Evolutionary origins of compartmentalized cells ICTS Bangalore, Feb. 2012

> Microbiology's platypus

Damien Devos EMBL, Heidelberg

Germany

Before the endosymbionts

Field et al., JCB 2011

Eukaryotic Membrane Systems

Devos DP

LECA already had a complex endomembrane system including nucleus and NPC

Dacks & Field, JCS 2007

The Nuclear Pore Complex

Scale bar: 100 nm

Kiseleva Nature Cell Biology 2004

Devos et al., PNAS 2006; Alber et al., Nature 2007

Devos et al., PNAS 2006; Alber et al., Nature 2007

Devos et al., PNAS 2006; Alber et al., Nature 2007

Devos et al., PNAS 2006; Alber et al., Nature 2007

Devos et al., PNAS 2006; Alber et al., Nature 2007

NPC and Coated Vesicle share a unique architecture

Devos et al., PLoS Biology 2004

NPC and Coated Vesicle share a unique architecture

MC Proteins in Eukaryotic endomembrane complexes

Devos et al., PLoS Biology 2004

Similarities and differences between MC proteins

NPC lattice and assembly/disassembly

Architecture Conserved from the Last Common Eukaryotic Ancestor

The Protocoatomer Hypothesis

Devos et al., PLoS Biology 2004

Membrane Coat Proteins

Essential to the integrity of each compartment

Scaffold

Earliest steps of eukaryotic evolution

Ancestor of the eukaryotes

Devos et al., PLoS Biology 2004

Fold assignments >200 complete genomes ~1x10exp9 sequence

Santarella et al., PLoS Biology 2010

Archea Bacteria

Santarella et al., PLoS Biology 2010

Fold assignments >200 complete genomes ~1x10exp9 sequence

MC Proteins in bacteria

Species	Phylum	Number of MCs
Chlamydophila felis Fe/C-56	С	0
Candidatus Protochlamydia amoebophila UWE25	С	0
Chlamydia muridarum Nigg	С	0
Victivallis vadensis BAA-548	L	0
Lentisphaera araneosa HTCC2155	${ m L}$	9
Candidatus Kuenenia stuttgartiensis	Р	0
Blastopirellula marina DSM 3645	Р	11
Planctomyces maris DSM 8797	Р	11
Rhodopirellula baltica SH 1	Р	5
Gemmata obscuriglobus UQM 2246	Р	8
Akkermansia muciniphila BAA-835	V	0
Methylacidiphilum infernorum V4	V	0
Opitutaceae bacterium TAV2	V	0
Opitutus terrae PB90-1	V	0
Pedosphaera parvula Ellin514	V	9
Verrucomicrobium spinosum	V	16
Chthoniobacter flavus Ellin428	V	14

V: Verrucomicrobia, L: Lentisphaerae, P: Planctomycetes, C: Chlamydiae

Santarella et al., PLoS Biology 2010

The PVC bacterial super-phylum

Nature Reviews | Microbiology

Fuerst & Sagulenko Nat Rev Microbiol 2011

Bacterial proteins have the MC architecture

Santarella et al., PLoS Biology 2010

PVC: The Compartmentalized Bacteria

Gemmata obscuriglobus endomembrane variability

C: Cytoplasm P: Periplasm IM: Inner membrane OM: Outer membrane I: Invagination (of the IM) D:DNA

Santarella et al., PLoS Biology 2010

Gemmata obscuriglobus endomembrane variability

C: Cytoplasm P: Periplasm IM: Inner membrane OM: Outer membrane I: Invagination (of the IM) D:DNA

Santarella et al., PLoS Biology 2010

DМ

'Classical' bacteria

Bacterial MC at the vesicle membranes

Santarella et al., PLoS Biology 2010

Bacterial MC at the vesicle membranes

Bacterial MC at the vesicle membranes

Bacterial endomembrane system unlike any other bacterial one sustain by eukaryotic-like membrane coats

Santarella et al., PLoS Biology 2010

Endocytosis in G. obscuriglobus

MCs associated to vesicles

Lohnienne et al., PNAS 2010

Gemmata obscuriglobus The compartmentalized bacteria?

C: Cytoplasm P: Periplasm IM: Inner membrane OM: Outer membrane I: Invagination (of the IM) D:DNA

Scale bars: 500nm

Santarella et al., PLoS Biology 2010

Gemmata 3D

Sections 250nm Technai F30 300kv (FEI) Dual axis tilt series IMOD 1130 slices/5

Outer Membrane

Inner Membrane

Granule

Pit

Prugnaller et al., in preparation.

No bacterial nucleus

Outer Membrane Inner Membrane DNA Granule Pit

Prugnaller et al., in preparation.

Bud and neck

Prugnaller et al., in preparation.

Bud neck

Scale bar: 100nm

Prugnaller et al., in preparation.

Gemmata 3D

Sections 250nm Technai F30 300kv (FEI) Dual axis tilt series IMOD 1130 slices/5

Outer Membrane Inner Membrane DNA Granule Pit

Prugnaller et al., in preparation.

Gemmata 3D conclusions

Extensive membrane organisation

No compartments

No nucleus

Several chromosomes

Bud membrane

Prugnaller et al., in preparation.

Complex bacterial endomembrane system

Complex bacterial endomembrane system

Bacterial endomembrane system unlike any other bacterial one sustain by eukaryotic-like membrane coats

Santarella et al., PLoS Biology 2010

Homologous?

Lack of sequence similarity

(doesn't imply lack of homology MreB/Actin & FtsZ/Tubulin)

HGT (too complex)

Convergence

Similarity of features (tertiary structure and function)

Devos & Reynaud, Science 2010; Reynad & Devos, Proc R Soc B 2011

Homologous?

Lack of sequence similarity

(doesn't imply lack of homology MreB/Actin & FtsZ/Tubulin)

HGT (too complex)

Convergence

Similarity of features (tertiary structure and function)

The bacterial PVC superphylum might have lain on the path of the origin of the eukaryotic endomembrane

Devos & Reynaud, Science 2010; Reynad & Devos, Proc R Soc B 2011

Homologous?

Lack of sequence similarity

(doesn't imply lack of homology MreB/Actin & FtsZ/Tubulin)

HGT (too complex)

Convergence

Similarity of features (tertiary structure and function)

The bacterial PVC superphylum might have lain on the path of the origin of the eukaryotic endomembrane

Might the bacterial PVC superphylum have lain on the path of the origin of other eukaryotic or archaeal characters?

Devos & Reynaud, Science 2010; Reynad & Devos, Proc R Soc B 2011

Euk/Arch characteristics in the PVC superphylum

PVC Superphylum

Features	Specific to	Found i
Compartmentalized cell plan	(<i>20</i>) Eu	Pl, Ve
DNA surrounded by membrane	(21) Eu	Pl
Condensed DNA (22)	Eu	Pl

Division by budding (24)***	Eu	Pl
Membrane coats (11)	Eu	Pl
Sterol (25)	Eu	Pl, Ch
Peptidoglycan loss (26)	Eu, Ar*	Pl, Ch
Proteic cell wall (27)	Eu	Pl
Ester and ether lipids (28)	Ar	Pl
Ester and ether lipids (28) FtsZ loss (7)	Ar Eu, Ar**	Pl Pl, Ch
Ester and ether lipids (28) FtsZ loss (7) Tubulin (8, 9)	Ar Eu, Ar** Eu	Pl Pl, Ch Ve
Ester and ether lipids (28) FtsZ loss (7) Tubulin (8, 9) C1 transfer (29, 30)	Ar Eu, Ar** Eu Ar	Pl Pl, Ch Ve Pl

Eukaryotes (Eu), Planctomycetes (Pl), Gemmata obscuriglobus(Ge), Annamox (An), Verrucomicrobia (Ve), Chlamydiae (Ch), Archaea (Ar), Crenoarchaeota (Cr).

Devos & Reynaud, Science 2010; Reynad & Devos Proc R Soc B 2011

Euk/Arch characteristics in the PVC superphylum

- No other prokaryote display so many euk or arch features.

- There is no other prokaryote that combines all those similarities into a single group.

- In some cases, PVC one is the most similar to the eukaryotic equivalent or to the primitive feature (endomembranes/sterol).

PVC Superphylum

Features	Specific to	
Compartmentalized cell plan	(20) Eu	Pl, Ve
DNA surrounded by membrane	(21) Eu	Pl
Condensed DNA (22)	Eu	Pl

Division by budding (24)***	Eu	Pl
Membrane coats (11)	Eu	Pl
Sterol (25)	Eu	Pl, Ch
Peptidoglycan loss (26)	Eu, Ar*	Pl, Ch
Proteic cell wall (27)	Eu	Pl
Ester and ether lipids (28)	Ar	Pl
FtsZ loss (7)	Eu, Ar**	Pl, Ch
Tubulin (<i>8, 9</i>)	Eu	Ve
C1 transfer (29, 30)	Ar	Pl

Eukaryotes (Eu), Planctomycetes (Pl), Gemmata obscuriglobus(Ge), Annamox (An), Verrucomicrobia (Ve), Chlamydiae (Ch), Archaea (Ar), Crenoarchaeota (Cr).

Devos & Reynaud, Science 2010; Reynad & Devos Proc R Soc B 2011

Euk/Arch characteristics in the PVC superphylum

- No other prokaryote display so many euk or arch features.

- There is no other prokaryote that combines all those similarities into a single group.

- In some cases, PVC one is the most similar to the eukaryotic equivalent or to the primitive feature (endomembranes/sterol).

PVC Superphylum

Features	Specific to	Found in
Compartmentalized cell plan	(<i>20</i>) Eu	Pl, Ve
DNA surrounded by membrane	e (21) Eu	Pl
Condensed DNA (22)	Eu	Pl

Division by budding (24)***	Eu	Pl
Membrane coats (11)	Eu	Pl
Sterol (25)	Eu	Pl, Ch
Peptidoglycan loss (26)	Eu, Ar*	Pl, Ch
Proteic cell wall (27)	Eu	Pl
Ester and ether lipids (28)	Ar	Pl
FtsZ loss (7)	Eu, Ar**	Pl, Ch
Tubulin (<i>8, 9</i>)	Eu	Ve
C1 transfer (29, 30)	Ar	Pl
Endocytosis (15)	Eu	Pl

Eukaryotes (Eu), Planctomycetes (Pl), Gemmata obscuriglobus(Ge), Annamox (An), Verrucomicrobia (Ve), Chlamydiae (Ch), Archaea (Ar), Crenoarchaeota (Cr).

Devos & Reynaud, Science 2010; Reynad & Devos Proc R Soc B 2011

Microbiology's platypus

Similar to the platypus that exhibits a combination of characteristics that are a legacy of the common ancestor shared between birds, reptiles and mammals, the archaeal and eukaryotic features found in PVC members might reflect a common ancestor between bacteria and the LAECA

Warren et al., Nature 2008

Internalization of the bacterial periplasm at the origin of the eukaryotic endoplasm

Devos & Reynaud, Science 2010; Reynad & Devos Proc R Soc B 2011

Thanks to

Andrej Sali Frank Alber Maya Topf Fred Davis and the Sali Group Queensland Uni, Australia John Fuerst

UCD, Ireland Emmanuel Reynaud

EMBL

Iain Mattaj Sabine Pruggnaller Rachel Santarella and the Mattaj group

Mike Rout Brian Chait Josef Franke Svetlana Dokudovskaya Rosemary Williams

Rockefeller

University

1001

->>>

Thanks to

Andrej Sali Frank Alber Maya Topf Fred Davis and the Sali Group

Center for Organismal Studies (COS) Heidelberg Univ.

Now hiring!

Queensland Uni, Australia John Fuerst

UCD, Ireland Emmanuel Reynaud

EMBL

Iain Mattaj Sabine Pruggnaller Rachel Santarella and the Mattaj group

Mike Rout Brian Chait Josef Franke Svetlana Dokudovskaya Rosemary Williams

Thursday, February 23, 2012

Rockefeller

University

->>>