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“The plan”


 

Introduction and basic principles


 

Nuclear structure effects on fusion 


 

Structure effects in reactions of weakly bound    
nuclei –

 
mechanisms and time-scales


 

Structure effects in evolution following capture
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George GamowGeiger and Rutherford

First application of newly 
proposed Quantum theory

1928 -
 

Tunnelling
 

of alpha-
 particles (α-radioactivity) 

2011 -

 

Centenary Rutherford’s publication -

 discovery of the atomic nucleus 



Probability of particle from left scattered by θ= |f (θ)|2

Scattering of identical nuclei - classical

C.M. 
FRAME

Detected events at θproportional to sum the probabilities:   |f (θ)|2 + |f(π – θ)|2

Prob. of particle from right scattered by (π – θ) = |f(π– θ)|2

Even for identical 
particles, classically we 
can track the path and 
know which particle 
scattered by θ

 
or π-θ

π- 



Detected at π/2 (in terms of f(θ))?



Detected: |f (θ) + f(π – θ)|2      (zero spin case)

Scattering of identical nuclei

Interference

|f (θ)|2 + |f (π – θ)|2 + f* (θ) f (π – θ) + f (θ) f*(π – θ)



f (θ) 

f(π – θ)

Cannot add probabilities –
 amplitudes must be added



|f (θ)|2 + |f(π – θ)|2

|f (θ)|2 +  |f(π
 

–
 

θ)|2
 

fails to explain data

Q.M.: The paths of the two 12C 
nuclei cannot, even in principle, be 
distinguished i.e. we cannot track 
paths, unlike in the classical case

θcm
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12C + 12C

Bromley et al., Phys. Rev. 123, 878 (1961)
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Plattner

 

and Sick, Eur. J. Phys. 2 (1981) 109

2|)2/(|4 f at θ= π/2

2|)2/(| f at θ= π/2

2|)2/(|2 f
Distinguishable 
particles:

θlab
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12C + 12C

13C + 13C 13C nucleus –
 

ground state spin 1/2

12C nucleus –
 

ground state spin 0

(Scattering of Bosons)

(Scattering of Fermions)

Spin 0

Spin half
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r

potential 
energy

attractive 
nuclear

Repulsive   
electrostatic

Barrier

Attraction vs. repulsion –
 

the nuclear balancing act

•
 

Barrier –
 

a result of attractive and repulsive potentials
•

 
Alpha decay → alpha particles leaving the nucleus face a barrier

•
 

Fission → barrier needs to be overcome as a nucleus splits into two nuclei

A note: In these lectures: 
E <  threshold for pion

 

production 

Nuclei made of nucleons –

 

not 
sensitive to substructure

EVB

RB



r

V

attractive 
nuclear

Coulomb

Barrier

A home work problem –
 

calculate
 

V(r)

VB

RB

16O + 144Sm: Calculate all three potentials (in MeV) and the total V as a 
function of r (from 5-

 
20 fm) for angular momentum values of 0, 50.  Draw 

all on same graph. Use V0

 

= 100 MeV, R0

 

=8.60 fm, a=0.75 fm.

VB

 

, RB

 

for angular momentum values of 0,50

=
 

Vcoulomb

 

+
 

Vnuclear

 

+ Vcentrifugal
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 Nuclear Astrophysics (G. Martínez
 

Pinedo) –
 

charged particle reactions

nuclear potential form 
not important 

E << Barrier energy

 High energy reactions (T. Aumann) –
 

E>> Barrier 

→ not sensitive to barrier energy/shape



r

potential 
energy

Barrier

 Near barrier –
 

gentle collisions –
 

explore many body aspects

reaction time scales ~ internal motion e.g. rotations, vibrations

 Fundamental quantum mechanics problems –
 

diverse areas 

nuclei isolated –
 

“mini universe”-
 

next lecture

 Heavy element formation –
 

near barrier energies

Near-barrier collisions –
 

fascinating playground of 
many body quantum physics



Nuclear fusion –
 

the textbook treatment

40Ca + 40Ca

Tomasi et al.
NPA 373 (82) 341

E

σfusion

Single barrier model works well for fusion of light nuclei
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Fusion of heavy nuclei: experiment vs. expectations

Wei et al., Phys. 
Rev. Lett., 67

 
(1991) 3368

Factors of 10-100 mismatch -
 

fundamental physics missing

Morton et al, PRL, 
72 (1994)4074 

Balantekin, Koonin, Negele, PRC 28, 1565 (1983); K. Hagino

 

lectures

Stockstad

 

et al, 
PRL 41, 468 
(1978)

inversion of fusion cross sections → potential
 

–
 

double valued!



ground 
state

excited 
quantum 
states

Many body 
quantum 
system 

 Colliding nuclei in a superposition of quantum states 

(i.e. can’t tell which state, until a measurement is made)

Quantum states

0

+

Not an 
elementary 

particle

Dramatically alters reaction dynamics


 

Contrast -
 

high energy reactions (Aumann) -
 

reaction dynamics and 
structure are less entangled → allows extraction of  structure information



2
 

dr2
+ V

 
(r) + H() +

 
Vcoup

 

(r,) =h2  d2 ][ E ψ
 

(r,ξ)ψ
 

(r,ξ)

set of intrinsic states

n
ψ

 
(r,ξ) = 

 
un

 

(r) φ(ξ)

 Coupled reaction channels model

 Colliding nuclei in a superposition of intrinsic states:

Combining structure and reactions

Also in atomic collisions –
 

but coupling strengths, atomic structure such that 
→ potential renormalization 

Structure of  the nucleus strongly affects reaction dynamics

Details: K.Hagino’s

 

lectures; also revisit in next lecture



Target

And yet –
 

we picture reactions classically?

Scattering 
 angleImpact 

 parameter θ

Why?

Typical picture of 
Collision in the 
laboratory frame



5.931u MeV3.197c MeV
 

fm
(~ 200) (~ 1000)

(a) 0.5 fm

(b) 50 fm

(c) 100 fm

Wavelength associated with a 100 MeV
 

32S nucleus?
(non-relativistic ok)
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So we can use 
some clever tricks 
for calculations

Large mass –
 

short wavelengths 
(Rutherford expt

 
λ?)

Classical concept of trajectories requires 
wavelength of relative motion

 
< 

interaction region



Matter density

r

•
 

Rutherford scattering (pure Coulomb) –
 

Elastic scattering

Interactions due to Coulomb field only

•
 

Inelastic scattering (Coulomb excitation) -
 

colliding nuclei excited to  higher 
energy levels due to (changing) Coulomb field between the two nuclei 

-
 

only way nuclear/atomic properties enter –
 

electromagnetic matrix  
elements between the initial and final state 

-
 

one of the methods to experimentally determine B(Eλ) values



Matter density

r

Nuclear interactions start

•
 

Inelastic scattering (Coulomb and nuclear) -
 

colliding nuclei excited to  
higher energy levels due to (changing) Coulomb and nuclear interactions
(Theo. methods: Distorted Wave Born Approx (DWBA), Coupled channels)

•
 

Coulomb-nuclear interference effects

Also discussions during the last lecture of T. Aumann

Why?



Position of the minimum  –
 

determined by the relative phase 
between the nuclear and Coulomb scattering amplitudes  

Sensitive measure of nuclear interactions

Evers et al., PRC 
81, 014602 (2010)

Excitation 
of 3-

 

state



Θcm (deg)

Coulomb only

Coulomb 
+ nuclear

DWBA calculations –
 

elastic, inelastic scattering 
in nuclear scattering

Landowne, Vitturi

 

in treatise on heavy ion science

DWBA application in acoustic scattering 
of inhomogeneous objects:

Jones et al., J. Acoust. Soc. Am. 125 (2009)73





•
 

transfer reactions –-
 

if transfer process is weak and proceeds directly (i.e. 
not transfer following inelastic excitation) q.m. calculation method –

 distorted wave Born approximation (DWBA)

•
 

Full calculation (Coupled channels)

Matter density

r

Nuclear interactions start

•
 

Inelastic scattering (Coulomb and nuclear)

DWBA: relative motion before and after non-elastic event  are described  by waves distorted by 
elastic scattering and absorption (not two plane waves as in Born Approximation)



Matter density

r

Nuclear interactions stronger

•
 

Multi-nucleon transfer 
•

 
Deep inelastic reactions

•
 

Nuclear fusion



•
 

Mapping energy to radial separation

Radial dependence of probabilities

r

r

V

•
 

Hierarchy of complexity 

Elastic pure Coulomb

Inelastic Cou+nuc,transfer
fusion

•
 

Thus it is not a either/or situation, e.g. if energy is sufficient inelastic 
excitation, transfer all occur on the way to fusion

→ Coupled channels
•

 
Quasi elastic: elastic + peripheral -

 
probes “tail”

 
of the nuclear potential

Washiyama
 

et al. PRC73 (2006) 034697 ; Evers et al., PRC78 (2008)034614



•
 

Few-nucleon transfer 
•

 
Multi-nucleon transfer

•
 

Deep inelastic reactions
•

 
Nuclear fusion

 
(Complete 

damping of kinetic energy –
 Compound nucleus formed)

Increasing complexity

Complete damping of K.E. → leads to fusion is not (yet) described 
quantum mechanically  

Inelastic scattering, few nucleon transfer –
 

good quantum theories

imaginary potential or incoming wave boundary condition -
 

like a 
“blackhole”



Main messages


 

Colliding nuclei –
 

many body quantum systems


 

Heavy nuclei –
 

structure and reaction dynamics 
entangled (coupled channels)


 

Various classes of reactions -
 

impact parameter 
concept



Additional material follows



For pure coulomb interaction
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Derivation of f(θ) for

 

coulomb scattering: See “The theory of atomic collisions”, 3rd

 

edition, by 
Mott and Massey, page 55, note V= ZZ’2/r, whilst we have used Z1

 

Z2
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