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Financial networks

In this lecture, we will discuss financial networks.

Most prominent example of large-scale network.

Made news after 2007-08 crisis.

Huge literature has been developed on the analysis of such networks.
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General features

Emergence of patterns:

Many agent system.

Tipping points:

Rapid changes in behavior.
Sometimes slow build up towards catastrophic collapse.

Rationality:

Herding: rational or not?
Diamond-Dybvig model: power of incorrect beliefs!

Size, connectivity and heterogeneity (May-Wigner theorem).

here we focus solely on the statistical aspect of the data.
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Financial data Data and models

Some of the most dramatic events of history

Looking back:

Goes back 400 years!

I Can Calculate The Motions Of Heavenly Bodies, But Not The
Madness Of People!
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Financial data Data and models

Some of the most dramatic events of history

Looking back:

Goes back 400 years!

I Can Calculate The Motions Of Heavenly Bodies, But Not The
Madness Of People: Isaac Newton (1720)
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Financial data Data and models

Tulip mania, Netherlands (1637)

Figure: First recorded speculative bubble!

Reference: Dutch catalog Verzameling van een Meenigte Tulipaanen
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Financial data Data and models

The great depression (1929-32)

Figure: Bank of United States in New York failed in 1931!

Reference: Library of Congress. New York World-Telegram & Sun Collection. http://hdl.loc.gov/loc.pnp/cph.3c17261
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Financial data Data and models

Black Monday (1987)

Figure: FTSE 100 index: Stock markets around the world crashed. Largest
one-day percentage decline ever!

Reference: Wiki
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Financial data Data and models

Asian financial crisis (1997)

Figure: Fall of the ‘miracle economies’ !

Reference: PatrickFlaherty (talk) Asian Financial Crisis.png: Bamse derivative work: Bluej100 (talk)
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Financial data Data and models

Global financial crisis (2007-09)

Figure: Growth rate of the countries worldwide.

Reference: Sbw01f, Kami888, Fleaman5000, Kami888derivative work: Mnmazur (talk) -

Gdp real growth rate 2007 CIA Factbook.PNG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10058473

Anindya S. Chakrabarti (IIMA) Financial networks May 12, 2019 9 / 86



Financial data Data and models

Why stock markets crash?

No agreed upon answer that has any predictive value. Potential
explanations:

Informational story: Herding behavior.

Behavioral factors: Over-optimism.

Wrong idea about technology growth.

Availability of easy credit.

Miscalculation of risk: Systemic risk.

...
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Financial data Data and models

What does financial data look like?

Figure: S&P 500 index. Growing trend with occasional downswings.
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Financial data Data and models

Do we care about price or return?

Return is the most important factor.

rt = log(pt)− log(pt−1). (1)
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Financial data Data and models

What does financial data look like?

Figure: S&P 500 index fluctuations.
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Financial data Data and models

Some interesting properties

What can we read from the data?

Lots of movement! Wild swings are observed.

Average return is close to zero.

level of return seems to have no relationship over time. A good return
today does not indicate a good return tomorrow.

Volatile periods tend to cluster.

Market has ‘memory’ in volatility!
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Financial data Data and models

How to measure ‘memory’?

We need some mathematical tools.

Definition (Autocorrelation)

Autocorrelation (or serial correlation) is the correlation of a time series
with a delayed copy of itself as a function of delay (also called lag).

Formally, the expression is

R(τ) =
E ((Xt − µ)(Xt+τ − µ))

σ2
. (2)

Intuition: It is just like cross-correlation!

Anindya S. Chakrabarti (IIMA) Financial networks May 12, 2019 15 / 86



Financial data Data and models

What does financial data look like?

Figure: S&P 500 index: Autocorrelations (left: rt , right: r2t ).
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Financial data Data and models

What does financial data look like?

Figure: S&P 500 index: Underlying volatility.
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Financial data Data and models

Introduction to time series modeling

Models for stationary time series

Here we present and discuss some basic models of time series. In
particular, we build a toolkit to analyze mutli-variate time series.

Definition (Weak stationarity)

{xt} is weakly stationary if E (xt), E (x2t ) are finite and covariance
E (xtxt+k) is a function of k and not of t.

Definition (Strong stationarity)

{xt} is strongly stationary if the joint p.d.f. of {xt−k , . . . , xt+k} a function
of k and not of t.
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Building a VAR model

Persistence and volatility

Figure: What is the difference between these two figures?
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Building a VAR model

White Noise

The building block of time series models is the white noise process. Let us
assume:

εt ∼ i.i.d N(0, σ2ε). (3)

Then, the implications of this assumption would be:

E (εt) = E (εt |ε1, ε2, ..., εt−1) = 0

E (εtεt−j) = Cov(εtεt−j) = 0

Var(εt) = Var(εt |ε1, ε2, ..., εt−1) = σ2ε
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Building a VAR model

White Noise

Basic ideas:

White noise

Lack of serial correlation

Conditional homoskedasticity
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Building a VAR model

Examples

Example of data: Quantities which non-trivially depend on their own
history.

GDP growth rates.

firm size growth rates.

temperature.

. . .
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Building a VAR model

How to build an ARMA model?

Class of models created by taking linear combinations of white noise.

AR(1):
xt = φxt−1 + εt (4)

MA(1):
xt = θεt−1 + εt (5)

AR(p):

xt =

p∑
i=1

φixt−i + εt (6)

MA(q):

xt =

q∑
j=0

θjεt−j (7)

Anindya S. Chakrabarti (IIMA) Financial networks May 12, 2019 23 / 86



Building a VAR model

How to build an ARMA model?

Most general form:

ARMA(p, q):

xt =

p∑
i=1

φixt−i +

q∑
j=1

θjεt−j + εt (8)

Without loss of generalization, we assume that x̄ = 0. If required, we can
always introduce a constant term in the following way:

xt − x̄ = φ(xt−1 − x̄) + εt (9)

which again follows AR(1) process with a constant. Nothing changes
fundamentally.
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Building a VAR model

Lag operators

Here, we introduce an operator that helps us to analyze and manipulate
time series models very easily. We call it lag operator. The way it works is
as follows:

Lxt = xt−1, (10)

L2xt = xt−2, (11)
...

Lnxt = xt−n. (12)
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Building a VAR model

Lag operators

We can also have a negative lag operator or a lead operator, which gives us

L−jxt = xt+j . (13)
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Building a VAR model

Lag polynomial

Now, we can define a polynomial over the lag operators in the following
way:

a(L) =
n∑

i=0

ajL
j (14)

where
a(l)xt = a0xt + a1xt−1 + ...+ anxt−n . (15)

Anindya S. Chakrabarti (IIMA) Financial networks May 12, 2019 27 / 86



Building a VAR model

Lag polynomial

Some examples:

AR(1): (1− φL) = εt

MA(1): xt = (1 + θL)εt

ARMA(p, q): a(L)xt = b(L)εt
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Building a VAR model

Choice of representation

We have seen two representations, AR and MA. Which one is more
desirable?

Both are fine. It’s more about convenience.

For finding unconditional moments, MA process is desirable.

If we need a representation of dependence on past values (which is
more intuitive; e.g. higher gdp growth leads to higher gdp growth),
then AR process is desirable.
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Building a VAR model

AR(1) to MA(∞) by recursive substitution

Here, we show that one can go from one representation to the other very
easily. Let’s say

xt = φxt−1 + εt where |φ| < 1. (16)

Using lag operator, we can expand on the expression:

(1− φL)xt = εt

xt =
εt

(1− φL)

= (1 + φL + φ2L2 + φ3L3 + . . .)εt

= εt + φεt−1 + φ2εt−2 + . . .

=
∞∑
j=0

φjεt−j . (17)
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Building a VAR model

AR(1) to MA(∞) by recursive substitution

If the process started finite t periods back, we can expand it as:

xt = φxt−1 + εt

= φ2xt−2 + φεt−1 + εt

= φtx0 +
t−1∑
j=0

φjεt−j . (18)

If we assume that the process started infinite periods ago, then we have

xt =
∞∑
j=0

φjεt−j . (19)
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Building a VAR model

ACF for ARMA process

Let us start with a simple example.

White Noise:

Consider εt ∼ iid(0, σ2ε ).
γ0 = σ2ε , ρ0 = 1
γj = 0, ρ0 = 0 for j > 0.
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Building a VAR model

ACF for MA(1) process

MA(1):

xt = θεt−1 + εt

γ0 = var(θεt−1 + εt) = (θ2 + 1)σ2ε (20)

γ1 = E [(θεt−1 + εt)(θεt−2 + εt−1)]

= θσ2ε (21)

γ2 = E [(θεt−1 + εt)(θεt−3 + εt−2)]

= 0. (22)

It can be easily shown that

γj = 0 ∀ j > 1. (23)
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Building a VAR model

ACF for MA(1) process

Clearly, we can write down the autocorrelation function now as

ρ0 = 1 (24)

ρ1 =
θ

1 + θ2
(25)

ρj = 0 ∀ j > 1. (26)
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Building a VAR model

ACF for AR(1) process

AR(1):

Consider a process xt = φxt−1 + εt . Therefore,

γ0 = var(xt) =
σ2ε

1− φ
(27)

γ1 = E (xtxt−1) =
(φσ2ε )

(1− φ)
= φγ0 (28)

γ2 = E ((φxt−1 + εt)xt−2) = φ2E (x2t−2) = φ2γ0 (29)
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Building a VAR model

ACF for AR(1) process

We can easily derive the autocorrelation function as

ρ1 = φ (30)

ρ2 = φ2 (31)
...

ρj = φj ∀ j > 0. (32)
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Vector autoregression

Multivariate ARMA Model

A two-variables example:

xt =

(
X1t

X2t

)
, εt =

(
ε1t
ε2t

)
(33)

Expectation of the error terms:

E (εt) = 0. (34)

Variance-covariance matrix:

E (εtε
′
t) =

(
σ2ε1 σε1ε2
σε2ε1 σ2ε2

)
(35)
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Vector autoregression

Multivariate ARMA Model

If we assume that there is no correlation between error terms of different
time series:

E (εtε
′
t) =

(
σ2ε1 0
0 σ2ε2

)
. (36)

Lack of time-lagged correlation implies

E (εtε
′
t−j) = 0, (37)

for j = 1, 2, . . .
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Vector autoregression

Multivariate ARMA Model

The expression for a vector AR(1) is xt = φxt−1 + εt . In matrix form, this
can be written as(

X1t

X2t

)
=

(
φ11 φ12
φ21 φ22

)(
X1,t−1
X2,t−1

)
+

(
ε1t
ε2t

)
. (38)

This formulation is known as VAR model or vector auto-regression model.
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Vector autoregression

Manipulating the interaction matrix

Let us consider a VAR process:

Φ(L)Xt = εt (39)

which can be written as
Xt = Φ(L)−1εt (40)

Note that

Φ(L) =

(
φ11L φ12L
φ21L φ22L

)
, (41)

implying

Φ(L)−1 =

(
φ11L

−1 φ12L
−1

φ21L
−1 φ22L

−1

)
1

φ11φ22 − φ21φ12
. (42)

Anindya S. Chakrabarti (IIMA) Financial networks May 12, 2019 40 / 86



Vector autoregression

Vector autoregression model

Vector autoregression models are objects that follows the following
structure:

X1t = φ111X1,t−1 + φ112X1,t−2 + ...+ φ121X2,t−1 + ...+ ε1t

X2t = φ211X1,t−1 + φ212X1,t−2 + ...+ φ221X2,t−1 + ...+ ε2t
...

Xnt = φn11X1,t−1 + φn12X1,t−2 + ...+ φn21X2,t−1 + ...+ εnt . (43)
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Vector autoregression

Why VAR representation is useful?

The idea is that any ARMA(p,q) process can be projected in to an AR(1)
process which is essentially VAR. For an example, consider the following
ARMA(2,1) process:

Xt = φ1Xt−1 + φ2Xt−2 + εt + θ1εt−1 (44) Xt

Xt−1
εt

 =

φ1 φ2 θ1
1 0 0
0 0 0

Xt−1
Xt−2
εt−1

+

1
0
1

 [εt ]. (45)
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Vector autoregression

Why VAR representation is useful?

This expression can be written as:

xt = Θxt−1 + Γwt (46)

where

Γ =

σε0
σε

 (47)

and wt captures the normalized noise with E (wtw
′
t) = I .
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Vector autoregression

Granger Causality

Causality: If an event A takes place regularly after another event B, then
the preceding event may cause the event that follows.

Definition

x1t Granger causes x2t if x1t has a predictive component for x2t , given past
relaizations of x2t .

Should not be confused with physical/true causality!
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Vector autoregression

Granger Causality

Consider a bivariate VAR:

x1t = θ11(L)x1,t−1 + θ12(L)x2,t−1 + ε1t

x2t = θ21(L)x1,t−1 + θ22(L)x2,t−1 + ε2t . (48)
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Vector autoregression

Granger Causality

Suppose x1 Granger causes x2, but not the other way round. Then

x1t = θ11(L)x1,t−1 + ε1t

x2t = θ21(L)x1,t−1 + θ22(L)x2,t−1 + ε2t . (49)
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Vector autoregression

Granger causal network

Figure: US sectoral data (2007-18)
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Vector autoregression

Granger causal network

Figure: Germany sectoral data (2007-18)
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Vector autoregression

Granger causal network

Figure: Canada sectoral data (2007-18)
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Vector autoregression Impulse response functions

Impulse response function

IRF is a very intuitive and easy way to understand the structure of a VAR
model.

It captures how shock propagates from one variable to another.

Provides an idea about how shocks diffues over time.

Useful for model validation.
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Vector autoregression Impulse response functions

Impulse response function: Basic idea

Consider a simple AR(1) process:

xt = φxt−1 + εt . (50)

Imagine that x0 = 0 and εt is given an unit shock. Then x responds as the
following:

t : 1 2 3 4 . . .

εt : 1 0 0 0 . . .

xt : 1 φ φ2 φ3 . . . (51)
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Vector autoregression Impulse response functions

Impulse response function: Basic idea

Note that by inversion, we get

xt = (1 + φL + ...+ φnLn + ...)εt . (52)

Therefore, the series of MA coefficients constitute the impulse response
function.

IRF

The coefficients of MA representation of an ARMA process constitutes the
corresponding IRF.
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Vector autoregression Impulse response functions

Impulse response function: Basic idea

As an example, consider an MA(2) process:

xt = (1 + γ1L + γ2L
2)εt . (53)

The IRF is:

t : 1 2 3 4 . . .

εt : 1 0 0 0 . . .

xt : 1 γ1 γ2 0 . . . (54)
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Vector autoregression Impulse response functions

Impulse response function

Generally, consider a VAR(1) process:

Xt = ΘXt−1 + Γεt . (55)

Then the impulse response function is given as

t : 1 2 3 4 . . .

εt : 1 0 0 0 . . .

Xt : Γ ΘΓ Θ2Γ Θ3Γ . . . (56)
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Vector autoregression Prediction

Predictions based on simple models

Consider an AR(1) process:

xt = θxt−1 + εt . (57)

By repeated substitution, we can derive

Et(xt+τ ) = θτxt (58)

and
vart(xt+τ ) = (1 + θ2 + . . .+ θ2(τ−1))σ2ε . (59)
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Vector autoregression Prediction

Predictions based on simple models

We note something very important here:

lim
τ→∞

Et(xt+τ ) = E (xt) (60)

and
lim
τ→∞

vart(xt+τ ) = var(xt). (61)

This is not an accidental outcome, we will see that this finding underlies
the basic forecasting methodology.
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Vector autoregression Prediction

Predictions based on more involved models

We have already seen that an ARMA model can be cast into an VAR(1)
model.

1 VAR(1) models are easy to deal with.

2 All ARMA models have an VAR(1) representation.

3 Hence, the easiest way to forecast would be to convert all ARMA
models into VAR(1) and develop the forecasting tools for VAR(1)
process only.
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Vector autoregression Prediction

Predictions based on VAR(1)

Consider a VAR(1) model:

xt = Θxt−1 + Γwt . (62)

Clearly, the conditional forecast is given by

Et(xt+τ ) = Θτxt . (63)

Next, we will calculate the associated error variance.
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Vector autoregression Prediction

Forecast error variance

Note that one-period ahead error is given by

xt+1 − Et(xt+1) = Γwt+1. (64)

This implies
vart(xt+1) = ΓΓ′. (65)

Similarly, two-periods ahead error is given by

xt+2 − Et(xt+2) = Θxt+1 + Γwt+1 −Θ2xt

= Γwt+1 + ΘΓwt . (66)

This implies
vart(xt+2) = ΓΓ′ + ΘΓΓ′Θ (67)
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Vector autoregression Prediction

Forecast error variance

This way one can continue and show that

vart+τ =
τ−1∑
j=0

ΘjΓΓ′(Θj)′. (68)
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Vector autoregression Prediction

Summary of predictive algorithm

Steps:

Given an ARMA(p, q) system, convert it into a VAR(1) model:

xt = Θxt−1 + Γwt . (69)

Use the following formulae:

Et(xt+τ ) = Θτxt (70)

and

vart(xt+τ ) =
τ−1∑
j=0

ΘjΓΓ′(Θj)′. (71)

Anindya S. Chakrabarti (IIMA) Financial networks May 12, 2019 61 / 86



Vector autoregression FEVD network visualization

Exposition of a 4 variable VAR model (Forecast error
contribution)

Figure: Forecast error: Contributions though spillover
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Vector autoregression FEVD network visualization

Exposition of a 4 variable VAR model (FEVD)

Figure: FEVD matrix of 4×4 asymptotic error variance contribution.
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Vector autoregression FEVD network visualization

Exposition of a 4 variable VAR model (FEVD network)

Figure: FEVD network (asymptotic)
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Modeling second moment ARCH and GARCH

How to model volatility clustering?

We have a model called GARCH (Generalized Autoregressive Conditional
Heteroscedastic) that allows you to find out how volatile a market is.

A simple example of GARCH(1,1) is as follows:

rt = σtεt

σ2t = ω + ασ2t−1 + βr2t−1. (72)

where εt is an independent standard normal random variable (normality
not necessary).
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Modeling second moment ARCH and GARCH

Revisit the latent volatility fit

Figure: S&P 500 index: Underlying volatility.
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Modeling second moment ARCH and GARCH

Application of VAR model on latent volatility of individual
stocks

Figure: Shock spillover to financial firms from Goldman Sachs (2013-17). Source:
Bansal, Kumar and Chakrabarti (2019)
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Modeling second moment ARCH and GARCH

Application of VAR model on latent volatility of individual
stocks

Figure: Shock spillover to all firms from Goldman Sachs (2013-17). Source:
Bansal, Kumar and Chakrabarti (2019)
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Modeling second moment ARCH and GARCH

GARCH(p, q) process

Consider a more generalized GARCH(p, q) process:

yt = σtεt

σ2t = w +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjy
2
t−j (73)

No structural reason behind this type of models. This are only statistical
in nature.

{εi} is IID, E (ε0), E (ε20) = 1.∑
i αi +

∑
j βj < 1 for uniqueness and stationarity.

Think about the following.

Question

Why is the process stationary even when volatility is clearly time
dependent?
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Modeling second moment ARCH and GARCH

GARCH(p, q) process

Define the information set:

Ft−1 = σ{εiη : −∞ ≤ i ≤ t − 1}. (74)

Then the unconditional first moment is

E (Yt) = E (εtσt)

= E (E (εtσt |Ft−1))

= E (σt(E (εt |Ft−1)))

= 0. (75)
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Modeling second moment ARCH and GARCH

GARCH(p, q) process

By a similar logic, we can find the autocorrelation structure:

E (YtYt+n) = E (Ytσtεt+n)

= E (E (Ytσt+nεt+n|Ft+n−1))

= E (Ytσt+n(E (εt+n|Ft+n−1)))

= 0 (76)
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Modeling second moment ARCH and GARCH

GARCH(p, q) process

Let us define:
Zt = Y 2

t − σ2t = σ2t (ε2t − 1). (77)

Then we can write
E (Zt) = σ2t (E (ε2t )− 1) = 0 (78)

Therefore,

Y 2
t = σ2t + Zt (79)

= w +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βjY
2
t−j + Zt

= w +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βj(Y
2
t−j − Zt−j) + Zt

(80)
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Modeling second moment ARCH and GARCH

GARCH(p, q) process

rewrite the expression as:

Y 2
t = w +

R∑
i=1

ciY
2
t−i −

q∑
j=1

βjZt−j + Zt (81)

where ci = αi + βi , αi = 0, i > p and βi = 0, i > q. By taking
expectation, we get

E (Y 2
t ) = w +

R∑
i=1

(αi + βi )E (Yt−i )
2 −

q∑
j=1

βjE (Zt−j) + E (Zt)

= w +
R∑
i=1

(αi + βi )E (Yt−i )
2 (82)
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Modeling second moment ARCH and GARCH

GARCH(p, q) process

Utilizing stationarity E (Y 2
t ) = E (Y 2

t+n) (this is not the formal proof), we
can derive

E (Y 2
t ) =

w

1−
∑R

i=1(αi + βi )
. (83)

Thus the unconditional variance is finite.

Anindya S. Chakrabarti (IIMA) Financial networks May 12, 2019 74 / 86



Modeling second moment ARCH and GARCH

GARCH(p, q) process

We can show that a GARCH process can accommodate a fat tail. For
simplicity, consider GARCH(1, 1).

Assuming E (α1ε
2
t + β1)q/2 > 1 for some q > 0 (e.g. εk ∼ N(0, 1)), for a

given GARCH(1, 1)

σ2t+1 = w + α1Y
2
t + β1σ

2
t , (84)

we have

E (σqt+1) = E (w + (α1ε
2
t + β1)σ2t )q/2

≥ E ((α1ε
2
t + β1)σ2t )q/2

= E ((α1ε
2
t + β1)q/2)E (σ2t )q/2 (85)
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Modeling second moment ARCH and GARCH

GARCH(p, q) process

Assuming E (σqt ) is finite, we can apply stationarity condition:
E (σqt ) = E (σqt+1).

Then we get
E (α1ε

2
t + β1)q/2 ≤ 1, (86)

which is a contradiction. This implies E (σqt ) is not finite.
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Appendix

Some extra material

In the following, some complementary material is provided. Could be
useful for some students who want to have an overview. Consult the
textbooks in the references to have a complete picture.
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Appendix

Expanding series with lag polynomials

Let’s consider an AR(2) process given by

xt = φ2xt−2 + φ1xt−1 + εt . (87)

This can be rewritten as

(1− φ1L− φ2L2)xt = εt (88)

which in turn can be expressed as

xt =
εt

(1− φ1L− φ2L2)
. (89)
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Appendix

Lag polynomial rules

Here are some general rules about the manipulation of lag polynomials:

α(L)β(L) = (α0 + α1L + ..)(β0 + β1L + ..)

α(L)β(L) = β(L)α(L)

α(L)2 = α(L)α(L)

If α(L) = (1− λ1L)(1− λ2L)..., then
α(L)−1 = (1− λ1L)−1(1− λ2L)−1...
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Appendix

Autocovariance

We will denote autocovariance by

γj = Cov(xt , xt−j). (90)

Note that here the time index t doesn’t matter as covariance across j time
points will be the same for all time points t.
The j-lag autocovariance can be written as

γj = E (xtxt−j). (91)
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Appendix

Autocovariance

Note that 0-lag autocorrelation is just the variance:

γ0 = Var(xt). (92)

Autocorrelation function

Now we can define the autocorrelation function (a.c.f.) as

ρj =
γj
γ0
. (93)
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Appendix

Calculating moments

Consider an AR(1) process:

xt = φxt−1 + εt

= φ2xt−2 + φxt−1 + εt

=
∞∑
j=0

φjεt−j

We can calculate the first moment in two ways.

Method 1

We can directly take expectation: E (xt) =
∑∞

j=0 φ
jE (εt−j) = 0.
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Appendix

Calculating moments

There is an indirect method which is sometimes very useful.

Method 2

For stationary processa, the statistic is not evolving over time. Therefore,

E (xt) = φE (xt−1) + E (εt), (94)

which can be written as

(1− φ)E (xt) = E (εt) (95)

implying
E (xt) = 0. (96)

aWe will define stationarity later.
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Appendix

Calculating moments

Homework:
Show that if

E (εt) = µ, (97)

then
E (xt) =

µ

1− φ
. (98)
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Appendix

Estimate a VAR model

Start from the state-space representation (companion form) of a k
variable, p-lag VAR with T observations:

Y = Xβ + ε. (99)

Carry out a multi-variate least square estimation (same as MLE):

β̂ = (X ′X )−1X ′Y . (100)

Estimated covariance matrix (for OLS)

Σ̂ =
1

T − kp − 1
(Y − X β̂)(Y − X β̂)′. (101)

One should apply GLS since the error terms here are not homoschedastic.
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Appendix

Relevant books and papers

References:

J. Hamilton, Time Series Analysis, Princeton University Press (1994).

R. Tsay, Analysis of Financial Time Series, Wiley (third edition; 2014).

F. Dielbold and K. Yilmaz, Financial and Macroeconomic Connectedness: A
Network Approach to Measurement and Monitoring, Oxford University Press
(2016).

S. Kumar et al., Ripples on financial markets, (2019).
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