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Thermodynamics:

Establishes relation between a small number of variables sufficient
to describe the bulk behavior of a macroscopic system (N ~ 10%3
particles)

A phenomenological theory of matter drawing concepts from
experiments

Thermodynamic variables: Liquid,Gas — P,V, T
Magnetic Solid—H, M, T

Thermodynamic Potentials:

Internal Helmholtz Gibbs Free Enthalpy Grand Potential
Energy Free Energy Energy

U A=U-TS G=A+PV H=U+PV $=U-1I5
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Maxwell Relations:
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Calculation of thermodynamic quantities:
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Thermodynamic vve |vove | |[I=T
Equilibrium: T.P.u, | T,.P.u, P = P,
Hy = H,

Thermodynamics of Phase Transition: ,
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PRESSURE (P) K (P, T,)>Triple point
‘ LIQUID (P, T.) = Critical point
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Statistical Mechanics:

= Gets equilibrium properties of macroscopic systems from
Microscopic considerations

 Microstate:

3N canonical coordinates q4,d,,---,03n Phase
3N canonical momenta  py,p.,-...,Psn Space
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= Macrostate: |
Isolated system: N, \/, E constant  In reality never works!

N, V, E+A— @finite number of microstatejs satisfy it
Y

Forms ENSEMBLE




Microcanonical 6

Ensembles: . Canonical

Grandcanonical Etc.

P(p,q,t): Mannerin which the members of the ensemble are
distributed over all possible microstates at
different instants of time

Stationary Ensemble: %—/; = 0 | = System in equilibrium

Ensemble average <f> independent of time

Liouville’s Equation: ‘;—f = %—/t’+ lp,H]=0

» Representative points in the phase space move in the
same manner as an incompressible fluid



Liouville’s Equation Contd.

dp _
dt

at+[,o H]=0

» Equivalent to 6N Hamilton equations of motion of an N-
particle system and is the most fundamental equation in

Statistical Mechanics

dp " — Only a requirement for equilibrium
dt

ap _ 0 —> comes from the basic mechanics of
dt particles and quite generally true

lo. H |= 0— ensures simultaneous validity of

p

dt



P (p,q) =constant over relevant region of phase space

= 0 elsewhere

— “any member of the ensemble is equally likely to be in
any one of the various possible microstates”

— Postulates of EQUAL APRIORI PROBABILITIES

Resulting Ensemble: Microcanonical

More general way of getting [p, H |=0:

p(p,q)=plH(p.q]

Provides a class of density fluctuations for stationary ensemble




Canonical Ensemble: 9
H(p,q)}

k,T

RN ,O(p,q)ocexp{—
/7
I / A \\
V.,N,.E. T . o
; '?‘ , ‘{A A r/)/ System (smaller) of interest is in thermal
V,N,E, T _ . :
e N B DS equilibrium with a larger system

(reservoir)

From now on: P o« exp|- BE,]= ZGSXP [_[IB,Z;}; ]
CXP L~ PLE;

Partition function:

Z = ZGXP[_IBEi]

@ustands Summe (sum over all states)



In most physical cases the energy levels accessible to a system 10

are degenerate [_ T
z=) gexpl-BE|: P= gl.epo[ BE,]

In continuum situation P(EVIE = — P [- BE]s (E)dE
(large system) 5 _ jexp - BEe (E)dE
0

Thermodynamic Connections:
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Once the potentials are known thermodynamic variables

can be calculated

Thus@is the important quantity in statistical ensemble

Microcanonical Ensemble Canonical Ensemble

Energy Fluctuation In principle, energy can be
restricted to a very narrow | anywhere in the available
range range

Question : Thermodynamic properties of a system derived
through different ensembles would be same?




Answer comes from the estimate of range over which the 12
energy can actually extend over in Canonical case.
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Next: how energy is distributed among various members 13
of the ensemble?

P(E)dE < exp(— BE) g(E) dE

~ \

Qecreases with E Increases withEJ

Product will have some extremum at some E”

{

actually a maximum
Most probable value

%,
a_E{e_ﬁEg (E)}E:E = 0

%,
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We restrict ourselves around the mean value E=<E>=U 14

In microcanonical ensemble:

S=kzIng

1 0S
k = — = —
P =7 (an

— E =U = <E> — Most probable value = mean value

Expand P(E) around E = E~ = <E> —U
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(E-U)"
2k, T°C,

P(E) o< e_ﬂEg(E)f: g PUTS) EXP -

Gaussian distribution with mean U and dispersion \/kBTZCv

Introduce reduced variable x = E /U

— mean unity, dispersion \/kBTZCV /U ~O(N7"?)

N — oo we have a delta function

P(E) Thus energy fluctuation will

essentially be very restricted
as in microcanonical ensemble
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Grandcanonical Ensemble:

N Smaller system can exchange energy
| I/’A ~« | and particles with the reservoir
A \ (N, E) ] . . .
NLEY  Ne Grand canonical partition function:
‘?: ZGXP[_IB(ES _:UNr)]
Definen =N /V
(An)*>  (AN)*>  k,T (0N kT ©
. N° N \om),, Vv T

Small forV — «if K, is finite.

—>So equivalent to canonical ensemble
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Gas-Liquid Critical Point:

PRESSURE

TRIPLE
POINT

VAPOUR

s

’

4

" uQuib

CRITICAL
POINT

p.—pc~t" K, ~t77 ete.; 1=[T-T,|

—» TEMPERATURE (T)

**In such a situation, results obtained from grandcanonical
ensemble can lead to different results than in canonical

ensemble

“*In fact in such a situation grandcanonical is the appropriate

ensemble



Semigrandcanonical Ensemble: 18

Useful in multicomponent system, say a binary mixture (A+B)

Canonical in the sense that total bumber of particles is
conserved, but particles can change identity (A—>B or B>A )

Useful to study phase separation in a binary fluid or alloy.

Boltzmann factor:

oc exp|— BE — (1, — i;))]

— > CONCENTRATION (X,)
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Model

Symmetric Binary Lennard-Jones Mixture (A+B)

Density=1 - Incompressible

V(r,) = 4e, [i] —[i] u(r)
rij rij

,IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

: dV (r;)
U(r,)=V(r,))=-V(r)-(r.—r;) :
dr.

Y r:=r

for r, <,

=0 forr. >r
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S.K. Das, M.E. Fisher, J.V. Sengers, J. Horbach and K. Binder, PRL (2006)



Identity switch allows recording of P(x,) 20
o SRR AL A A ARARE sz(TC—T)ﬁ

7 ’ _' B =0.325
Binary Fluid:

T+
1.4

13f

1.2}

Y |\m=x,—x ; x-=1/2
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