Ecology, Epidemiology and Disease Modelling: Computational Lab problems

(Week 2: 15 - 19 May, 2017)

(Samit Bhattacharyya & Somdatta Sinha)

DAY-1:

A. Discrete Generation Population Dynamics Models:

1) Take the following models and work out the questions given below –

a. Logistic Model:
$$N(t+1) = rN(t) \left(1 - \frac{N(t)}{K}\right)$$
 $K = 1$

b. Ricker Model:
$$N(t+1) = N(t)e^{\left\{r\left(1-\frac{N(t)}{K}\right)\right\}}$$
 $K=1$

c. Hassell Model:
$$N(t+1) = \frac{rN(t)}{(1+N(t))^b}$$
 $b = 3, b = 6$

- (i) Find the **Steady States** of each model, and plot the **Time series** (*N* versus *t*) and for different values of *r* to show what types of dynamics the model exhibits.
- (ii) Plot **Return Maps** (N(t) versus N(t+1)) for at least 3 values of r at different dynamical regimes.
 - (iii) Write the logic/code/algorithm for the **Bifurcation Diagrams** on variation of the parameter $r \in (1,4)$ for Model (a), and $r \in (0,50)$ for Models (b and c), and plot them.

B. Continuous Generation Population Dynamics Models:

1. Find the **Steady States** of the following differential equation model and calculate the **Local Stability** of the steady states:

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{K}\right), \quad K = 1$$

Plot the **Time Series** for different values of *r*.

Find the Steady States of the following two-variable coupled differential equation model and calculate the Local Stability of the steady states:

$$\frac{dx}{dt} = g(x) - bxy,$$

$$\frac{dy}{dt} = cxy - dy$$

For (a)
$$g(x) = ax$$
, (b) $g(x) = ax(1 - x/K)$, K=1

Plot **Phase Portrait** (x versus y) of the two-variable system.

Ecology, Epidemiology and Disease Modelling: Computational Lab problems

(Week 2: 15 - 19 May, 2017)

(Samit Bhattacharyya & Somdatta Sinha)

DAY-2:

A. Generic Compartmental Models in Epidemiology:

 The standard SIR and SEIR models are given below: Find their Steady States and calculate the Local Stability of the Steady States.

$$\frac{ds}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dS}{dt} = \beta S(I + \varepsilon E) - \kappa E$$

$$\frac{dI}{dt} = \beta S(I + \varepsilon E) - \kappa E$$

$$\frac{dI}{dt} = \kappa E - \gamma I$$

$$\frac{dS}{dt} = \gamma I$$

Plot Time Series and Phase Portrait for both models for the following parameter values.

Parameters	Values
Transmission rate (eta)	1 per 3000 per day
Latency (k)	0.5 per day
Recovery (γ)	0.17 per day
Infectivity by exposed class (ε)	0.3
Initial condition (S0, E0, I0)	(995, 0, 5)

1. Simulate the following Ross and MacDonald

$$\frac{dI_{h}}{dt} = abmI_{m}S_{h} - \gamma I_{h}$$

$$\frac{dI_{h}}{dt} = abmI_{m}S_{h} - \gamma I_{h}$$

$$\frac{dI_{m}}{dt} = acI_{h}S_{m} - \mu I_{m}$$

$$S_{h} + I_{h} = 1$$

$$S_{m} + I_{m} = 1$$

$$\frac{dI_{m}}{dt} = acI_{h}S_{m} - acI_{h}(t - \tau)S_{m}(t - \tau)e^{-\mu\tau} - \mu I_{m}$$

$$\frac{dI_{m}}{dt} = acI_{h}(t - \tau)S_{m}(t - \tau)e^{-\mu\tau} - \mu I_{m}$$

Parameters	Range	Values for simulation
Biting rate (a)	0.01-0.5 / day	0.2
Infection probability (b)	0.2-0.5 /day	0.5
Mosquito: Human (m)	0.5-40	5
Recovery rate of human (γ)	0.005-0.05 / day	0.02
Infection probability of mosquito (c)	0.5	0.5
Mosquito mortality rate (μ)	0.05-0.5 /day	0.05
Delay (au)	8-10 days	8