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Introduction – Extreme events

Flooding, Grimma, East-Germany,
June 03, 2013

Tornado, Hamburg, Germany, June
07, 2016

Train accident - Kanpur 20 Nov. 2016

Earthquake Mag. 7.6, Sept. 21, 1999,
Taiwan
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Extreme events - spatial dependence

Extreme weather conditions in one weak over Europe, Sept. 19-26, 2016.
(red: tornado, yellow: extreme wind, green: hail, blue: heavy rain)
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Extreme events

Basic features

They are rare.

They are recurrent.

Which are inherent to the system
under study.

To which we can assign a variable
(magnitude). Events in the tail of the

distribution

Definition

Given a probability distribution for the occurrence of events of given
magnitude, an extreme event is an event which occurs in the tail of the
distribution.
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Extreme events

Two methods of analyzing extreme events

(a) Divide the time series in
blocks of equal intervals
(b) An event of maximum size
in each block is an extreme
event. (Block size?)

An event which exceeds a
threshold q is called as an
extreme event.(Threshold q?)
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Extreme events - statistical approach

Limiting distributions for
independent identically distributed random variables

Generalized extreme event (GEV) distribution

f (x , ξ) =
1

σ

(
1 +

ξ(x − µ)

σ

)−( 1
ξ+1)

e−[1+ ξ(x−µ)
σ ]−1/ξ

(ξ – shape, µ – location, σ – scale parameters)
Gumbel (ξ = 0), Fréchet (ξ > 0), Weibull (ξ < 0)

Generalized Pareto distribution

f (x , ξ, µ, σ) =
1

σ

(
1 +

ξ(x − µ)

σ

)−( 1
ξ+1)
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Extreme events on networks
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Extreme events on networks

Traffic jam, China 12 days,
62 mile, aug 2010
(traffic network)

Internet slowdown
(computer network)

USA blackout, Aug. 13,14, 2003
(Power grid)

These extreme events take place on some underlying network and hence,
are our motivation behind studying Extreme Events on networks.

ICTS, Bangalore, colloquium



Extreme events - spatial dependence

Cascading effect of traffic jam
(traffic network)

Hundreds of millions without
power in India blackout

July 31, 2012
(power grid)
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Types of networks

Completely connected network

Random networks

Small world networks

Scale free networks

Percolation networks

Bipartite networks

Regular networks
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Networks

Completely connected

Each Node connected to

all other nodes.

Random

Each pair of nodes con-

nected with probability p.

Scale free

p(d) = d−α
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Extreme events on network

Extreme events on networks: Statistical approach

The statistical approach can be extended by considering identically
distributed random variables at different nodes.
Let X = (x1, x2, . . . , xi , . . . , )

T where xi is a random variables at i-th node.
Different nodes can be coupled using network connections. E.g., In
gaussian model, one can write the probability distribution function as

P(X ) ∝ exp{−αXTAX}

where A is the adjacency matrix. One can also introduce weighted
connections.
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Extreme events on networks

Extreme events on networks: Random walks

Model:

A network of N nodes, E edges and W walkers.

At every time step each walker takes a step to a neighboring node
with some probability (unbiased or biased).

Extreme event: The number of walkers on a node i exceeds a
threshold qi .
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Walkers on a node

For an unbiased walk the asymptotic stationary probability for one walker is

pj =
kj
2E

, kj is degree of node j

Probability of w walkers on node i : Binomial distribution

fi (w) =

(
W
w

)
pwi (1− pi )

W−w

Mean no. of walkers on node i (flux) and its variance

w̄i = W
ki
2E

, σ2
i = W

ki
2E

(
1− ki

2E

)
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Extreme events on networks

What is an extreme event on a node?
The threshold depends on the location / node.

A village square
(Malgudi days)

Delhi
Connaught place

ICTS, Bangalore, colloquium



Extreme events on networks

A village square
(Malgudi days)

Delhi
Connaught place

The threshold for extreme events depends on
the node.

The threshold for node i

qi = w̄i + mσi , m > 0

where w̄i is the mean no. of walkers on node
i (flux) and σi is the variance for each node

w̄i = W
ki
2E

, σ2
i = W

ki
2E

(
1− ki

2E

)
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Extreme events on networks

Probability distribution of extreme events for a node of degree k and
threshold q

F(k) =
W∑
l=q

(
W

l

)
pl (1− p)W−l ,

= Ip(bqc+ 1,W − bqc).

where the regularized incomplete beta function

Ip(bqc+ 1,W − bqc) =
1

B(bqc+ 1,W − bqc)

∫ p

0
tbqc(1− t)W−bqc−1

B(a, b) is the beta function.
V. Kishore, M. S. Santhanam and REA, Phys. Rev. Lett. 106, 188701 (2011).
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Extreme events on networks
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Simulation
Analytical

Distribution of extreme events as a function of the degree of a node

N = 5000, E = 19815 W = 2E . Scale free network (γ = 2.2)

Small degree nodes

Small degree nodes have a higher probability of extreme events than the
large degree nodes.

V. Kishore, M. S. Santhanam and REA, Phys. Rev. Lett. 106, 188701 (2011).
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Extreme events on networks

Fluctuating no. of walkers
If the total number of walkers changes with time, and is a uniform random
variable in the interval (W −∆,W + ∆), then
Probability of w walkers on a node

f ∆(w) =
W̃∑
j=0

1

2∆ + 1

(
W̃ + j
w

)
pw (1− p)W̃+j−w

Mean no. of walkers on a node (flux) and its variance

< f ∆ >=< f >, σ2
∆ =< f >

[
1+ < f >

(
∆2 + ∆

3W 2
− 1

W

)]
Probability distribution of extreme events is

F(k) =
2∆∑
j=0

1

2∆ + 1

W̃+j∑
l=q

(
W̃ + j

l

)
pl (1− p)W̃+j−l

where W̃ = W −∆.
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Extreme events on networks
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Distribution of extreme events for fluctuating no. of walkers

Small degree nodes

Small degree nodes have a higher probability of extreme events than the
large degree nodes.
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Extreme events on networks

Biased random walks
Probability of hopping from node i to j depends on the degree of j

bij ∝ kαj

————————————————–

t=0
————————————-

α < 0 α = 0 α > 0, t = 1
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Extreme events on networks

Biased random walks
Stationary probability of finding walker at node j

pj =
kα
j

∑kj
l=1 k

α
l∑N

m=1

(
kα
m

∑km
l=1 k

α
l

) .
We can define the generalized strength of j-th node to be

φj = kα
j

kj∑
i=1

kα
i .

The stationary probability

pj =
φj∑N
l=1 φl

.

Mean flux and variance

〈f 〉 = W
φ∑N
l=1 φl

, σ2 = W
φ∑N
l=1 φl

(
1− φ∑N

l=1 φl

)
.
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Extreme events on networks
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(c)Analytical

Simulation
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α = −2
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Biased towards
low degree
nodes

Standard
Random walk

Biased towards
hubs

Extreme event probability as a function of strength for biased walks

Small degree nodes

Nodes with small strength have a higher probability of extreme events
than those with large strength.
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Network failure

Model of network failure

Network with N nodes, E edges and W walkers

Walkers perform unbiased or biased random walks.

Extreme event – failure of a node

? A node i experiences an extreme event when the walkers on the node
exceed the threshold qi =< fi > +mσi .

? The walkers on the said node walk to the nearest neighbors with the
same walking rules.

? The said node and the edges connecting the node are removed.

The walks continues.

=⇒
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Network failure - completely connected network
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Completely connected network
N = 100, E = 4950, W = 9900, p = 1/100, q = 148 (m = 5), F = 1.19× 10−6
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Network failure - completely connected network

Capacity of each node is the threshold qi .
Total load W .

Total capacity of the network C =
∑N

j=1 qi .

Capacity per unit load (Capacity/Load) = C/W .
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Network failure - completely connected network
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           (III)

Three regions

1 Independent failures: Individual uncorrelated failures at a time.

< Ndel >< 1

2 Cascade failures: multiple node failure at successive times.

3 Overload failures: Single step failure of all the remaining nodes due to
excessive load.

< Ndel >' Nact
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Network failure

Special features of the model of network failure

Our model Other models

Driven by internal dynamics External perturbation or input

Capacities are determined by the
internal dynamics

Capacities are mostly randomly
assigned

Extreme events occur due to in-
herent fluctuations of the internal
dynamics

Extreme events occur due to ex-
ternal effects or load being large

Total failure of the network Normally lead to partial failure of
the network

Our model brings out the importance of internal fluctuations of the
dynamics.
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Network failure - random and SF networks
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Network failure - how the network changes

Effect on the degree distribution
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Network failure - return map
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Network failure - repairing

Can one repair the nodes to prevent network failure?
Let τr be the repair time.
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Network failure - repairing

Failure with and without repair
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Network failure - repairing

Except for very small repair time (< 10), the network fails.

The failure times increase substantially.

The nature of failure with and without repair is different.

Without repair : failure through small degree nodes.
With repair: failure through large degree nodes (hubs).
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Extreme events on spatially extended regions
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Extreme events - spatial dependence

Epicenters of earthquakes (mag > 5), 1963 to 1998.
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Extreme events - spatial dependence

Extreme weather conditions in one weak over Europe, Sept. 19-26, 2016.
(red: tornado, yellow: extreme wind, green: hail, blue: heavy rain)
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Model

Problem

(1) Extend the model to continuous space variables.
(2) Can some physical input be introduced?

Requirements of a model

1 A variable which depends on both space and time.
I The magnitude of the variable represents the strength of the events.
I The model should give probabilities of the variable as a function of

space and time.

2 A function which gives the spatial properties of the terrain.

Our Model

Motion of Brownian particles in a potential.
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Brownian particles in a potential

The motion of a Brownian particle in a one dimensional potential can be
studied using Langevin equation.

ẋ(t) = h(x , t) + g(x , t)Γ(t)

where
< Γ(t) >= 0; < Γ(t)Γ(t ′) >= δ(t − t ′)

The probability distribution obeys Fokker-Planck equation.

∂Q(x , t)

∂t
= − ∂

∂x
S(x , t)

S(x , t) =

[
∂

∂x
D(1) +

∂2

∂x2
D(2)

]
Q(x , t)

where S(x , t) is the probability current and

D(1) = h(x , t) +
∂g(x , t)

∂x
g(x , t)

D(2) = g2(x , t)
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Brownian particles in a potential

A Brownian particle of mass m in a potential V (x) and high friction gives
Smoluchowski equation,

D(1) =
1

mγ
F (x) = − 1

mγ
V ′(x)

D(2) = D =
kT

mγ

where γ = 1/τ and τ is the relaxation time. The stationary solution when
the probability current is zero is

Qst(x) = Ae−Φ(x)

where
Φ(x) = V (x)/D

(“The Fokker-Planck Equation”, H. Risken, Spriger)
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Brownian particles in a potential

Consider a small interval R = (x1, x2). The probability that a particle is in
this interval is

p =

∫ x2

x1

Qst(x)dx

Now consider W such independent Brownian particles.
Probability of w walkers in the interval R follows Binomial distribution

fR(w) =

(
W
w

)
pw (1− p)W−w

Mean no. of walkers in the interval R and its variance

w̄ = Wp, σ2 = Wp(1− p)
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Brownian particles - probability of extreme events

Define the threshold for extreme events as

q = w̄ + mσ

Then probability of observing an extreme event in the given interval is

F(R) =
W∑

l=bqc+1

(
W

l

)
pl (1− p)W−l ,

= Ip(bqc+ 1,W − bqc)

where the regularized incomplete beta function

Ip(bqc+ 1,W − bqc) =
1

B(bqc+ 1,W − bqc)

∫ p

0
tbqc(1− t)W−bqc−1
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Brownian particles - probability of extreme events
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Brownian particles - probability of extreme events
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Linear potential

We consider only one period

V (x) = αx , 0 ≤ x < 1

Probability of a brownian particle being in R = (x − dx/2, x + dx/2)

p =

∫ x+dx/2

x−dx/2
Ae−cxdx

where c = αmγ
kT .
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Linear potential

The threshold for extreme events is

q = w̄ + mσ

where w̄ = Wp, σ2 = Wp(1− p).
The probability of observing an extreme event in the interval R is

F(R) = Ip(bqc+ 1,W − bqc)
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Linear potential

dx=.0001
dx=.001
dx=.01
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Probability of extreme events F vs the location x

On the average, the probability of extreme events increases with increasing
potential.

Extreme events vs location

Larger potential → Larger probability of extreme events
Smaller potential → Smaller probability of extreme events
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Sinusoidal potential

We consider only one period

V (x) = β sin(2πx), 0 ≤ x < 1

Probability of a brownian particle being in R = (x − dx/2, x + dx/2)

p =

∫ x+dx/2

x−dx/2
Ae−a sin(x)dx

where a = βmγ
kT .
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Sinusoidal potential
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Extreme events vs location

Larger potential → Larger probability of extreme events
Smaller potential → Smaller probability of extreme events

Exception

For very large potentials (and/or very small interval) an opposite effect
can be observed.
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Conclusion

Networks

Smaller degree nodes have larger probability of extreme events
Large degree nodes (hubs) have smaller probability of extreme events

Continuous systems with potential

Larger potential has larger probability of extreme events
Lower potential has smaller probability of extreme events
————————————————–
Exception:

For very large potentials or very small regions the behavior changes.
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