Shrivastava et al., PLB633, 463 (2006)
- <sup>7</sup>Li + <sup>144</sup>Sm breakup following n-transfer forming <sup>6</sup>Li

D. Heimann Martinez et al., FUSION08, 275 (2008)

Is n-transfer the dominant trigger for breakup?

Relationship between observed breakup and fusion?

Breakup measurements at sub-barrier energies eliminates fragment absorption  $\rightarrow$  least confusion



High efficiency array - pixellated detectors



60° wedge detectors: Micron semiconductor Ltd.

Reality TV for physicists : spying on the participants isolated from outside world





#### Measurements - Fragment energy, positions — Kinematic reconstruction



Q-value determination → information about states in target-like nucleus
 → no information on excited state of proj-like nucleus

• Relative energy of the fragments can provide this information

Relative energies of the breakup fragment  $\rightarrow$  Q + E<sup>\*</sup><sub>proj\_like</sub>

• Q and E<sub>rel</sub> from energy and momentum conservation

Details: Rafiei et al., PRC 81, 024601(2010)





 
 α-d pairs - as observed by others – Q, E<sub>rel</sub> consistent with n-transfer followed by breakup from <sup>6</sup>Li excited (2.18 MeV)

• <sup>6</sup>Li  $\tau = 3 \times 10^{-20}$  s – too slow to breakup prior to fusion - cannot result in ICF







Key insights to develop predictive models  $\rightarrow$  new facilities & applications

Luong et al., Phys. Lett. B 695, 105 (2011)



Luong et al., Phys. Lett. 695, 105 (2011)



- $\alpha$  -d E<sub>rel</sub> tight as well as wide distributions
- Predominantly α p (from <sup>5</sup>Li formed following n transfer) wide E<sub>rel</sub>
- Large +Q events d pickup forming <sup>8</sup>Be



Rafiei et al., PRC 81, 024601(2010) <sup>9</sup>Be + <sup>209</sup>Bi, <sup>208</sup>Pb, <sup>196</sup>Pt, <sup>186</sup>W, <sup>168</sup>Er, <sup>144</sup>Sm



Model: Diaz-Torres et al, Phys. Rev. Lett. 98, 152701 (2007) Rafiei et al., PRC 81, 024601(2010)

# **Important questions**



## Effects of Nuclear Structure in Heavy Element Formation Dynamics

Heavy element formation - dynamical evolution of a complex quantum system Diffusion of collective co-ordinates over multi-dimensional potential energy surface



Outcomes depend on:

- Potential energy surface
- o C.N. fissility  $Z_{C.N.}^{2/A}A_{C.N.}^{1/3}$

o Shell structure of combined system

- "Entry point"
- o Dissipation of initial relative energy
- o Deformation in entrance channel

Dependence of dynamics on structure

- o Shell gaps level spacing
- o Damping of shell effects with  $E_{\chi}$

Slide from D.J. Hinde, ANU

ER and Quasi-fission Movies by Y. Hinde



TDHF3D Calculations: Cedric Simenel

C. Golabek, C. Simenel, PRL 2009

D. Kadziora, C. Simenel, PRC 2010

Wakle, Simenel et al, to be published



## ANU MWPC detector configuration



### Mass-angle distribution – MAD



Kinematic coincidence Detector angular acceptance

- Detect both fragments

- Populate matrix at 
$$M_{R}^{}, \theta_{CM}^{}$$

- Also at (1-M<sub>R</sub>), (
$$\pi$$
- $\theta$ <sub>CM</sub>)

#### **Fusion-fission**

- symmetric about  $M_R = 0.5$
- and symmetric about  $\theta_{\text{CM}}$  = 90°

Capture probability and deformation alignment







# MAD at ANU

- Complete picture of evolution of the combined system in the first 10<sup>-20</sup> sec
- Controversy: Fission time scales 10<sup>-18</sup> sec, increasing with increasing Z

# Simulations

![](_page_29_Figure_4.jpeg)

Time scale decreases with increasing mass of the combined system

# Summary

- Frontiers of nuclear reaction dynamics
  - Experimental and theoretical challenge
  - Fundamental quantum mechanics
- Development of unique detection systems an important role
  - Data of unmatched precision
  - Reveal new aspects of interacting many-body quantum systems
- Decreased tunnelling in complex systems fusion new approach needed
  - Standard modelling of environmental interactions not applicable
  - Collaborations with quantum theorists
- Techniques to probe time scales of breakup and quasi-fission
  - Key role in understanding dynamics, model developments

# **Additional material**

## Reconstruction – Q-value

non-relativistic implementation

Details: Rafiei et al., PRC 81, 024601(2010) Luong et al., Phys. Lett. 695, 105 (2011)

1. momentum conservation (assume 3-body BU):

$$\vec{P}_{\text{beam}} = \vec{P}_1 + \vec{P}_2 + \vec{P}_{\text{recoil}}$$
$$\vec{E}_{\text{recoil}} = \frac{\left\|\vec{P}_{\text{recoil}}\right\|^2}{2m_{\text{recoil}}}$$

2. energy conservation:

$$Q = (E_1 + E_2 + E_{reoil}) - E_{beam}$$

#### Reconstruction – Relative Energy Details: Rafiei et al., PRC 81, 024601(2010) Luong et al., Phys. Lett. 695, 105 (2011)

• reminder: in CM frame the two fragments are emitted back-to-back:

![](_page_33_Figure_2.jpeg)

•  $CM \rightarrow LAB$  : application of cosine rule to velocity diagram

$$E_{rel} = \frac{1}{m_1 + m_2} (m_1 E_2 + m_2 E_1 - 2\sqrt{m_1 m_2 E_1 E_2} \cos(\theta_{12}))$$

• measure E,  $\theta$ ,  $\emptyset$  of breakup fragments  $\rightarrow$  reconstruct breakup  $E_{rel}$ 

## **Binary fission kinematics**

Hinde et al., PRC **53** (1996) 1290 Rafiei et al., PRC **77** (2008) 024606 Thomas et al., PRC **77** (2008) 034610

![](_page_34_Figure_2.jpeg)

Kinematic coincidence:

Determine (binary) mass-ratio  $M_{R1} = A_{F1}/(A_{F1}+A_{F2}) = V_{2cm}/(V_{1cm}+V_{2cm})$