Near Barrier Reactions – many-body quantum dynamics in action

Mahananda Dasgupta

**Department of Nuclear Physics** 



Canberra

E-mail: Mahananda.Dasgupta@anu.edu.au







"The plan"

- Introduction and basic principles
- Nuclear structure effects on fusion
- Structure effects in reactions of weakly bound nuclei – mechanisms and time-scales
- Structure effects in evolution following capture



Geiger and Rutherford



2011 - Centenary Rutherford's publication discovery of the atomic nucleus



George Gamow

1928 - Tunnelling of alphaparticles (α-radioactivity)

First application of newly proposed Quantum theory







 $|f(\theta)|^2 + |f(\pi - \theta)|^2$  fails to explain data

Q.M.: The paths of the two <sup>12</sup>C nuclei cannot, even in principle, be distinguished i.e. we cannot track paths, unlike in the classical case

Bromley et al., Phys. Rev. 123, 878 (1961)









<sup>12</sup>C nucleus – ground state spin 0

(Scattering of Bosons)

$$=4 |f(\pi/2)|^2$$
 at  $\theta = \pi/2$ 

Distinguishable particles:  $2|f(\pi/2)|^2$ 

<sup>13</sup>C nucleus – ground state spin 1/2 (Scattering of Fermions)  $=\frac{3}{4}|f(\theta) - f(\pi - \theta)|^2 + \frac{1}{4}|f(\theta) + f(\pi - \theta)|^2$  $=|f(\pi/2)|^2 \quad \text{at } \theta = \pi/2$ 

Plattner and Sick, Eur. J. Phys. 2 (1981) 109

### Attraction vs. repulsion – the nuclear balancing act



- Barrier a result of attractive and repulsive potentials
- Alpha decay  $\rightarrow$  alpha particles leaving the nucleus face a barrier
- Fission  $\rightarrow$  barrier needs to be overcome as a nucleus splits into two nuclei

A home work problem – calculate  $V(r) = V_{coulomb} + V_{nuclear} + V_{centrifugal}$ 



<sup>16</sup>O + <sup>144</sup>Sm: Calculate all three potentials (in MeV) and the total V as a function of r (from 5- 20 fm) for angular momentum values of 0, 50. Draw all on same graph. Use  $V_0 = 100$  MeV,  $R_0 = 8.60$  fm, a = 0.75 fm.

 $V_B$ ,  $R_B$  for angular momentum values of 0,50

Nuclear Astrophysics (G. Martínez Pinedo) – charged particle reactions



High energy reactions (T. Aumann) – E>> Barrier

 $\rightarrow$  not sensitive to barrier energy/shape

Near-barrier collisions – fascinating playground of many body quantum physics



- Near barrier gentle collisions explore many body aspects reaction time scales ~ internal motion e.g. rotations, vibrations
- Fundamental quantum mechanics problems diverse areas

nuclei isolated - "mini universe"- next lecture

Heavy element formation – near barrier energies

#### Nuclear fusion – the textbook treatment



Single barrier model works well for fusion of light nuclei

## Fusion of heavy nuclei: experiment vs. expectations

1000 16 + <sup>A</sup>Sm Stockstad et al. PRL 41, 468 100 (1978)**Fusion** cross-10 Wei et al., Phys. Rev. Lett., 67 section (1991) 3368 single barrier 1 ▲ 154 Sm  $\sigma_{fus (mb)}$ Morton et al, PRL, **≜ ↑** 72 (1994)4074 🖕 144 Sm 0.1 0.01 0.9 1.0 1.1 Energy ÷ barrier energy

Factors of 10-100 mismatch - fundamental physics missing

inversion of fusion cross sections → potential – double valued! Balantekin, Koonin, Negele, PRC 28, 1565 (1983); K. Hagino lectures



Colliding nuclei in a superposition of quantum states

(i.e. can't tell which state, until a measurement is made)

Dramatically alters reaction dynamics

Contrast - high energy reactions (Aumann) - reaction dynamics and structure are less entangled → allows extraction of structure information

## **Combining structure and reactions**

Details: K.Hagino's lectures; also revisit in next lecture

Colliding nuclei in a superposition of intrinsic states:

$$\psi(\mathbf{r},\xi) = \sum_{n} u_{n}(\mathbf{r}) \, \phi(\xi)$$

Coupled reaction channels model

$$\left[-\frac{\hbar^{2}}{2\mu}\frac{d^{2}}{dr^{2}} + V(r) + H(\xi) + V_{coup}(r,\xi)\right]\psi(r,\xi) = E\psi(r,\xi)$$

Structure of the nucleus strongly affects reaction dynamics

Also in atomic collisions – but coupling strengths, atomic structure such that  $\rightarrow$  potential renormalization

#### And yet – we picture reactions classically?



Why?

Wavelength associated with a 100 MeV <sup>32</sup>S nucleus?



$$\lambda = \frac{n}{p} = \frac{n}{\sqrt{2mE}} = \frac{2\pi n}{\sqrt{2mc^2 E}}$$
 So we can use  
some clever tricks  
for calculations

 $\hbar c = 197.3 \text{ MeV fm}$  u = 931.5 MeV(~ 200) (~ 1000)

$$l = \frac{\mu v_{\infty} b}{\hbar} = \frac{\sqrt{2\mu c^2 E_{cm}} b}{\hbar c}$$



- Rutherford scattering (pure Coulomb) Elastic scattering
- Inelastic scattering (Coulomb excitation) colliding nuclei excited to higher energy levels due to (changing) Coulomb field between the two nuclei
  - only way nuclear/atomic properties enter electromagnetic matrix elements between the initial and final state
  - one of the methods to experimentally determine  $\mathsf{B}(\mathsf{E}\,\lambda$  ) values



- Inelastic scattering (Coulomb and nuclear) colliding nuclei excited to higher energy levels due to (changing) Coulomb and nuclear interactions (Theo. methods: Distorted Wave Born Approx (DWBA), Coupled channels)
- Coulomb-nuclear interference effects

## Why?

Also discussions during the last lecture of T. Aumann



Position of the minimum – determined by the relative phase between the nuclear and Coulomb scattering amplitudes

Sensitive measure of nuclear interactions

DWBA calculations – elastic, inelastic scattering in nuclear scattering



DWBA application in acoustic scattering of inhomogeneous objects:



Landowne, Vitturi in treatise on heavy ion science

ICES Journal of Marine Science, 60: 625–635. 2003 doi:10.1016/S1054–3139(03)00063-8 Available online at www.sciencedirect.com

SCIENCE () DIRECTO

#### Validation of the stochastic distorted-wave Born approximation model with broad bandwidth total target strength measurements of Antarctic krill

David A. Demer and Stéphane G. Conti

## Introduction

The United States of America's Antarctic Marine Living Resources Program (AMLR) uses multi-frequency echosounders and echo-integration to map the dispersion of Antarctic krill (*Euphausia superba*) over large areas and to estimate their abundance (Hewitt and Demer, 2000). The



- Inelastic scattering (Coulomb and nuclear)
- transfer reactions if transfer process is weak and proceeds directly (i.e. not transfer following inelastic excitation) q.m. calculation method distorted wave Born approximation (DWBA)
- Full calculation (Coupled channels)

DWBA: relative motion before and after non-elastic event are described by waves distorted by elastic scattering and absorption (not two plane waves as in Born Approximation)



- Multi-nucleon transfer
- Deep inelastic reactions
- Nuclear fusion

## Radial dependence of probabilities

• Mapping energy to radial separation



- Hierarchy of complexity
- Quasi elastic: elastic + peripheral probes "tail" of the nuclear potential

Washiyama et al. PRC73 (2006) 034697 ; Evers et al., PRC78 (2008)034614

#### Inelastic scattering, few nucleon transfer – good quantum theories

- Few-nucleon transfer
- Multi-nucleon transfer
- Deep inelastic reactions
- Nuclear fusion (Complete damping of kinetic energy – Compound nucleus formed)

Increasing complexity

Complete damping of K.E.  $\rightarrow$  leads to fusion is not (yet) described quantum mechanically

imaginary potential or incoming wave boundary condition - like a "blackhole"

#### Main messages

- Colliding nuclei many body quantum systems
- Heavy nuclei structure and reaction dynamics entangled (coupled channels)
- Various classes of reactions impact parameter concept

# Additional material follows

For pure coulomb interaction

$$f(\theta) = \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0 2\mu v^2} \sin^{-2}(\theta_{cm}/2) \exp[(-i\alpha)\log\{(1-\cos\theta_{cm})/2\} + i\pi + 2i\eta_0]$$

Where 
$$\alpha = \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0 \hbar v}$$
  $\exp(2i\eta_0) = \frac{\Gamma(1+i\alpha)}{\Gamma(1-i\alpha)}$ 

$$\frac{d\sigma}{d\Omega} = |f(\theta) + f(\pi - \theta)|^{2}$$

$$= \left[\frac{Z_{1}Z_{2}e^{2}}{4\pi\varepsilon_{0}2\mu v^{2}}\right]^{2} [\sin^{-4}(\theta_{cm}/2) + \cos^{-4}(\theta_{cm}/2) + 2\Phi\sin^{-2}(\theta_{cm}/2)\cos^{2}(\theta_{cm}/2)]$$
where  $\Phi = \cos\left[\frac{Z_{1}Z_{2}e^{2}}{4\pi\varepsilon_{0}\hbar v}\log\{\tan^{2}(\theta_{cm}/2)\}\right]$ 

Derivation of f( $\theta$ ) for coulomb scattering: See "The theory of atomic collisions", 3<sup>rd</sup> edition, by Mott and Massey, page 55, note V= ZZ' $\epsilon^2$ /r, whilst we have used Z<sub>1</sub>Z<sub>2</sub> e<sup>2</sup>/4  $\pi \epsilon_0$ r