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Thermodynamics:

Establishes relation between a small number of variables sufficient 

to describe the bulk behavior of a macroscopic system (N ~ 1023

particles)

A phenomenological theory of matter drawing concepts from

experiments

Thermodynamic variables: Liquid, Gas P, V, T
Magnetic Solid H, M, T

Thermodynamic Potentials:
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Maxwell Relations:

Calculation of thermodynamic quantities:

Use

Maxwell Equations
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Thermodynamics of Phase Transition:

(Pt, Tt)→Triple point

(Pc, Tc) → Critical point

Crossing Co-existence lines:

1st order phase transition

C → 2nd order phase transition
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Statistical Mechanics:
� Gets equilibrium properties of macroscopic systems from   

Microscopic considerations

N, V, E+∆ Infinite number of microstates satisfy it

Forms  ENSEMBLE
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3N canonical coordinates  q1,q2,…,q3N

3N canonical momenta p1,p2,…,p3N

In reality never works!
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Ensembles:

Microcanonical

:),,( tqpρ Manner in which the members of the ensemble are 

distributed over all possible microstates at 

different instants of time

Stationary Ensemble: 0=
∂

∂

t

ρ
→ System in equilibrium

Ensemble average <f> independent of time

Canonical

Grandcanonical Etc.

Liouville’s Equation: [ ] 0, =+
∂

∂
= H

tdt

d
ρ

ρρ
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�Representative points in the phase space move in the    

same manner as an incompressible fluid



�Equivalent to 6N Hamilton equations of motion of an N-

particle system and is the most fundamental equation in 

Statistical Mechanics

→ Only a requirement for equilibrium

→ comes from the basic mechanics of 

particles and quite generally true

→ ensures simultaneous validity of[ ] 0, =Hρ

Liouville’s Equation Contd.
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= constant over relevant region of phase space

= 0 elsewhere

),( qpρ

Resulting Ensemble: Microcanonical

More general way of getting [ ] :0, =Hρ

[ ]),(),( qpHqp ρρ =

Provides a class of density fluctuations for stationary ensemble

→ “any member of the ensemble is equally likely to be in 

any one of the various possible microstates”

→ Postulates of EQUAL APRIORI PROBABILITIES
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Canonical Ensemble:
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System (smaller) of interest is in thermal

equilibrium with a larger system 

(reservoir)
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Z ustands Summe (sum over all states)
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In continuum situation 

(large system)
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In most physical cases the energy levels accessible to a system 

are degenerate



Once the potentials are known thermodynamic variables 

can be calculated

Thus Z is the important quantity in statistical ensemble

Microcanonical Ensemble

Energy Fluctuation 

restricted to a very narrow

range

Canonical Ensemble

In principle, energy can be 

anywhere in the available 

range

Question : Thermodynamic properties of a system derived         

through different ensembles would be same?
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12Answer comes from the estimate of range over which the  

energy can actually extend over in Canonical case.
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Decreases with E Increases with E

Product will have some extremum at some E* 

Most probable value
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actually a maximum

Next: how energy is distributed among various members 
of the ensemble?



We restrict ourselves around the mean value E=<E>=U

In microcanonical ensemble:
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Gaussian distribution with mean U and dispersion
VB CTk
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Introduce reduced variable

→ mean unity, dispersion

we have a delta function

)(~ 2/12 −NOUCTk VB

Thus energy fluctuation will 

essentially be very restricted 

as in microcanonical ensemble
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Grandcanonical Ensemble:

Smaller system can exchange energy 

and particles with the reservoir

[ ]∑ −−=
sr

rS NEZ
,

)(exp    µβ

Grand canonical partition function:

Define
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Small for               if       is finite.

→So equivalent to canonical ensemble
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Gas-Liquid Critical Point:

CTCL TTttKt −=− −    ; etc. ,~ ,~ γβρρ

�In such a situation, results obtained from grandcanonical

ensemble can lead to different results than in canonical  

ensemble

�In fact in such a situation grandcanonical is the appropriate 

ensemble
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Semigrandcanonical Ensemble:

Useful in multicomponent system, say a binary mixture  (A+B)

Canonical in the sense that total bumber of particles is 

conserved, but particles can change identity (A→B or B→A )

Useful to study phase separation in a binary fluid or alloy.

Boltzmann factor:

[ ]))((exp BAE µµβ −−−∝
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Model

Symmetric Binary Lennard-Jones Mixture (A+B)
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Density=1 → Incompressible

U(r)

r
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S.K. Das, M.E. Fisher, J.V. Sengers, J. Horbach and K. Binder, PRL (2006)



Identity switch allows recording of P(xA) 20

ε423.1=CBTk
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Binary Fluid:

325.0=β
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