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Goal: the nonlinear stability problem of Kerr

Perturbations of a Kerr metric should dynamically approach the

Kerr family in the exterior-to-the-black-hole region.
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More precise formulation

Conjecture (Stability of Kerr). Let (Σ, ḡ,K) be a vacuum initial

data set sufficiently close to the initial data on a Cauchy

hypersurface Σ in the Kerr solution (M, gMi,ai
) for some

parameters 0 ≤ ∣ai∣ <Mi. Then the maximal vacuum Cauchy

development (M, g) possesses a complete null infinity I+ such that

the metric restricted to J−(I+) approaches a Kerr solution

(M, gMf ,af
) in a uniform way with quantitative decay rates, where

Mf , af are near Mi, ai respectively.

Note: ai = 0 will not imply that af = 0! Thus, one cannot study

separately the stability of Schwarzschild without understanding

Kerr for ∣a∣ ≪M .
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Cf. stability of Minkowski space

Theorem (Christodoulou–Klainerman, 1993). Consider an

asymptotically flat vacuum initial data set (Σ, ḡ,K) which moreover

is globally “small”. Let (M, g) be the arising maximal vacuum

Cauchy development spacetime. Then (M, g) is geodesically

complete and approaches the Minkowski metric (with quantitative

decay rates) along all causal geodesics.

In fact, the theorem proves much more: The “Penrose diagramme”

of Minkowski space is stable, one can define a notion of null infinity

(withM= J−(I+)), Bondi mass, news function, etc., giving the

non-linear laws of gravitational radiation at infinity, Christodoulou

memory, etc.
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Why is Minkowski space stable?

The heuristic idea of the proof is simple: Minkowski space is stable

because perturbations radiate and decay sufficiently fast.

It is hard to prove, because, the rate of decay is just fast enough.

The analogue of stability of Minkowski space is much easier for

spatial dimension n ≥ 4, and can now be given in just a few pages

(see recent paper of Choquet-Bruhat–Chrusciel–Loizelet).

More recent developments: Lindblad–Rodnianski, Bieri.

There is no shortcut to orbital stability. Without proving

sufficiently fast convergence to Minkowski space, one cannot prove

any stability statement whatsoever!
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Turning back to the black hole case, it follows that if one can

understand properly quantitative dispersion for a suitable

formulation of the “linearised problem”, one expects that this can

be used to prove non-linear stability of Kerr.

The main difficulty in the nonlinear stability problem of

Kerr is that the linear problem has not been understood.
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“Poor man’s” linear theory: Boundedness and

decay for 2gψ = 0 on Schwarzschild and Kerr:

Early contributors include: Carter, Chandrasekhar,

Hartle–Wilkins, Kay–Wald , Moncrief,

Press–Teukolsky, Price, Regge–Wheeler, Vishveshwara,

Whiting , . . .

Lots of recent work in the last 10 years surveyed in:

[See M. D.–Rodnianski Lectures on black holes and linear waves,

arXiv:0811.0354, The black hole stability problem for linear scalar

perturbations, arXiv:1010.5137]
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Current state of the art for 2gψ = 0

1. Boundedness of ψ on a general class of C1 stationary

axisymmetric metrics g near Schwarzschild (M.D.–Rodnianski)

2. “Integrated local energy decay” for ψ on exactly Kerr (or

approaching Kerr):

1. ∣a∣ ≪M (M.D.–Rodnianski, Tataru–Tohaneanu,

Andersson–Blue), and

2. ∣a∣ <M (M.D.–Rodnianski)

3. Pointwise-in-time decay from 1. and 2. Two methods available:

1. pure physical-space-based energy method using new version of

vector field method [M.D.–Rodnianski]

robust to quasilinear applications, Einstein equations!

2. resolvent or fund. solution estimates, coupled with usual vector

field technique [Tataru, Metcalfe–Tataru–Tohaneanu])
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In particular:

Theorem (M.D.–Rodnianski, 2010). Solutions to 2gψ = 0 on

Kerr exterior spacetimes in the full subextremal range ∣a∣ <M

decay quantitatively at a polynomial rate. The quantitative decay

estimate is sharp in the class of admissible data.

For the proof of the above theorem, see: The black hole stability

problem for linear scalar perturbations, arXiv:1010.5137

The proof applies also to spacetimes asymptoting to a Kerr

solution in a manner compatible with the type of decay proven

(cf. stability of Minkowski space). Were the non-linear stability of

Kerr a “scalar problem”, then in principle it could be addressed

using the above theorem. See work of Luk.
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The main difficulties

1. Red-shift effect

2. Superradiance

3. Trapping

(and

4. The coupling of 1–3)
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The red-shift

The redshift is classically understood in the geometric optics

approximation in terms of signals sent by two observers A and B.
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First discussed in the Schwarzschild setting by

Oppenheimer–Snyder, 1939.

In fact, properly thought of, only depends on positivity of surface

gravity.

Extremal case a =M : The red-shift factor at the horizon vanishes.

12



Superradiance

In Schwarzschild (a = 0), the Killing vector field ∂t is timelike in the

exterior, becoming null on the horizon. Thus there is a conserved

(by Noether) non-negative definite (by the timelike condition)

energy. The only subtlety is that this energy degenerates at the

horizon.

In stationary perturbations of Schwarzschild, ∂t in general becomes

spacelike near the horizon. This happens already for Kerr with

0 ≠ ∣a∣ ≪M . The corresponding energy is conserved but does not

have a sign. For particle motion, this leads to the so-called Penrose

process. For waves, this leads to the phenomenon of superradiance

(Zeldovich).

In particular, using the conservation law associated to ∂t one

cannot prove a priori boundedness, even away from the horizon.
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Trapping

On Schwarzschild, the “photon sphere” r = 3M has the property

that it contains null geodesics. These null geodesics thus neither

escape to I+ nor to the horizon H+.

In Kerr, the behaviour persists, but it is more complicated!

One can concentrate energy for arbitrarily large times near trapped

null geodesics. One has to capture this to prove dispersive results.

In particular, pointwise-in-time decay estimates for energy must

lose derivatives (Ralston).
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Redshift II

The redshift effect can be captured by a robust generalised energy

identity associated to a suitable vector field multiplier N and

vector field commutators.

That is to say, one can construct a suitable vector field N (which is

timelike and transverse to the horizon) such that the divergence

KN [ψ] of its energy current JN [ψ] has good positivity properties

near the horizon. These good properties survive under

commutation, i.e. considering JN [N⋯Nψ]. (M.D.–Rodnianski)

This construction is completely general and only depends on the

positivity of the so-called surface gravity.

(C.f. earlier understanding of waves on the horizon on

Schwarzschild in pioneering work of Wald, Kay–Wald)
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Superradiance II: small perturbations of Schwarzschild

In the presence of 2 Killing fields ∂t and ∂ϕ which span the null

generator of the horizon (like in Kerr), ψ can be heuristically

decomposed ψ = ψ♭ +ψ♯ into its superradiant part ψ♭ and

non-superradiant part ψ♯ .

Restricted to the non-superradiant part ψ♯ the conserved energy is

indeed nonnegative, Ô⇒ ψ♯ is bounded.

For the superradiant part ψ♯, the only mechanism for boundedness

is dispersion. For small perturbations of Schwarzschild,

however, one can show that the superradiant part ψ♭ is not

trapped! Ô⇒ ψ♭ in fact disperses. This insight allows for a very

general boundedness theorem for ψ = ψ♭ +ψ♯ (M.D.–Rodnianski)

which includes as a special case the result for Kerr with ∣a∣≪M .

In particular, the boundedness property does not depend

on the details of geodesic flow of the underlying metric!
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Trapping II

History: In the Schwarzschild case pioneering work of

Laba–Soffer, adapted by Blue–Soffer.

Followed by M.D.–Rodnianski, Blue–Sterbenz,

Marzuola–Metcalfe–Tataru–Tohaneanu, Alinhac, etc.

Idea: construct vector field multiplier currents JX[φ] whose

divergence KX[φ] enjoys nonnegativity properties with

degeneration precisely at r = 3M .

In the Kerr case, the set where there is degeneration must be

understood in phase space and the above methods are insufficient

(Alinhac). Two original approaches (M.D.–Rodnianski,

Tataru–Tohaneanu) in the case ∣a∣≪M . Interesting new

approach due to Andersson–Blue, also for ∣a∣≪M . Promising

recent work of Wunsch–Zworski.
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The coupling of redshift, superradiance and trapping

For understanding decay in the general ∣a∣ <M case, one must

return to the observation of the general boundedness result:

Remarkably, it is still the case that superradiant

frequencies are not trapped. One can construct Morawetz

multiplier currents JX[φ] localised in frequency both to capture

trapping and to distinguish between superradiant/non-superradiant

modes. (M.D.–Rodnianski)

The above insight is in fact also related to unique-continuation

properties at the heart of the “uniqueness” of the Kerr family in

the class of stationary solutions to the Einstein vacuum equations.

See recent work of Ionescu–Klainerman,

Alexakis–Ionescu–Klainerman.
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Extremal black holes
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Extremal black holes are characterized by the property that the

“local redshift factor” vanishes on the horizon.

Simplest examples: extremal Reissner–Nordström Q =M and

extremal Kerr ∣a∣ =M .

Theorem (Aretakis 2010). For solutions to 2gψ = 0 on extremal

Reissner–Nordstrom, one has analogous boundedness results as in

the non-extremal case, and analogous decay results away from the

horixon.

Theorem (Aretakis 2010). For generic initial data above, the

higher order non-degenerate derivatives of ψ transversal to the

horizon blow up polynomially in time. In this sense, extremal

Reissner–Nordström is (mildly) linearly unstable.
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Recently, Aretakis has extended his first theorem to axisymmetric

solutions on extremal Kerr. (Recall that such solutions are not

subject to superradiance.)

As far as non-axisymmetric solutions, there is an additional

difficulty: The fundamental insight allowing for the resolution of

the problem in the subextremal case, namely that superradiant

frequencies are not trapped, breaks down exactly at

extremality.

This is related to a limit of quasinormal modes approaching the

real axis as a→M , studied by Andersson–Glampedakis.

The significance of this for the quantitative study of the wave

equation is yet to be understood.
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The asymptotically AdS case
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The Klein–Gordon equation on Kerr–AdS

Theorem (Holzegel 2009, see also Vasy). The Klein–Gordon

equation is well-posed on asymptotically AdS spacetimes, provided

the KG mass is above the Breitenlohner–Freedman bound.

Theorem (Holzegel 2010). On Kerr–AdS (in fact, on suitable

perturbations of Kerr–AdS which keep only the Hawking–Reall

Killing field), solutions of the Klein–Gordon equation as above are

uniformly bounded in the exterior.

Theorem (Holzegel–Smulevici 2011). (1) On Kerr-AdS

spacetimes, general solutions ψ decay logarithmically in time.

(2) On spherical Schwarzschild–AdS, individual spherical

harmonics decay exponentially.

(3) Schwarzschild–AdS is asymptotically stable as a solution of the

coupled Einstein-Klein Gordon system under spherical

symmetry.
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Part (3) of Holzegel–Smulevici argument requires a trapped

surface to be present in the data. It did not apply to pure AdS.

Indeed, for pure AdS, since there are an infinite number of

stationary solutions of the wave equation, there is no dispersive

mechanism. Naively plugging in the results of linearisation back

into the equation, this suggests that initially-arbitrarily small

solutions grow without bound. Moreover, since there is a threshold

after which singularities form, this suggests that initially arbitrarily

small solutions in fact form singularities in finite time. On the basis

of the above, it was natural to conjecture:

Conjecture (M.D.–Holzegel 2006). Pure AdS is dynamically

unstable.

Instability results are harder to prove than stability, but, following

Holzegel–Smulevici, this has been studied numerically by

Bizon–Rostworowski in the context of the above mentioned

spherically symmetric model.
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Returning to Kerr-AdS, heuristics on quasinormal modes indicate

that the Holzegel–Smulevici logarithmic decay result is sharp.

From the point of view of the previous considerations, logarithmic

decay is no better than no decay at all.

Again, this slow decay suggests that these black holes are unstable

in the nonlinear theory. Don’t be fooled by the fact that by part

(3) of the Holzegel–Smulevici result, this instability can

obviously not be seen in the spherically symmetric model.

This suggests in fact:

Conjecture (Holzegel–Smulevici). All asymptotically AdS

spacetimes (with spherical infinity) are dynamically unstable.

General small perturbations of AdS may generate an infinite

cascade of small black holes–or worse.
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