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Introduction — Extreme events

Flooding, Grimma, East-Germany,
June 03, 2013

Tornado, Hamburg, Germany, June e e :
07, 2016 Earthquake Mag. 7.6, Sept. 21, 1999,
Taiwan

ICTS, Bangalore, colloquium



Extreme events - spatial dependence

Eurdpean Severe - -

Weather Database

_www.eswd.eu.
(c) ESSL i

: P T \ym ... T O Nim
Extreme weather conditions in one weak over Europe, Sept. 19-26, 2016.
(red: tornado, yellow: extreme wind, green: hail, blue: heavy rain)
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Extreme events

Basic features
@ They are rare.
@ They are recurrent.

@ Which are inherent to the system
under study. )

@ To which we can assign a variable

(magnitude). Events in the tail of the

< distribution

Definition

Given a probability distribution for the occurrence of events of given
magnitude, an extreme event is an event which occurs in the tail of the
distribution.
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Extreme events

Two methods of analyzing extreme events

Block Maxima (tends to fit GEV)
1
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(a) Divide the time series in
blocks of equal intervals

(b) An event of maximum size
in each block is an extreme
event. (Block size?)
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Peaks over Threshold (~GPD)
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An event which exceeds a
threshold g is called as an
extreme event.(Threshold ¢7)



Extreme events - statistical approach

Limiting distributions for
independent identically distributed random variables

Block Maxima (tends to fit GEV)
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Generalized extreme event (GEV) distribution
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Extreme events on networks
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Extreme events on networks

Traffic jam, China 12 days,
62 mile, aug 2010
(traffic network)

August 15,2003 914 pm-EDT A

USA blackout, Aug. 13,14, 2003
(Power grid)

Internet slowdown
(computer network)

These extreme events take place on some underlying network and hence,
are our motivation behind studying Extreme Events on networks.
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Extreme events - spatial dependence

POWER GRID FAILURE

TEER TR TIMES CITY

PIPELINE WORK CHOKES ROADS

Traffic Snarls At Shimla Office Chowk Have A Cascading Effect Across The City

i HOW IT ALL GOT CLOGGED

tipmonTussday
s traffic snavks want ot of contrl

B da et ol ey et Shimla S ey i e
kmow nivsiy rad ferqusson Colkgeroad.
It B ot S o

& Cti2ms wers cauptumawares by e

same e Hundreds of millions without

C di - ffmm W;mmﬁ..mjm o power in India blackout
ascading e ect or trafhic Jam _]u|y 31’ 2012

(traffic network)

(power grid)
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Types of networks

Completely connected network
Random networks

Small world networks

Scale free networks
Percolation networks

Bipartite networks

Regular networks
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Networks

Scale free

Completely connected

Each Node connected to

all other nodes. Each pair of nodes con-

nected with probability p.
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Extreme events on network

Extreme events on networks: Statistical approach

The statistical approach can be extended by considering identically
distributed random variables at different nodes.

Let X = (X1, X2y« -« Xy - -y )T where x; is a random variables at j-th node.
Different nodes can be coupled using network connections. E.g., In
gaussian model, one can write the probability distribution function as

P(X) x exp{—aXTAX}

where A is the adjacency matrix. One can also introduce weighted
connections.
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Extreme events on networks

Extreme events on networks: Random walks
Model:
@ A network of N nodes, E edges and W walkers.

@ At every time step each walker takes a step to a neighboring node
with some probability (unbiased or biased).

@ Extreme event: The number of walkers on a node i exceeds a
threshold g;.

0 Individual
e—o

~
o 7){ I
\0 ® oo
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Walkers on a node

' Individua!
J
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For an unbiased walk the asymptotic stationary probability for one walker is
ki

Ea
Probability of w walkers on node i : Binomial distribution

fi(w) = ( Vm‘// >p,.W(1 )W

Mean no. of walkers on node i (flux) and its variance

_ ki 2, ki ki
wi = Wi, g, = WE <]. 2E>

pj = k; is degree of node j
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Extreme events on networks

What is an extreme event on a node?
The threshold depends on the location / node.

Delhi
(Malgudi days) Connaught place

A village square
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Extreme events on networks

The threshold for extreme events depends on
the node.

The threshold for node i
A village square
(Malgudi days) qi = w; + moj, m>0

where w; is the mean no. of walkers on node
i (flux) and o; is the variance for each node

ki ki ki
W A 2E ( 2E>

oS

Delhi
Connaught place
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Extreme events on networks

Probability distribution of extreme events for a node of degree k and
threshold g

F(k)

w
w _
> () o a-pm,
I=q
= b(lg)+1, W —[q]).
where the regularized incomplete beta function

1 P lal1 _ W-lal-1
B LW, a0

B(a, b) is the beta function.
V. Kishore, M. S. Santhanam and REA, Phys. Rev. Lett. 106, 188701 (2011).

Io(la] +1, W —q]) =
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Extreme events on networks

‘ ® Simulation
-+ -Analytical
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Distribution of extreme events as a function of the degree of a node
N = 5000, E =19815 W = 2E. Scale free network (y = 2.2)

Small degree nodes

Small degree nodes have a higher probability of extreme events than the
large degree nodes.

V. Kishore, M. S. Santhanam and REA, Phys. Rev. Lett. 106, 188701 (2011).
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Extreme events on networks

Fluctuating no. of walkers

If the total number of walkers changes with time, and is a uniform random
variable in the interval (W — A, W + A), then

Probability of w walkers on a node

m .

1 W+ w Wei—w
A=Y oxs ( Wf)p (1 p)"H
Jj=0

Mean no. of walkers on a node (flux) and its variance

AP+A 1
A 2 _
<2 >=<f >, O'A—<f>|:1+<f><3vv2—W>:|

Probability distribution of extreme events is

2A W+j o .
_ 1 W+j\ Wj—I
G == Z( ) e

where W = W — A.
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Extreme events on networks
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Distribution of extreme events for fluctuating no. of walkers

Small degree nodes

Small degree nodes have a higher probability of extreme events than the
large degree nodes.
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Extreme events on networks

Biased random walks
Probability of hopping from node i to j depends on the degree of j

b,'jockj‘?‘
]
(o]
[e)
[©] t:O
00
") ° [e]e)
o (e}
00 o ° o
° a<0 ° a=0 a>0t=1

ICTS, Bangalore, colloquium



Extreme events on networks

Biased random walks
Stationary probability of finding walker at node j

o ki @

ki 2 1Ly ki
N km Lo\
s (ke i k)

We can define the generalized strength of j-th node to be

ki
b= KK
i=1

pj =

The stationary probability

_ %

= —3 .
> =1 P

Pj

Mean flux and variance
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Extreme events on networks
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Biased towards
low degree
nodes

Standard
Random walk

Biased towards
hubs

Extreme event probability as a function of strength for biased walks

Small

degree nodes

Nodes with small strength have a higher probability of extreme events
than those with large strength.
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Network failure

Model of network failure
o Network with N nodes, E edges and W walkers

@ Walkers perform unbiased or biased random walks.
@ Extreme event — failure of a node
* A node i experiences an extreme event when the walkers on the node
exceed the threshold g; =< f; > +mo;.
* The walkers on the said node walk to the nearest neighbors with the
same walking rules.
* The said node and the edges connecting the node are removed.

@ The walks continues.

00 °
e
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Network failure - completely connected network

Time vs N__(Diff. Runs)
act
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Completely connected network
N =100, E = 4950, W = 9900, p = 1/100, g = 148 (m=5), F = 1.19 x 10~
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Network failure - completely connected network

Capacity of each node is the threshold  g;.
Total load w.
Total capacity of the network C = ZJN:1 qgi.
Capacity per unit load (Capacity/Load) = C/W.
60
Overload failures -*. Cascades | Independent
50 \ failures
(I1I) v (ID)
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No. of deleted nodes at a time vs capacity/load
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Network failure - completely connected network

Overload failures w474~ Cascades
50| - A
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£ re
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Three regions

© Independent failures: Individual uncorrelated failures at a time.

< Ny >< 1

@ Cascade failures: multiple node failure at successive times.

© Overload failures: Single step failure of all the remaining nodes due to
excessive load.

< Nde/ > Nact
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Network failure

Special features of the model of network failure

Our model

Other models

Driven by internal dynamics

External perturbation or input

Capacities are determined by the
internal dynamics

Capacities are mostly randomly
assigned

Extreme events occur due to in-
herent fluctuations of the internal
dynamics

Extreme events occur due to ex-
ternal effects or load being large

Total failure of the network

Normally lead to partial failure of
the network

Our model brings out the importance of internal fluctuations of the
dynamics.
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Network failure - random and SF networks
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Network failure - how the network changes

Effect on the degree distribution

s, (Random, N=1000, E=9555)

oo 3821113 10

Random network
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Scale-free network



Network failure - return map

o Plot (All to All Network, N=100)

Noals)+1

Completely connected network

Ll L N
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Nl 41

Random network Scale-free network
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Network failure - repairing

Can one repair the nodes to prevent network failure?
Let 7, be the repair time.

(all to all N=100, 1st ensemble only)
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Network failure - repairing

Failure with and without repair

(altoalNe100, st ensembeony)
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failure with repair
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Network failure - repairing

@ Except for very small repair time (< 10), the network fails.
@ The failure times increase substantially.
@ The nature of failure with and without repair is different.

e Without repair : failure through small degree nodes.
With repair: failure through large degree nodes (hubs).
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Extreme events on spatially extended regions
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Extreme events - spatial dependence

Preliminary Determination of Epicenters

Epicenters of earthquakes (mag > 5), 1963 to 1998.
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Extreme events - spatial dependence

Eurdpean Severe - -

Weather Database

_www.eswd.eu.
(c) ESSL i

: P T \ym ... T O Nim
Extreme weather conditions in one weak over Europe, Sept. 19-26, 2016.
(red: tornado, yellow: extreme wind, green: hail, blue: heavy rain)
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Model

Problem

(1) Extend the model to continuous space variables.
(2) Can some physical input be introduced?

Requirements of a model

@ A variable which depends on both space and time.

» The magnitude of the variable represents the strength of the events.
» The model should give probabilities of the variable as a function of
space and time.

@ A function which gives the spatial properties of the terrain.

Our Model

Motion of Brownian particles in a potential.
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Brownian particles in a potential

The motion of a Brownian particle in a one dimensional potential can be
studied using Langevin equation.

x(t) = h(x,t)+g(x, t)l(t)
where
<T(t)>=0; <T()[(t)>=6(t—1)
The probability distribution obeys Fokker-Planck equation.

0Qxt) _ 0
ot N GXS(X’t)
0 02
S(x,t) = aXD(1>+ 8X2D(2) Q(x, 1)

where S(x, t) is the probability current and

DA = p(x,t)+ 8gg)<<, t)g(x, t)
D(2) = g2(X> t)
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Brownian particles in a potential

A Brownian particle of mass m in a potential V(x) and high friction gives
Smoluchowski equation,

1 1
DO = —F(x)=-—V
mv (%) m,y (x)
p@ _ p_ kT
my

where v = 1/7 and 7 is the relaxation time. The stationary solution when
the probability current is zero is

Qst(x) = Ae™®%)

where

®(x) = V(x)/D
(“The Fokker-Planck Equation”, H. Risken, Spriger)
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Brownian particles in a potential

Consider a small interval R = (x1,x2). The probability that a particle is in
this interval is

p:/ Qst(x)dx

Now consider W such independent Brownian particles.
Probability of w walkers in the interval R follows Binomial distribution

w _
fr(w) = ( . >pW(1—p)W v
Mean no. of walkers in the interval R and its variance

w=Wp, o>=Wp(l-p)
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Brownian particles - probability of extreme events

Define the threshold for extreme events as
qg=w-+ mo
Then probability of observing an extreme event in the given interval is

w

FR) = <v/v> pla—p",

I=[q]+1
= b(lg)+1,W—lq])

where the regularized incomplete beta function

1

b(la) +1.W = 1a) = o7 LqJ)/O”tLqJ(l_t)w—m—l
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Brownian particles - probability of extreme events
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Probability of extreme events F
vs probability of Brownian particle in an interval p
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Brownian particles - probability of extreme events
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Probability of extreme events F
vs probability of Brownian particle in an interval p
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Linear potential

We consider only one period
V(x)=ax, 0<x<1
Probability of a brownian particle being in R = (x — dx/2, x + dx/2)
x+dx/2
p :/ Ae™ “dx

—dx/2

_ . my
where ¢ = QLT
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Linear potential

The threshold for extreme events is
qg=w-+ mo

where w = Wp, 02 = Wp(1 — p).
The probability of observing an extreme event in the interval R is

F(R) = h(lal+1,W—1[q])
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Linear potential

0.1 , . . . 0.1
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Probability of extreme events F vs the location x
On the average, the probability of extreme events increases with increasing

potential.

Extreme events vs location

Larger potential — Larger probability of extreme events
Smaller potential — Smaller probability of extreme events

ICTS, Bangalore, collogquium



Sinusoidal potential

We consider only one period
V(x) = Bsin(2rx), 0<x<1

Probability of a brownian particle being in R = (x — dx/2, x + dx/2)

x+dx/2 )
p= / Ae—asm(x)dx
x—dx/2

where a = S7+.
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Sinusoidal potential
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Probability of extreme events F vs the location x

Extreme events vs location

Larger potential — Larger probability of extreme events
Smaller potential — Smaller probability of extreme events

Exception
For very large potentials (and/or very small interval) an opposite effect
can be observed.
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Conclusion

Networks

Smaller degree nodes have larger probability of extreme events
Large degree nodes (hubs) have smaller probability of extreme events

Continuous systems with potential

Larger potential has larger probability of extreme events
Lower potential has smaller probability of extreme events

Exception:
For very large potentials or very small regions the behavior changes.
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