<u>Molecular Dynamics :</u> Equilibrium and Non-Equilibrium

Subir K. Das

Theoeritical Sciences Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore-560064, India

06.11.10

UMS 2010, IIT Kanpur

Monte Carlo	Molecular
Simulation	Dynamics
1.Stochastic	 One solves Newton's
2. Trial moves of various types	equations of motion to get
are made and accepted or	trajectories in phase space A good algorithm, e.g.,
rejected according to standard	Verlet velocity, should
Metropolis criterion where one	preserve time reversibility,
uses the Boltzmann factor: $e^{-\Delta E/k_B T}$	since Newton's equations
—> Important sampling	are time reversible
Statics Equilibrium Monte Carlo is very good Studying Equilibrium Typically MD is used	

Dynamics

In dynamics both length and time scales are important as opposed to statics where one considers only length scales

At long wavelengths a fluid behaves as a continuum and hydrodynamic descriptions works in such length scales where length and time are much larger compared to the molecular level

Equilibrium Dynamics

An important example: Dynamic Critical Phenomena

One can study using Microcanonical (NVE) ensemble

etc

etc

One straight-forwardly solves Newton's equations of motion and hydrodynamics is automatically inbuilt.

(Sutapa Roy and <u>SKD</u>)

Non-equilibrium Dynamics

Important example : Kinetics of Phase separation

System is minimizing energy via reduction of interface region $\ell(t) \sim t^{\alpha}$

One prepares the system at high temperature and then quenches below T_c where,

to keep temperature constant, one needs a thermostat

Canonical (NVT) ensemble

Study of Phase Separation

In fluid one needs right thermostat that preserves hydrodynamics

Verlet algorithm is applied to solve them

Basic discussion on kinetics of fluid phase separation

Domain grows as:

$$\ell(t) \sim t^{\alpha}$$

Regimes of Growth

a) Diffusive: Interface velocity scales as $v_{\ell} \sim \nabla |\mu| \sim \sigma / \ell$

$$\longrightarrow \frac{d\ell(t)}{dt} = \sigma/\ell(t)^2 \longrightarrow \ell(t) \sim t^{1/3}$$

b) Viscous hydrodynamic: Surface energy $(\sigma/\ell) = 6 \pi \eta v_{\ell}/\ell$ (Viscous stress) density

$$\longrightarrow \frac{d\ell(t)}{dt} = v_{\ell} = \sigma/\eta \longrightarrow \ell(t) \sim t$$

c) Inertial hydrodynamic: Surface energy $(\sigma/\ell) = \rho v_{\ell}^2$ (Kinetic energy density) density

$$\xrightarrow{d} \frac{d\ell(t)}{dt} = \frac{1}{\ell(t)^{1/2}} \quad \longrightarrow \quad \ell(t) \sim t^{2/3}$$

Gas-liquid phase separation in single component fluid

Suman Majumder and SKD

Data confirms the viscous hydrodynamic growth

<u>Liquid-Liquid Phase Separation in a</u> <u>Binary Fluid</u>

Lennard-Jones potential :

$$V(r_{ij}) = U(r_{ij}) - U(r_c) - (r_{ij} - r_c) \frac{dU(r_{ij})}{dr_{ij}}|_{r_{ij} = r_c}$$

where,

$$U(r_{ij}) = 4\epsilon_{\alpha\beta} [(\sigma_{\alpha\beta}/r_{ij})^{12} - (\sigma_{\alpha\beta}/r_{ij})^{6}] \qquad \alpha, \beta \rightarrow A, B$$

•
$$\epsilon_{AA} = \epsilon_{BB} = 2 \epsilon_{AB} = \epsilon_{AB}$$

- Incompressible fluid($\rho = 1, T_c = 1.423$) quenched to T = 1.1
- 262144 particles, L = 64
- Nosé-Hoover MD

t = 0 t = 2000 t = 2000 t = 4000 t = 7000 t = 7000

Evolution Snapshots

As expected, Andersen MD gives diffusive growth for all time, like Monte Carlo.

So: depending upon the study, one needs to choose ensemble and thermostats appropriately.

Shaista Ahmad, <u>SKD</u> and Sanjay Puri

Acknowledgement: Suman Majumder and Shaista Ahmad for help in preparing this lecture and providing figures

