Near Barrier Reactions - many-body quantum dynamics in action

Part II - Fusion

Mahananda Dasgupta

Department of Nuclear Physics

Australian National University, Canberra

Fusion - the different stages

- Coupled channels model works well
all capture leads to compact shape?
Fusion of lighter nuclei
Xeavier nuclei
Berriman et al., Nature, 413 (2001) 144

capture
compound nucleus (compact shape)

Important questions

- What influences capture of two nuclei?
- What influences the subsequent evolution?

Measuring fusion

Evaporation residues

Experimental methods

Detection of x -rays emitted by evaporation residues
identification of Z
different isotopes can be separated in favourable cases

Detection of gamma-rays from evaporation residues
identification of Z and A
need efficient detectors, background issues, efficiency

Detection of alpha decay of evaporation residues identification of Z, A
only applicable in cases of α-active products
Direct detection of fusion products (evaporation residues, fission)

High precision measurements
(1\% uncertainty)

- barrier distribution

ER measurements need care, high efficiency or known transmission

Fission measurements - large angular coverage

Fusion measurements - the challenge

- Beam, fusion products, elastic scattering - all forward focussed
- Stop direct beam ($10^{10}-10^{11}$ nuclei/sec)
- $10^{4}-10^{12}$ elastics for every fusion product!

Evaporation residue measurement using compact velocity filter

- Normalization by measuring elastics at forward angles (pure Rutherford)
- Residues transported by the velocity filter
- Detected directly or Implanted into Si detector
- Implanted into Si detector \rightarrow measurement of α-decay between beam-bursts

SOLITAIRE - new generation separator

Transports ER with high efficiency
(0.45 - 9.5 degrees)

Identifies ER + track path

${ }^{58} \mathrm{Ni}+{ }^{64} \mathrm{Ni}$ evaporation residue measurements using SOLITAIRE

- Absolute cross section measurements not easy
- High efficiency very advantageous

Gas filled 6.5 T Superconducting Solenoid (lens -action)

- $\simeq 100 \%$ detection efficiency
- Highest efficiency evaporation residue separator

Rodriguez et al, NIM A614 (2010) 119

- Fusion measurement, coincidence and implantation studies (materials, medical)
- production of ${ }^{6} \mathrm{He}$ for experiments

Fission Measurements

- Measure fission fragment positions
- Measure flight times
- Deduce velocity vectors

Measured fission-fragment angular distributions

Constant coupling approximation - two channel

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+V+\left(\begin{array}{cc}
0 & F \\
F & \varepsilon_{T}
\end{array}\right)\right]\binom{\chi_{1}}{\chi_{2}}=E\binom{\chi_{1}}{\chi_{2}}
$$

Eigenvalues of the coupling matrix: $\quad \lambda_{ \pm}=\frac{1}{2}\left(\varepsilon \pm \sqrt{\varepsilon^{2}+4 F^{2}}\right)$

$$
w_{ \pm}=\frac{F^{2}}{F^{2}+\lambda_{ \pm}^{2}}
$$

Coherent superposition $\longleftrightarrow \mathrm{V}$ splits into two eigen-barriers
$\sigma_{\text {fusion }}\left(E_{c m}\right)=w_{+} \sigma_{\text {fusion }}\left(E_{c m}, \underline{V_{B}+\lambda_{+}}\right)+w_{-} \sigma_{\text {fusion }}\left(E_{c m}, \underline{V_{B}+\lambda_{-}}\right)$

Home work problem

The sum of the Coulomb and nuclear potentials between ${ }^{16} \mathrm{O}$ and ${ }^{144} \mathrm{Sm}$ nuclei gives: barrier energy $=61.00 \mathrm{MeV}$; inter-nuclear separation at the barrier $=10.86 \mathrm{fm}$, barrier curvature (assuming parabolic) $=4.25 \mathrm{MeV}$.
(1) Using parabolic approx. calculate the expected fusion cross-section (in $\mathrm{mb})$ at $\mathrm{E}_{\mathrm{c} . \mathrm{m}}=60.00 \mathrm{MeV}$ and 75 MeV .
(2) The target ${ }^{144} \mathrm{Sm}$ has an excited state at 1.8 MeV . Assume a coupling strength of 3 MeV to this state, independent of inter-nuclear separation.

Calculate the fusion cross-section at $\mathrm{E}_{\text {c.m. }}=60,75 \mathrm{MeV}$ when coupling to this state is included. Assume that the barrier curvature does not change with couplings.

What is the factor by which the cross section is enhanced/suppressed compared with that obtained in (1), i.e., when single barrier, no coupling was assumed

Effect of nuclear structure on fusion - included in coupled channels model

- Presence of quantum levels \Rightarrow enhancement by factors of 10 -100 of below-barrier fusion cross-sections
- Coupling assisted quantum tunnelling

Probability of facing barrier of energy E

- second derivative of data required

Rowley et al., Phys. Lett. B, 254, 25 (1991)

Advantages of taking derivatives

Barrier distributions for data with 5-10\% uncertainty

Tighe et al. (1990)
Dasgupta PhD thesis (1991)

much higher precision required!

- novel instrumentation and measurement procedures required precision measurements (1\% uncertainty) - pioneered by our ANU group

- Fusion as a function of energy - barriers are like filters
- Fusion - snapshot of the eigen-channels of the quantum system at contact

excitation leads reduction in K.E. \rightarrow reduced cross-sections

$$
\sigma=\left(1-\mathrm{P}_{1}\right) \sigma\left(\mathbf{E}_{\mathrm{cm}}\right)+\xrightarrow{\mathrm{P}_{1} \sigma\left(\mathbf{E}_{\mathrm{cm}}-\varepsilon_{1}\right)} \begin{aligned}
& \text { Net cross-section smaller - } \\
& \text { opposite of what is seen }
\end{aligned}
$$

Cross section enhancement due to superposition of quantum states

Main messages

- Development of unique detection systems - an important role
- Data of unmatched precision
- Reveal new aspects of interacting many-body quantum systems
- Colliding nuclei in a superposition of states - quantum effects
- Single barrier \rightarrow effectively "distribution of barrier energies"
- this effect clear from high precision measurements

Additional material follows

$$
\begin{aligned}
\sigma_{\text {fusion }}\left(E_{c m}\right) & =\sum_{l} \sigma_{l}=\int \sigma_{l} d l \\
& =\frac{\pi}{k^{2}} \int \frac{(2 l+1)}{1+\exp \left\{\frac{2 \pi}{\hbar \omega}\left(V_{B l}-E_{c m}\right)\right\}} d l
\end{aligned}
$$

Use: $V_{B l}=V_{B}+\frac{l(l+1) \hbar^{2}}{2 \mu R_{B}^{2}}$

$$
\sigma_{\text {fusion }}\left(E_{c m}\right)=\frac{\hbar \omega}{2 E_{c m}} R_{B}^{2} \ln \left[1+\exp \left\{\frac{2 \pi}{\hbar \omega}\left(E_{c m}-V_{B}\right)\right\}\right]
$$

Not too bad - good insights

- exact - solve Schrödinger Eqn.

Insights to fusion cross-sections - take limits of

$$
\sigma_{\text {fusion }}\left(E_{c m}\right)=\frac{\hbar \omega}{2 E_{c m}} R_{B}^{2} \ln \left[1+\exp \left\{\frac{2 \pi}{\hbar \omega}\left(E_{c m}-V_{B}\right)\right\}\right]
$$

$$
\mathrm{E}_{\mathrm{cm}} \gg \mathrm{~V}_{\mathrm{B}} \quad \sigma_{\text {fusion }}\left(E_{c m}\right) \approx \pi R_{B}^{2}\left[1-\frac{V_{B}}{E_{c m}}\right]
$$

Goes up with $E_{c m}: \sigma_{\text {fusion }} E_{c m}$ goes up linearly with $E_{c m}-V_{B}$
Same as that obtained classically

$$
\mathrm{E}_{\mathrm{cm}} \ll \mathrm{~V}_{\mathrm{B}} \quad \sigma_{\text {fusion }}\left(E_{c m}\right) \approx \frac{\hbar \omega}{2 E_{c m}} R_{B}^{2} \exp \left\{\frac{2 \pi}{\hbar \omega}\left(E_{c m}-V_{B}\right)\right\}
$$

Fusion cross-sections falls exponentially as $E_{c m}$ falls below V_{B}

