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0.1 Foreword

Some time ago, algebraic representation theory and algebraic geometry was two
quite separate fields in mathematics. The representation theory is traditionally
(some may think) an approximation of category theory, while algebraic geometry
is (some may feel) an approximation of differential geometry. The classification
of representations gives valuable applications to physics by the representations
of time-spaces, while the classification of algebraic spaces (curves, surfaces, etc.)
gives information on the relations between the different representations. Thus
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algebraic geometry also have some applications to physics, more than as a dif-
ferential geometry.

One can say that many results from representation theory is about the equiv-
alence (or derived equivalence) of categories of representations, while algebraic
geometry is about proving the existence of moduli schemes of special fami-
lies of representations (geometric points). Because this is essentially equivalent
problems, algebraic geometry has obvious relations to physics, more than as an
approximation to differential geometry.

In classical deformation theory, one approximates the local structure of mod-
uli spaces, and in some very special cases, we can construct moduli spaces by
gluing local spaces.

Inspired by the representation theory and its physical interpretation, O.A.
Laudal looked for a generalization of the deformation theory to deformations
over rings that are not necessarily commutative. This lead to the genius (though
intuitive) task of deforming a set of r modules simultaneously. Then at once, one
got the multilocalization of points, and a noncommutative algebraic geometry
could be formed, based on the theory of representation. Thus the two theories
are working more closely together than ever.

This text proves that techniques from algebraic geometry and representation
theory can be woven together to a theoretical framework for physics.
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Chapter 1

Introduction

In this text we apply noncommutative deformation theory to general moduli
problems.

It is well known that ordinary deformation theory of modules applies to the
theory of moduli, and that it solves problems in very special algebraic situations.

In most algebraic situations, e.g. geometric invariant theory, the ordinary
deformation theory is not sufficient. Olav Arnfinn Laudal generalized the de-
formation functor

DefM : `→ Sets,

which goes from the category of local artinian (pointed) k-algebras to the cat-
egory of sets and where M is an A-module, to a noncommutative deformation
functor

DefM : ar → Sets,

which goes from the category of r-pointed, not necessarily commutative, artinian
k-algebras to the category of sets, and where M = {M1, . . . ,Mr} is a family of
r (right) A-modules. The study of this generalization is interesting in its own
rights, and it turns out that it more or less solves the problems in geometric
invariant theory (e.g. when an action of a group is not free).

The Chapters 2 to 6 considers the noncommutative geometric invariant the-
ory. The theory and all its belongings was invented by O. A. Laudal, and all
the examples are developed under his supervision.

In Chapter 7 we observe that we can define a dynamical structure by letting
a Lie-algebra act on the tangent space of the (noncommutative) moduli scheme,
thereby introducing dynamical invariants in algebraic geometry. As everything
else in this text, this idea is completely due to Laudal. He was also the one
that accepted that this algebraic dynamical structure was not sufficient in the
analytic case, i.e. for algebraic spaces. Thus the chapter 7 is called Pre-dynamic
GIT.

In Chapter 8, we give a solution to the above algebraic challenges, by invent-
ing a motivic algebraic theory based on deformation theory. We give a simplicial

7



8 CHAPTER 1. INTRODUCTION

noncommutative theory, defining dynamical invariants going beyond the ones
in Chapter 7.

We start by giving the necessary technicalities and results from noncommu-
tative deformation theory for modules. Then we give its main application, the
noncommutative schemes as moduli of its simple modules. The main objective
of this text is to apply the deformation theory to orbit spaces. At first, we
construct the moduli of orbits under an action of a linear group which is the
noncommutative geometric invariant theoretic quotient X/G of a scheme X un-
der the action of a linear group G. This quotient exists as an orbit space for all
reductive groups G and proves that noncommutative algebraic geometry solves
the problem with non-stable points.

As pin-pointed by Gunnar Fløystad at theUniversity of Bergen, Norway, un-
der the Abel lectures 2018 in Oslo, a usual difference between pure mathematics
and applied mathematics, is the introduction of time. O. Arnfinn Laudal has
taken the consequence of this, and introduces dynamics into noncommutative
algebraic geometry. This is the second main theme of this work. We consider
the action of a Lie algebra on the tangent sheaf on a noncommutative scheme,
and the orbits under this Lie-algebra action is the moduli of integral curves,
thereby introducing time as a metric on the moduli space.



Chapter 2

Preliminaries

Let k be a field, algebraically closed of sufficiently high characteristic. We recall
the necessary background for noncommutative geometry, which can be found in
all details in the book [3]. However, we work in the category of modules rather
than in a general additive, abelian category.

2.1 Basics

2.1.1 Justification

Already at the beginning of the school for which these notes are written, it
became clear that the participants in the best cases had graduate knowledge
of commutative algebra. Thus we include a justification for dealing with defor-
mation theory and some necessary basics from category theory. We apply the
category theory to define algebraic schemes in an effective way.

Let C be a class of mathematical objects that we are going to study. This
can even be objects from our physical universe that are observed (represented)
as mathematical objects. Also, as our ability to observe is discrete, we claim
that it is sufficient to study algebraic objects. So, to study any observed ob-
ject mathematically, we assign some parameters to the object, saying that we
have to study the set of functions defined on an object X. Let Ok(X) be the
ring of functions with values in the ground field k, assumed to be algebraically
closed of characteristic 0, e.g. k = C. Of course, we admit that this is not the
complete story, neither the correct story, but it gives a justification, or inter-
pretation, of the importance of studying one-dimensional representations in the
commutative situation. If the parameters of the object are noncommutative,
the functions are defined on noncommuative domains, and so we have to gener-
alize to finite-dimensional representations of associative algebras A = A(X). An
interpretation of A is that it is a ring of functions with values in n×n-matrices
(upto similarity) over the ground field k, that is a k-algebra homomorphism

A −→ Endk(V ), dimk V = n.

9
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Thus V is an A-module, and in general we should gain a lot from the study of
the class C of A-modules V, which some prefer to call the class of n-dimensional
representations if A is noncommutative and n > 1.

2.1.2 Categories and functors

Very briefly, a category C consists of, i) a class of objects ob(C), (ii) for each pair
(A,B) of objects in C, a set Mor(A,B) such that for an additional object C ∈
ob(C) there are associative compositions Mor(A,B) ◦Mor(B,C)→ Mor(A,C),
(iii) for each A ∈ ob(C) there is an element idA ∈ Mor(A,A) = End(A) such
that idA ◦ idA = idA .

A covariant functor F : C → D is a map F : ob(C)→ ob(C) together with a
map for each pair of objects A,B ∈ ob(C) F : Mor(A,B) → Mor(F (A), F (B))
that respect compositions.

A morphism of functors F,G : C → D , or a natural transformation of
functors, φ : F → G consist of, for each object A ∈ ob(C) a morphism φ(A) ∈
Mor(F (A), G(A)) such that for a morphism ψ : A → B in C, the following
diagram commutes:

F (A)

F (ψ)

��

φ(A) // G(A)

G(ψ)

��
F (B)

φ(B)
// G(B)

Notice that reversing all arrows gives the definition of a contravariant func-
tor.

2.1.3 Limits in categories

A projective (inverse) system in a category C is a subfamily

{Ai}i∈I ⊆ ob(C)

indexed over a poset I together with morphisms fij : Aj → Ai, i ≤ j such that,
i) fii = id, ii) fij ◦ fjk = fik. Notice that the morphisms fij goes the inverse
way, and that reversing those arrows gives an inductive (direct) system. We
give the definition of projective system because this is the most used.

Example 1. Let m ⊂ A be a maximal ideal in a commutative ring A. Then
{A/mi}i∈N is a projective system, drawn as

· · · → A/mi+1 → A/mi → A/mi−1 → · · · → A/m

Definition 1. Given a projective system {Ai}i∈I ⊆ ob(C). Then the projective
limit is the object lim

←−
i∈I

Ai defined as the unique smallest object mapping naturally

to all Ai, i.e.



2.1. BASICS 11

Y

ψj





ψi

��

∃!u
��

lim
←−
i∈I

Ai

πj
~~

πi
  

Aj
fij

// Ai

Considering an inductive system, reversing all arrows, and finding the biggest
object, we get the inductive limit.

Example 2. The completion of a ring A in an ideal a is the projective limit

Âa = lim
←−
i∈N

A/ai.

And yes, this is the topological definition considering the Zariski topology.

Finally, we recall that a category C is called small when ob(C) is a set, it is
called abelian if it has a kernels and coimages and if Mor(A,B) is a group for all
A,B ∈ ob(C). It is called a Grothendieck Category if it acts like the category of
A-modules over a k-algebra A, that is, it is abelian, and all limits exists. Also
recall that a categorical (co)product is a (co)limit over certain (co)systems.

2.1.4 Schemes

Let A be commutative ring with unit. The spectrum of all prime ideals in A is
defined as

Spec(A) = {p ⊆ A|p prime }.

The sets

D(f) = {p ∈ Spec(A)|f /∈ p}, f ∈ A,

is a base for the Zariski topology on Spec(A) :

D(f) ∩D(g) = D(fg), D(f) ∪D(g) = D(f + g).

Also notice that D(f) = Spec(Af ) where Af = S−1A with the multiplicative
system S = {fn|n ∈ N}. As the open subsets Top(Spec(A)) of Spec(A) is a
projective system, we can define a functor

OSpec(A) : Top(Spec(A))→ Rings, OSpec(A)(U) = lim
←−

D(f)⊆U

Af .

As a direct consequence of the universal properties of the projective limit,
we obtain.
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Lemma 1. i) OSpec(A),p := lim
←−

D(f)3p

Af = Ap, the localization of A in the prime

ideal p. ii) OSpecA(SpecA) ∼= A.

Definition 2. A scheme (X,OX) where X is a topological space and OX :
Top(X)→ Rings is a functor, is called a Scheme if X can be covered by open
subsets U such that

(U,OX |U ) ∼= (SpecAU ,OSpecAU )

for a family of rings AU .

2.2 Quiver algebras with relations

In ordinary algebraic geometry, the basic objects are quotients of the finitely
generated polynomial rings A = k[x1, . . . , xd] ' symk(V ), V =

∑d
l=1 kxl. It

is proved in [3] and [4] that the basic objects in noncommutative algebraic
geometry are the quotients of quiver algebras, which are enhancements of the
category of finitely generated k-algebras.

Definition 3. Consider the left and right kr-module V = (Vij)1≤i,j≤r with Vij =∑dij
lij=1 αij(lij)tij(lij) . We let the quiver algebra in the variables tij(lij), 1 ≤

i, j ≤ r, 1 ≤ lij ≤ dij be the kr-algebra

F 〈(dij)〉 = Tkr (V ) =

k〈t11〉 · · · 〈t1r〉
...

. . .
...

〈tr1〉 · · · k〈trr〉

 .

Here Tkr (V ) denotes the tensor algebra of V over kr, and we use the notation
tij = tij(1), tij(2), . . . , tij(dij). A quotient P = F 〈(dij)〉/a of F 〈(dij)〉 by a
two-sided ideal a is called a quiver algebra with relations, or a QAR for short.

We see that F is the algebra generated by the idempotents ei, the r × r-
matrix with 1 in the (i, i)-entry and zero elsewhere, and the variables tij(lij),
under the (only) relations tij(lij) · tkl(lkl) = 0, j 6= k.

In invariant theory, and in the theory of moduli in general, the local tangent
spaces are of importance. In the commutative situation, for X = SpecA the tan-
gent space in the (closed) point m is determined by (m/m2)∗ = homk(A, k[x]/(x2)),
because after localization (or when A is a local ring), A = k ⊕ m as k-vector
space. The usual notation is

k[x]/(x2) = k[ε],

and it is called the ring of dual numbers.
This is also true in the noncommutative setting althoug localization doesn’t

make sense.
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Definition 4. We define the noncommutative kr-algebra of dual numbers as

E = Tkr (V )/(tij)
2

where V = (Vij)1≤i,j≤r, Vij = k.

Notice that with the notation above, this says

E =

k〈t11〉 · · · 〈t1r〉
...

. . .
...

〈tr1〉 · · · k〈trr〉

 /(tij)
2.

2.3 The category of r-pointed Artinian k-algebras

In the commutative situation, defining schemes (studying moduli spaces) by
deformation theory builds on the category ` of local Artinian k-algebras. This
definition is generalized.

Definition 5. We define the category ar where the objects are are diagrams

kr
ι //

id   

S

ρ

��
kr

where S is a finitely generated k-algebra, and where In(S) = kern(ρ) = 0 for
some n ∈ N, and ρ ◦ ι = id. The morphisms are k-algebra homomorphisms φ
commuting in the diagram

kr
��

//

  

S

��

φ // S′

~~
kr

Every S ∈ ob(ar) is Artinian with exactly r simple (right) S-modules. We call
ar the category of r-pointed Artinian k-algebras.

Example 3. Let V = (Vij)1≤i,j≤r be a finite dimensional vector space, and let
F = Tkr (V ) be the tensor algebra. Let ρ : S → kr be the morphism sending
each basis element tij(lij) to 0. Consider any ideal a ⊆ I(F ) = ker(ρ), and let
S = F/(a + I(F )n)

Then we have homomorphisms

kr
ι //

id   

S

ρ

��
kr

and S is an object of ar.
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Lemma 2. Let S ∈ ob(ar), and put

Sij = eiSej

where ei = ι(ei) in the inclusion morphism kr ↪→ S. Then it follows that
S ' (Sij) as matrix algebra.

Proof. The isomorphism is given by sending s 7→ (eisej) with inverse

(sij) 7→
∑

1≤i,j≤r

sij = s.

2.4 Noncommutative Deformation Theory

In the commutative situation, the existence of a deformation theory is given in
M. Schlessingers classical article, [8]. We generalize this from ` = a1 to ar for
any natural number r ∈ N.

In the following, A is a finitely generated, associative k-algebra with unit,
k algebraically closed of characteristic 0, M = {M1, . . . ,Mr} is a set of r right
A-modules, and

M = M1 ⊕ · · · ⊕Mr.

Definition 6. The noncommutative deformation functor

DefM : ar → Sets

is given by

DefM (S) = {S ⊗k A-modules MS |MS is S-flat, kr ⊗S MS 'M}/ ∼

where the equivalence is given by the existence of an isomorphism commuting in
the diagram

MS
∼ //

!!

M ′S

}}
M

Notice that the flatness replaces continuity in the analytic setting.

Lemma 3. Let S ∈ ob(ar). Then an S ⊗k A-module MS is S-flat if and only
if

MS ' S ⊗kr M

as S-module. With the notation S = (Sij) this says MS ' (Sij ⊗ Mj) as
S = (Sij)-module.

Proof. We refer to the book [3] for the proof based on local freeness writing up
the long exact sequences.
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The following lemma is not very hard to prove, but is essential.

Lemma 4. Let M = {M1, . . . ,Mr} be a family of A-modules. Then for the
noncommutative kr-algebra of dual numbers, we have

DefM (E) ' (Ext1
A(Mi,Mj))1≤i,j≤r

Proof. To give a deformation ME of M = M1 ⊕ · · · ⊕Mr to

E =

k〈t11〉 · · · 〈t1r〉
...

. . .
...

〈tr1〉 · · · k〈trr〉

 /(tij)
2,

that is to give an element ME ∈ DefM (E), is equivalent to give a k-algebra
homomorphism ηM : A→ EndE(E ⊗kr M) induced by its restriction

ηM : A→ Homk(M, (Eij ⊗kMj)) (2.1)

lifting the structure morphism ofM . For each tij ∈ E, let ξij : A→ Homk(Mi,Mj)
be given by ξij(a) = ηM (a)|tij , saying that

ηA(a) = id ·a+
∑

1≤i,j≤1

tij ⊗ ξij(a).

The associativity of ηM then proves that for each 1 ≤ i, j ≤ r,

ξij ∈ Derk(A,Homk(Mi,Mj))/ Inner = Ext1
A(Mi,Mj).

Conversely, any matrix of derivations ξij as above gives a k-linear homomor-
phism ηM as in (2.1), and is extended by E-linearity to give a deformation
ME ∈ DefM (E).

In deformation theory, the main concern is to construct a space containing
all deformations, that is to find the smallest ideal J ⊆ F such that there is
a deformation MU ∈ DefM (U), U = F/J , where F is a quiver algebra. The
method is to construct the ideal step by step by decomposing the morphism
ρ : S → kr into small(er) morphisms.

Definition 7. A surjection φ : R� S in ar is called small if (kerφ) I(R) = 0.

Any surjection in ar can be decomposed in small morphisms: Given

R

ρR   

φ // S

ρS~~
kr



16 CHAPTER 2. PRELIMINARIES

and assume that I(R)n = I(S)m = 0 with n > m. (Otherwise, it is small
enough). Then we can decompose φ in small morphisms due to the following
diagram:

R = R/ I(R)n

��

φ // S/ I(S)m

R/ I(R)n−1

77

��
...

��
R/ I(R)m−1

EE

We need to use the procategory of ar: This is the category âr where the
objects are the projective limits of objects in ar, i.e. Ŝ ∈ ob(âr) ⇔ Ŝ =
lim
←
Sn, Sn ∈ ob(ar).

We find no harm in recalling the following very well known and essential
fact.

Lemma 5. (Yoneda) Let F : C → Sets be a covariant functor. Then there is a
bijection for every C ∈ ob(C),

F (C)
∼→ Mor(Mor(C,−), F )

where the right-hand set is the set of natural transformations of functors.

Proof. The map sending ξ ∈ F (C) to φξ : Mor(C,−)→ F given by

φξ(C
η→ D) = F (η)(ξ) ∈ F (D)

is a natural bijection.

In our situation, this gives a bijection for each H ∈ âr,

DefM (H)
∼→ Mor(Mor(H,−),DefM ).

Definition 8. We will say that a morphism φ : Mor(H,−) → DefM is an
isomorphism at tangent level if φ(E) is an isomorphism when E is the ring of
dual numbers. We will call it smooth (essentially surjective) if for all small
morphisms S � R, if φR ∈ Mor(H,R) maps to MR ∈ DefM (R), if MR lifts to
MS ∈ DefM (S), then there exists a φS ∈ Mor(H,S) mapping to φR and MS

simultaneously:

∃φS
% ,,

_

��

∈ Mor(H,S) //

��

DefM (S) 3

��

MS_

��
φR � 22∈ Mor(H,R) // DefM (R) 3 MR
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In this case we say that φR (and MR) can be lifted to S.

For representations of functors, the best we can do is the following.

Definition 9. Consider a couple (H, M̃), with H ∈ ob(âr), M̃ ∈ DefM (H),
and let φM̃ : Mor(H,−) → DefM be the induced morphism. Then (H, M̃) is
called:

(i) Prorepresenting if φM̃ is an isomorphism of functors on âr.

(ii) A prorepresenting hull if φM̃ is smooth and an isomorphism on the tangent
level.

The following lemma follows without proof.

Lemma 6. Prorepresenting objects are unique up to unique isomorphism when
they exist. Hulls are unique upto non-unique isomorphism when they exist.

Prorepresenting hulls are the model of the local rings on a moduli scheme.
This is because of the following: Let X = SpecA be an affine scheme over k, and
let mx ⊂ A be a geometric point. Then by definition, ÔX,mx is a prorepresenting
hull for DefA/mx : â1 → Sets. Because of this we also call a prorepresenting hull
a local formal moduli of the objects of interest.

From the definition, it follows exactly as in M. Schlessingers classical article
[8] that a hull H is the smallest object such that we can lift a point in the
tangent space to H. Given an obstruction theory as below, we can construct
the k-algebras representing the local formal moduli explicitly.

2.5 Obstruction Theory

We include this section into the preliminaries. Chapter 3 will give alternative
formulations of the results in this sections, and the proofs will be more detailed.
We just give a first version with sketch of proofs here.

Lemma 7. Let

0→ (Iij)→ S = (Sij)
φ→ (Rij) = R→ 0

be a small morphism in ar, and let MR ∈ DefM (R). Then there exists an ob-
struction

o(φ,MR) ∈ (Ext2
A(Mi, Iij ⊗kMj)) = (Iij ⊗k Ext2

A(Mi,Mj))

such that MR can be lifted to S if and only if o(φ,MR) = 0.

Proof. A detailed and strict proof can be found in [3]. Here we will just give
the core: A lifting of MR = (Rij ⊗kMj) to S is an S⊗k A-module structure on
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MS = (Sij ⊗k Mj). This is equivalent to defining a structure morphism, a k-
algebra homomorphism ηS lifting the structure morphism ηR as in the following
diagram:

0

��
Iij ⊗k Homk(Mi,Mj)

��
A

ηS //

ρR ''

(Sij ⊗k Homk(Mi,Mj))

φ

��
(Rij ⊗k Homk(Mi,Mj))

��
0

Choose any k-linear lifting η̃S of ηR, which is possible because φ is onto.
Then for each pair a, b ∈ A,

η̃S(ab)− η̃S(a)η̃S(b) ∈ Iij ⊗k Homk(Mi,Mj),

representing
o(φ,MR) ∈ Iij ⊗k HH2(A,Homk(Mi,Mj).

If o(φ,MR) = 0, there is a ξ : A → Homk(Mi,Mj) mapping to o(φ,MR). Put
ηS = η̃S + ξ, and

ηS(ab)− ηS(a)ηS(b) = η̃(ab) + ξ(ab)− (η̃S(a) + ξ(a))(η̃S(b) + ξ(b))

= o(φ,MR)− dξ = 0.

Theorem 1. (Laudal Structure Theorem) Let T l = Tkr ((ExtlA(Mi,Mj)
∗), l =

1, 2, where T denotes the tensor algebra and (−)∗ denotes the dual. Then the
obstruction theory defines an obstruction morphism

o : T 2 → T 1

such that
H = T 1 ⊗T 2 kr

is a prorepresenting hull for DefM .

Before giving the rather technical proof, with abuse of notation, this says
that T 1 ' kr(tij(lij)), T 2 ' kr(yij(hij)), and finally

H ' kr(tij(lij))/(fij(hij))
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where fij(hij) = o(yij(hij)).
The reason for giving the proof is that it also proves that there exists an

algorithm for computing the hull.

Proof. Put S2 = kr〈tij(lij)〉/ I2. Then we have an isomorphism DefM (S2) =
(Ext1

A(Mi,Mj)
∗). This says

Mor(S2, S2/ I2) ' DefM (S2).

A sequence of elements α = (αij(lij)) ∈ (Ext1
A(Mi,Mj)) defines a deformation

M2(α) ∈ DefM (S2). Let B′2 be the set of all monomials of degree 2 in the tij(lij)
and consider

π′2 : R3 = kr〈tij(lij)〉/ I3 → kr〈tij(lij)〉/ I2 = S2.

Then we can write

o(M2(α), π′2) =
∑
t∈B′2

t⊗ 〈α; t〉 ∈ (Iij ⊗k Ext2
A(Mi,Mj)).

We call M2(α) a defining system for the second order generalized Massey prod-
ucts 〈α; t〉, t ∈ B′2.

Choose bases {yij(mij)} for the dual spaces Ext2
A(Mi,Mj)

∗. Write

o(M2(α), π′2) =
∑
t∈B′2

t⊗ 〈α; t〉 =
∑
t∈B′2

yij(mij)(〈α; t〉)t⊗k y∗ij(mij).

We put

f2
ij(mij) =

∑
t∈B′2

yij(mij)(〈α; t〉)t, S3 = R3/(f
2
ij(mij)),

and we let π2 : S3 → S2 be the induced morphism. Then we have the following
diagram:

Mor(S3, S3/ I3) //

��

DefM (S3)

��
Mor(S3, S3/ I2)

∼ // DefM (S3/ I2)

proving the partial (stepwise) smoothness.
Now we start the lifting procedure. Here we will construct new polynomials

inductively, killing the obstructions and proving smoothness. The point is that
the polynomials in each degree will be the old ones with some higher degrees
added. Choose a monomial basis B2 ⊆ B′2 for kerπ2, and put B2 = B1 ∪ B2

where B1 is the set of all monomials of degree 0 and 1. Then o(M2(α), S3) =
0. Assume that SN1

has been constructed such that M2(α) can be lifted to
MN−1(α) ∈ DefM (SN−1). Also assume that monomial bases BN−2 and BN−2

have been constructed to satisfy the below conditions. Put

RN = kr〈t〉/ IN + I(fN−1
ij (mij))

π′N→ SN−1.
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We can write
kerπ′N = (fN−1

ij (mij))/ I(fN−1
ij (mij))⊕ IN

with IN = IN−1 /(IN + IN−1 ∩(fN−1
ij (mij)). Pick a monomial basis B′N−1 for

IN , such that for t ∈ B′N−1 we have that t = u ·s or t = s ·u for some u ∈ BN−2.

Put B
′
N−1 = BN−2 ∪B′N−1. For every monomial u with degree less than N we

have a unique relation in RN :

u =
∑

t∈B′N−1

β′t,ut+
∑
i,j,mij

β′uf
N−1
ij (mij),

and the next obstruction for lifting is

o(MN−1(α), π′N ) =
∑
i,j,mij

fN−1
ij (mij)⊗ yij(mij)

∗

+ (
∑

t∈B′N−1

ci,j,mij ,t t)⊗
∑
i,j,mij

yij(mij)
∗.

We call MN−1(α) a defining system for the generalized Massey products

〈α; t〉 =
∑
i,j,mij

ci,j,mij ,tyij(mij)
∗ ∈ Ext2

A(Mi,Mj), t ∈ B′N−1.

To continue, put

fNij (mij) = fN−1
ij (mij) +

∑
t∈B′N−1

yij(mij)(〈α; y〉),

let SN = RN/(f
N
ij (mij)), and let πN : SN → SN−1 be the natural homo-

morphism. Choose a monomial basis BN−1 ⊆ B′N−1 for kerπN , put BN−1 =

BN−1 ∪BN−2, and continue by induction.
It now follows that if we let x∗ = α be a basis for (Ext1

A(Mi,Mj)), we have
that

H(M) = F/(fij(mij)),

with

fij(mij) =

∞∑
l=0

∑
t∈BN+l

yij(〈x∗; t〉t,

is a prorepresenting hull, or local formal moduli, of DefM .



Chapter 3

Computation of
pro-representing hulls

Recall that k denotes an algebraically closed field of sufficiently high character-
istic.

Given a Grothendieck category C (that is one in which all limits exists), the
procategory is the category Ĉ where the objects are projective limits of objects
in C.

Let mx be a closed point in a commutative affine space SpecA. Then recall
that the tangent space in that point is

Derk(A,A/mx) ' Homk(A, k[ε])) = k[ε]/(ε2).

We generalize this to the noncommutative case by letting E be the quiver algebra
with r nodes and one arrow tij : ni → nj for all 1 ≤ i, j ≤ r, divided by the
square of its radical:

E =

〈
k[t11 〈t12〉 · · · 〈t1r〉
〈t21 k[t22] · · · 〈t2r〉

...
... · · ·

...
〈tr1〉 〈tr2〉 · · · k[trr]


〉
/(tij)

2 (3.1)

Definition 10. The tangent space of the deformation functor is defined as

TDefM = DefM (E)

We recall the definition of the objects that are of our main interest:

Definition 11. An object Ĥ ∈ ob(âr) is called a pro-representing hull, or a
local formal moduli, if the induced natural transformation

hĤ = Mor(H,−)→ DefM

is smooth (definition 8), and an isomorphism at the tangent level (definition
10).

21
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Theorem 2. There exists a prorepresenting hull Ĥ for the noncommutative
deformation functor

DefM : âr → Sets

The main objective of this chapter, is to give a proof of Theorem 2, together
with a guiding example illustrating the output of the proof, which is an algo-
rithm for explicitly computing the prorepresenting hull. The basis of the proof
is what is called an obstruction theory. The main ingredient of the proof of the
theorem is then to kill the obstructions for lifting smoothly.

Lemma 8. Let π : R � S be a small morphism in ar. Let MS ∈ DefM (S).
Then there exists an obstruction, that is, an element

o(π,MS) ∈ (Ext2
A(Mi,Mj))

such that o(π,MS) = 0 if and only if MS can be lifted to MS′ .

We will prove Lemma 8 in two equivalent ways. In section 3.1 we give the
proof of Theorem 2, and we give a guiding example of the induced algorithm
for computing the prorepresenting hull using the first proof of the obstruction
lemma. Then in section 3.2 we do the algorithm over again, using the second
version of the proof. Notice that it is the comparison of the two techniques that
gives the main result.

Proof. Here follows the proof where we use Hochschild cohomology for comput-
ing Ext’s. This is the more direct proof, not using projective resolutions. So let
MS ∈ DefM (S) be given by its structure morphism

ρS : S ⊗k A→ EndS(S ⊗kr M),

where we notice that ρS is S-linear and MS is S-flat. Because of this, the
S ⊗k A-module structure is given by its structure as A-module

ρS : A→ EndS(S ⊗kr M),

and ρS is a kr-algebra homomorphism. Choose any lifting of ρS to π : R � S.
That is, choose any R-linear lifting ρ′R commuting in the diagram

A
ρ′R //

ρS &&

EndR(R⊗kr M)

��
EndS(S ⊗kr M)

.

Notice that ρ′R can always be found as ρS(a) is determined by its restriction to
M , ρS(a)|M : M → S ⊗kr M and π is surjective. The problem is really to find
a lifting ρ′R that is a kr-algebra homomorphism.

For each pair a⊗ b ∈ A⊗2, by R-linearity, we can put

ψ(a⊗ b) = ρ′R(ab)− ρ′R(a)ρ′R(b) : M → R⊗kr M.
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This gives an element ψ ∈ Homk(A⊗2,Homk(Mi, Iij⊗krM)). Notice that every
S ∈ ob(ar) is isomorphic to the matrix algebra S ' (Sij) with Sij = eiSej .
Then I = (Iij) = ker(π) in the short exact sequence

0→ (Iij)→ (Rij)
π→ (Sij)→ 0.

It is straight forward computation to check that ψ is a Hochschild 2-cocycle,
and its class is defined to be the obstruction for lifting MS to R by π :

o(π,MS) = ψ ∈ HH2(A,Homk(Mi, Iij ⊗kMj))

= (HH2(A,Homk(Mi,Mj))⊗k Iij) ' (Ext2
A(Mi,Mj)⊗k (Iij)).

If o(π,MS) = 0 we can choose a 1-cocycle

ξ ∈ Homk(A,Homk(Mi, Iij ⊗kMj))

such that d(ξ) = ψ. Put

ρR = ρ′R + ξ,

and ρR is a kr-algebra homomorphism defining a lifting of MS to R.

Proof. Here follows the proof where we use the Yoneda complex for computing
Ext’s: Given MS ∈ DefM (S), choose an S ⊗k A-free resolution

0←−MS
µ←− (S ⊗A)n0

dS1←− (S ⊗A)n1
dS2←− (S ⊗A)n2

dS3←− · · · (3.2)

By tensoring over S by k, we get for each Mi ∈ M = {M1, . . . ,Mr} a free
resolution of A-modules:

0←−Mi
µi←− Ani0 di1←− Ani1 di2←− Ani2 di3←− · · ·

This follows from the free resolution of M = ⊕ri=1Mi,

0←−M µ←− An0
d1←− An1

d2←− An2
d3←− · · ·

with nl =
∑r
i=1 nil and dl = ⊕ri=1di. This can be written as

0←

M1 0 . . . 0
0 M2 . . . 0

.

.

.

.

.

. · · ·
.
.
.

0 0 · · · Mr

←
An10 0 . . . 0

0 An20 . . . 0

.

.

.

.

.

. · · ·
.
.
.

0 0 · · · Anr0

 d1← · · ·

with

di =


d11 0 . . . 0
0 d21 . . . 0
...

... · · ·
...

0 0 · · · dr1

 .
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By the small surjectivity of π : R� S, we can always lift the sequence (3.2) to
a sequence of (R ⊗k A)-modules. This says that we can choose a commutative
diagram

0

��

0

��

0

��

0

��
0 I ⊗kMoo

��

I ⊗An0
id⊗µoo

��

I ⊗An1
id⊗d1oo

��

I ⊗An2
id⊗d2oo

��

· · ·id⊗d3oo

0 MR
oo

��

(R⊗k A)n0
µRoo

��

(R⊗k A)n1
d̃R1oo

��

(R⊗k A)n2
d̃R2oo

��

· · ·
d̃R3oo

0 MS
oo

��

(S ⊗k A)n0
µSoo

��

(S ⊗k A)n1
dS1oo

��

(S ⊗k A)n2
dS2oo

��

· · ·
dS3oo

0 0 0 0
(3.3)

The R-linear composition d̃Ri ◦ d̃Ri−1 is determined by its action on A, that
is, by the homomorphism

d̃Ri ◦ d̃Ri−1 : Ani → (I ⊗A)ni−2
'→ I ⊗Ain−2

for each i ≥ 2. The composition above gives the element

ψ = {d̃Ri ◦d̃Ri−1}i≥2 ∈ ⊕i≥2 HomA(Ani , I⊗Ani−2) ' I⊗(⊕i≥2 HomA(Ani , Ani−2)).

This is a Hochshild 2-cocycle, and the obstruction for lifting MS by π is

o(MS , π) = ψ = cl({d̃Ri ◦ d̃Ri−1}i≥2) ∈ (Iij ⊗k HH2(A,Homk(Mi,Mj))).

As the cohomology is independent of the choice of resolution, so is the defined
obstruction.

If MS can be lifted to R, then we choose a lifting MR with an R ⊗k A-free
resolution which by tensoring over R by S gives a free S⊗kA-resolution of MS .
Then, as the original complex is a resolution, it follows that the obstruction
ψ = 0. This proves the only if part.

For the other direction, assume that ψ = 0. Then there exists a

ξ ∈ Homk(A, Iij ⊗Homk(Mi,Mj))

such that d(ξ) = ψ. Put

dRi = d̃Ri + b⊗ ξi, b ∈ I.

Then, because π is small, I2 = 0 and dRi ◦dRi−1 = 0, and so the middle horizontal

sequence of the diagram (3.3) with d̃R replaced by dR is a complex. Taking the
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long exact sequence of the short exact sequence of complexes (3.3), we find that
the cohomology of the middle sequence vanish, so that it is a resolution. Also,
as MR = H0((R⊗k A)n•) fits in a short exact sequence with R-flat modules in
both ends, it is an R-flat lifting of MS , i.e. an element MR ∈ DefM (R) mapping
to MS ∈ DefM (S).

We end the preliminaries fixing some notation: Let L = (lij) be an r × r-
matrix with integer coefficients. Then we denote the quiver algebra with r nodes
and lij arrows from node i to node j, including the idempotents, as

k〈L〉 =


k〈t11(1), . . . , t11(l11)〉 〈t12(1), . . . , t12(l12)〉 · · · 〈t1r(1), . . . , t1r(l1r)〉
〈t21(1), . . . , t21(l21)〉 k〈t22(1), . . . , t22(l22)〉 · · · 〈t2r(1), . . . , t2r(l2r)〉

...
...

...
〈tr1(1), . . . , tr1(l21)〉 〈tr2(1), . . . , tr2(lr2)〉 · · · k〈trr(1), . . . , trr(lrr)〉

 .

When we use the notation k[L], all the (free) polynomial algebras on the diagonal
are commutative, so that the notation 〈·〉 is replaced by square brackets [·].

The following lemma is just a computation.

Lemma 9. Let M1, . . . ,Mr be 1-dimensional points along the diagonal in k〈L〉,
L ∈ M(r,N), i.e.

Mi = k〈tii(1), . . . , tii(lii)〉/(tii(1)− α1i, . . . , tii(lii)− αlii),

αl ∈ k, 1 ≤ l ≤ lii. Then

Ext1
k〈L〉(Mi,Mj) = HH1(k〈L〉,Homk(Mi,Mj)) = ⊕lijl=1k∂tij(l),

where ∂tij(l) is differentiation with respect to tij(l), 1 ≤ i, j ≤ r.

Proof. This is an explicit computation, recalling the action of k〈L〉 on Homk(Mi,Mj).

3.1 Proof of Theorem 2, Hochschild version

We will give the proof in parallel with an example, and so when going from
the proof to the example, we will label it as such. When the reader then reads
Section 3.2, he can read this section again, and call the examples from that
section.

Let A be an associative k-algebra, letM = {M1, . . . ,Mr} be a set of r right
A-modules.

Example 4.

A =

(
k[t11(1), t11(2)] 〈t12〉

0 k[t22]

)
/(t11(1)t12 − t12t22, t

3
11(2)− t12t

2
22),

M1 = A/(t11(1), t11(2), 〈t12〉, k[t22]), M2 = A/(k[t11(1)], k[t11(2)], 〈t12〉, t22).
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Notice that M1 and M2 are the origins on the diagonal. There is no harm in
thinking of the open sets on the diagonal as a Grothendieck site, and the space
of points as a stack with a cleavage given by the entries off the diagonal. �

Now, choose a k-basis for Ext1
A(Mi,Mj)) = 〈ξij(1), . . . , ξij(lij)〉 and put

S1 = k〈lij〉/ I2(k〈lij〉).

Then the restriction of the mini-versal family M̃ to S1 is the deformation of
M = ⊕ri=1Mi in DefM (S1) given by

ρ1 : A −→ EndS1
(S1 ⊗kr M),

where ρ1(a) is induced by

ρ1(a) : M → S1 ⊗kr M = (Sij ⊗kMj),

ρ1(a)(m) = (1⊗m · a+

lij∑
l=1

tij(l)⊗ ξij(l)(m)).

This gives an isomorphism

Mor(H,S1)
∼−→ DefM (S1)

and is the basis for constructing H.

Example 5. In the example we have A = k

〈
2 1
0 1

〉
and we use Lemma 9 to

choose a basis for (Ext1
A(Mi,Mj)). That is, we choose the basis

{∂tij(l), . . . , ∂tij(lij)}

As {M1,M2} are the origins on the diagonal, we have that

∂t12(t11(1)t12 − t12t22) = t11(1)∂t12(t12) + ∂t12(t11(1))t12 − t12∂t12(t22)

−∂t12(t12)t22 = t11(1)− t22 = 0,
(3.4)

because t11(1) = t22 = 0 in this example. Also

∂t12(t311(2)t12 − t12t
2
22) = t311(2)− t222 = 0, (3.5)

which says that the Ext1-dimension drops outside the parametrization.�

Back to the general situation: Let B1 be the obvious monomial basis for S1,
explicitly that is {1, tij} where tij is short for tij(1), . . . , tij(lij). Put

R2 = k〈lij〉/ I3 π′2−→ S1
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and choose a monomial basis B′2 for kerπ′2;

B′2 = {t|deg t = 2}.

Let MS1 be the restriction of the mini-versal family M̃ to S1 previously
defined. Then, using Lemma 8 we have that

o(MS1
, π′2) =

∑
t∈B′2

〈ξ; t〉 ⊗ t ∈ (Ext2
A(Mi,Mj)⊗k Iij). (3.6)

We call MS1
a defining system for the second order Massey products

〈ξ; t〉, t ∈ B′2.

Example 6. Going into the example again, we write up a basic sequence of
maps just to keep track on the order of composition:

A→ tij ⊗ ξij → tij(tjk ⊗ ξjk(ξij)) = tijtjk ⊗ ξijξjk.
In this example, the 2. order Massey products is nothing but the cup-products
which we can write as follows, when we choose a k-basis for A/ I3(A) corre-
sponding to B′2.

∂t11(1) ∪ ∂t11(1) = (t11(1)⊗ t11(1))∨ = −d((t211(1))∨) = 0

This is because

d(t211(1)∨)(a⊗ b) = a(t11(1)∨(b)− t211(1)∨(ab) + t211(1)∨(a)b.

In the same way, we get for the others,

∂t11(1) ∪ ∂t11(2) = (t11(1)⊗ t11(2))∨ 6= 0

∂t11(2) ∪ ∂t11(1) = (t11(2)⊗ t11(1))∨ 6= 0

∂t11(1) ∪ ∂t12
= (t11(1)⊗ t12)∨ 6= 0

∂t11(2) ∪ ∂t12
= (t11(2)⊗ t12)∨ = −d((t11(2)t12)∨) = 0

∂t12
∪ ∂t22

= (t12 ⊗ t22)∨ 6= 0

�

In general, choose dual bases {yij(m)}e
2
ij

m=1 for the dual spaces Ext2
A(Mi,Mj)

∨.
Then we can write

o(MS1
, π′2) =

∑
t∈B′2

〈ξ; t〉 ⊗ t = (
∑
m

y∨ij(m)⊗
∑
t∈B′2

yij(m)(〈ξ; t〉)t). (3.7)

Put
f2
ij(m) =

∑
t∈B′2

yij(m)(〈ξ; t〉)t,

and put S2 = R2/(f
2

ij
)

π2−→ S1. Choose a monomial basis B2 ⊆ B′2 for kerπ2

and put B2 = B1 ∪B2. Also notice that now o(M1, π2) = 0.
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Example 7. In our quiding example,

d((t11(1)t11(2))∨) = (t11(1)⊗ t11(2))∨ + (t11(2)⊗ t11(2))∨,

d((t11(1)t12)∨) = (t11(1)⊗ t12)∨ + (t12 ⊗ t22)∨.

We choose one of each of these as dual basis elements, i.e.

y11 = (t11(1)⊗ t11(2))∨, y12 = (t11(1)⊗ t12)∨.

Then we have

f2
11 = t11(1)t11(2)− t11(2)t11(1), f2

12 = t11(1)t12 − t12t22.

We let

B2 = B′2 \ {t11(2)t11(1), t12t22},

and then o(M1, π2) = 0. �

Because we actually choose bases, we have a unique relation in S2. For any
monomial u ∈ S2,

u =
∑
m∈B2

βu,m m.

For any u ∈ B2 we have that∑
n∈B′2

βn,u〈ξ;n〉 = βu = 0

because o(MS1 , π2) = 0. For each u ∈ B2, choose an αu ∈ Homk(A,Homk(Mi.Mj))
such that d(αu) = −βu. This defines a lifting of MS1 to S2 by putting

ρ2 : A→ EndS2
(S2 ⊗k A), ρ2(a) =

∑
n∈B2

n⊗ αn,

where α1 = id, αtij(l) = ξij(l).

Example 8. In the example, for the cup-products that are identically zero, there
are no relations and we choose the corresponding αt = −(t)∨. The non-zero cup-
products are represented in the relations

βt11(1)t11(2) = (t11(1)⊗ t11(2))∨ + (t11(2)⊗ t11(1))∨ = d((t11(1)t11(2))∨)

βt11(1)t12
= (t11(1)⊗ t12)∨ + (t12 ⊗ t22)∨ = d((t11(1)t12)∨).

We let the explicit definition of ρ2 be given by intuition. �

Now follows the general induction step, which is the tricky part: Assume
that SN−1 has been constructed such that MS1

can be lifted to MSN−1
. Also
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assume that monomial bases BN−1 and BN−1 has been chosen due to the claims
in the following induction step. Put

RN = k〈lij〉/(IN+1 + I(fN−1
ij ) + (fN−1

ij ) I)
π′N−→ SN−1.

Write

kerπ′N = (fN−1
ij )/(I(fN−1

ij ) + (fN−1
ij ) I)⊕ JN

where

JN = IN / IN+1 + IN ∩(fN−1
ij ))

and chose a monomial basis B′N for JN such that for each t ∈ B′N we have
t = u · s or t = s · u for some u ∈ BN−1. Put

B
′
N = BN−1 ∪B′N .

Then for any monomial u with deg u < N+1, we have a unique relation in RN :

u =
∑
t∈BN

β′t,ut+
∑
i,j,m

β′uf
N−1
ij (m)

and we have that

o(MSN−1
, π′N )

=
∑
t∈BN

β′t,ut+
∑
i,j,m

yij(m)∨ ⊗ fN−1
ij (m) +

∑
i,j,m

yij(m)∨ ⊗ (
∑

t∈B′N−1

ci,j,m,t ⊗ t).

Then MSN−1
is called a defining system for the Massey products

〈ξ; t〉 =
∑
i,j,m

ci,j,m,tyij(m)∨ ∈ Ext2
A(Mi,Mj), t ∈ B′N−1.

For the induction step, we put

fNij (m) = fN−1
ij (m) +

∑
t∈B′N−1

yij(m)(〈ξ; t〉)t,

we put

SN = RN/(f
N
ij (m)), πN : SN → SN−1.

We choose a monomial basis BN ⊆ B′N for kerπN and put BN = Bn ∪ BN−1.
We can lift MSN−1

to MSN because the obstruction vanish, and we continue by
induction. We procrastinate the conclusion until we have finished the example.
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Example 9. We start by commenting on the computational aspect of liftings
because this most naturally belongs to the example. The identity o(MSN−1

, πN ) =
0 translates to: For each m ∈ BN ,

bm =

N−2∑
l=0

∑
n∈B′2+l

βn,m〈ξ;n〉 = 0.

To define a lifting is then equivalent to, for each m ∈ BN , choose αm ∈
(Homk(A,Homk(Mi,Mj))) such that d(αm) = −bm.

With this comment, we are ready to compute the third order Massey prod-
ucts: We start by choosing a monomial basis B′3, that is, we take all third degree
monomials except tij{t11(2)t11(1), t12t22}tij . Then the prime condition is satis-
fied, and the following products are computed:

〈ξ; t311(1)〉 = αt11(1)αt211(1) + αt211(1)αt11(1) = d((t311(1))∨) = 0

〈ξ; t211(1)t11(2)〉 = αt211(1)αt11(2) + αt11(1)αt11(1)t11(2) = d((t211(1)t11(2))∨) = 0

...

〈ξ; t12t
2
22〉 = αt12αt222

+ αt12t22αt22 6= 0 ( because in A, t12t
2
22 = t311(2)t12)

...

Notice in particular that we have to choose defining systems that are non-zero
all the way. We get

f3
12 = f2

12 = t11(1)t11(2)−t11(2)t11(1), f3
12(1) = t11(1)t12−t12t22, f

3
12(2) = t12t

2
22.

We continue the algorithm by by choosing bases, choosing liftings, and start
computing 4th order Massey products. Everything works out as trivial as before,
exept

〈ξ; t311(2)t12〉 = −y12(2)∨,

so that
f3

12(2) = t12t
2
22 − t311(2)t12.

All other fourth order relations stay unaltered, and these are the final relations.
�

We have proved the following.

Theorem 3. The noncommutative deformation functor

DefM : ar → Sets

is prorepresented by
Ĥ = lim

−→
n

k〈lij〉/(f2+n
ij (lij))

with proversal family given by M̃ = lim
−→
n

MS1+n
.
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Example 10. In the example, this follows by the computation above:

ĤM =

k

〈
2 1
0 1

〉
(t11(1)t11(2)− t11(2)t11(1), t11(1)t12 − t12t22, t311(2)t12 − t12t222)

3.2 Proof of Theorem 2, Yoneda version

Now, in the example of Section 3.1 included in the proof of the theorem, we
replace all the computations in the Hochschild complex to the Yoneda complex.
Recall the example,

A =

(
k[t11(1), t11(2)] 〈t12〉

0 k[t22]

)
/(t11(1)t12 − t12t22, t

3
11(2)− t12t

2
22),

M1 = A/(t11(1), t11(2), 〈t12〉, k[t22]), M2 = A/(k[t11(1)], k[t11(2)], 〈t12〉, t22).

We have that M1 and M2 are the origins on the diagonal.

We need free resolutions, and include a k-basis for Ext1
A(Mi,Mj) in the

diagram:

0 M1
oo Aoo A4

ξ1
11(1)

��
ξ1
11(2)

��

oo d
1
1oo A3

ξ2
11(1)

~~
ξ2
11(2)

~~

d1
2oo . . .oo

0 M1
oo Aoo A4

ξ1
12

��

d1
1oo A3

ξ2
12

~~

d1
2oo . . .oo

0 M2
oo Aoo A2

ξ1
22

��

d2
1oo 0

~~

oo . . .oo

0 M2
oo Aoo A2

d2
1oo 0oo . . .oo
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d1
1 = (t11(1), t11(2), t12, e2), d1

2 =


t11(2) t12 0
−t11(1) 0 t211(2)t12

0 −t22 −t222

0 0 0


d2

1 = (e1, t22)

ξ1
11(1) = (1, 0, 0, 0), ξ2

11(1) =


0 0 0
−1 0 0
0 −1 0
0 0 0



ξ1
11(2) = (0, 1, 0, 0), ξ2

11(2) =


1 0 0
0 0 −t11(2)t12

0 0 0
0 0 0


ξ1
12 = (0, 0, 1, 0), ξ2

12 =

(
0 0 0
0 1 t22

)
ξ1
22 = (0, 1)

Notice that we have only included the non-trivial relations, e.g. e2 · t12 =
0 is not included above, as those above are the only one that influence the
computation.

3.2.1 Second order Massey products (cup-products)

〈t11(1)t11(2)〉 = (−1, 0, 0)

〈t11(2)t11(1)〉 = (1, 0, 0)

〈t211(2)〉 = (0, 0,−t11(2)t12) = d





(
0
)


0 0 0

0 0 −t12

0 0 0

0 0 0




〈t11(1)t12〉 = (0,−1, 0)

〈t12t22〉 = (0, 1, t22) = (0, 1, 0) + d



(

0
)(

0 0 0

0 0 1

) 
This gives the relations

f11 = t11(1)t11(2)− t11(2)t11(1), f12(1) = t11(1)t12 − t12t22.

We choose monomial bases the following way: B2 = B′2\{t11(2)t11(1), t11(1)t12}.
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We choose a defining system:

αt211(2) =



(
0
)


0 0 0

0 0 t12

0 0 0

0 0 0

 , αt12t22 =


(

0
)(

0 0 0

0 0 −1

)
.

We choose all other degree two to be 0. This is then a defining system for the
Massey products 〈m〉, m ∈ B′3,

B′3 = {t : |t| = 3} \ tij(l) · {t11(2)t11(1), t11(1)t12} · tij(l),

meaning multiplication on one of the right or left side.

3.2.2 Third order Massey products

This must be deg 1 + deg 2 = deg 3, so because of the choice of defining system,
only the following needs computation:

〈t211(2)t11(2)〉 = (1, 0, 0, 0)


0 0 0
0 0 t12

0 0 0
0 0 0

 = (0, 0, t12) = d





(0)
0 0 0

0 0 0

0 0 1

0 0 0




〈t12t22 · t22〉 = (0, 1)

(
0 0 0
0 0 −1

)
= (0, 0,−1).

This gives the following relations.

f11 = t11(1)t11(2)− t11(2)t11(1), f12(1) = t11(1)t12 − t12t22, f12(2) = t12t
2
22.

So we choose B3 = B′3 \ {t12t
2
22}, and choose the defining system

αt311(2) =



(
0
)


0 0 0

0 0 0

0 0 −1

0 0 0
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3.2.3 Fourth order Massey products

All deg 2 times deg 2 vanish, so we are left with the following possibilities:

〈t311(2)t11(1)〉 = 0

〈t311(2)t11(2)〉 = (0, 0, 1, 0)


0 0 0
0 0 0
0 0 −1
0 0 0

 = (0, 0,−1, 0).

This gives the relations:

f11 = t11(1)t11(2)− t11(2)t11(1), f12(1) = t11(1)t12 − t12t22,

f12(2) = t12t
2
22 + t311(2)t12.

These are seen to be the final relations: We can write up the correspond-
ing complex and see directly that d2 = 0. This follows because all 4th order
defining systems can be chosen to be zero. Any degree five or higher must be
combinations of the defining systems with one of degree at least four, and this
proves the condition. Notice the magical +-sign in the last relation. This could
eventually be fixed by sending t11(2) to −t11(2).

3.3 Local representability of the deformation func-
tor

Computing the local formal moduli of the family of simple A-modules when A
is a QAR by the two different methods, we observe that we can put a criterion
on the basis-elements generating the tangent space, implying that the lifting
procedure eventually stops. It then follows that the power series giving the
relations in Ĥ(M1, . . . ,Mr) are polynomials.

The criterion we put on the basis-elements of

〈ξ1, . . . , ξl〉 = H1(YC•(M,M)) ∼= H1(HC•(M,M)) ∼= Ext1
A(M,M)

says that it is possible to choose representatives {ξ1, . . . , ξl} for the cohomology
classes such that the resulting representatives of the cup-products never differ
by a non-zero coboundary. This says that we exclude the possibility that

ξiξj − ξi′ξj′ = d(α) 6= 0.

We observe that then either of the Yoneda and Hochschild complexes are L∞-
algebras, so we choose that name for our criterion.

Definition 12. Let A be quiver algebra with relations, and let P1, . . . , Pr be a set
of r simple A-modules. Then we call ĤA(P ) the completion of A in P = ⊕ri=1Pi.

Remark 1. In the paper [4], we prove that this completion is complete, that is,
completing once more in the same set of points results in an isomorphic algebra.
This justifies that we can call this the completion of A.
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Definition 13. A functor F : ar → Sets is called locally representable if there
exists a (finitely generated) quiver algebra A with relations, such that ÂP1,...,Pr

pro-represents F . We call A an algebraization of Â.

Theorem 4. Let A be an associative, finitely generated k-algebra. Assume
that M = {M1, . . . ,Mr} is a set of r right, finitely generated A-modules. Let
M = M1 ⊕ · · · ⊕Mr. The noncommutative deformation functor

DefM : ar → Sets

is locally representable if and only if the tangent space of the noncommutative
deformation functor gives a true ∞-structure.

Proof. Assume that the tangent space of the noncommutative deformation func-
tor gives a true∞-structure. We have the following commutative diagram of free
resolutions and 1-cycles ξi, 1 ≤ i ≤ dimk representing a basis for Ext1

A(M,M):

0 Moo An0oo An1oo

...

ξ1
1

||
ξl1

||

An2oo

...

ξ1
2

||
ξl2

||

An3oo

...

ξ1
3

||
ξl3

||

· · ·oo

...
||
||

0 Moo An0oo An1oo An2oo An3oo · · ·oo

(3.8)

It is always enough to consider the two first mappings {ξi1, ξi2} in the complex,
and the criterion gives that we might assume that the cup-products never differ
by a non-zero coboundary. This says that we can choose a second order defining
system with first coordinate equal to 0, i.e. αt = {0, αt,2}. By induction, the
criterion holds for each lifting, i.e. all higher order generalized matric Massey
products, and all higher order defining systems can be choosen on the same
form. In addition, the degree of of the entries in each defining system drops,
and they eventually vanish, proving that the process stops.

Conversely, assume thatH represents the noncommutative deformation func-
tor locally by localizing in P = P1 ⊕ · · · ⊕ Pr. By Lemma 9, we can choose a
resolution of P on the form (3.8) with A replaced by H. By Morita equivalence,
that is tensoring over H by A, we get a resolution satisfying the criterion.

Corollary 1. If the tangent space of of the noncommutative deformation func-
tor gives a true ∞-structure, the prorepresenting hull is determined by the gen-
eralized Massey products in the DGLA governing the deformation theory.
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Chapter 4

Noncommutative schemes

In the proof of Laudal’s structure theorem, Theorem 1, we actually lift the
restriction of the pro-versal family explicitly by defining its A-module structure.
That is, with the notation above, let H(M) = H = (Hij). Then we have defined
the pro-versal family MH ∈ DefM (H) by the morphism

η : A→ (Hij ⊗k Homk(Mi,Mj)) = EndH(MH).

Notice that EndH(MH) is a k-algebra, and that M1, . . . ,Mr are exactly the the
simple EndH(MH)-modules. We actually have the following:

Theorem 5. (A generalized Burnside’s theorem) Let A be a finite dimensional
k-algebra, k algebraically closed. LetM = {M1, . . . ,Mr} be the family of simple
(right) A-modules. Then the morphism of the versal family

η : A→ OA(M) = EndH(MH)

is an isomorphism.

Proof. The proof can be found in the book [3]. For short, we state that the in-
jectivity follows by the theory of iterated extensions which computes the kernel,
and the surjectivity then follows by the Wedderburn-Malcev structure theo-
rem.

One of the main consequences of Theorem 5 is that the O-construction is
closed. This is the content of the next result which will be essential in the
construction of noncommutative affine schemes.

Corollary 2. Let M = {M1, . . . ,Mr} be a set of r finite dimensional, right
A-modules. Then M is the set of simple OA(M)-modules, and

OO
A(M)(M) ' OA(M),

i.e. the O-construction is closed.

37
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Proof. First, notice that

OA(M) = EndH(MH) = (Hij ⊗k Homk(Mi,Mj))→ ⊕ri=1 Homk(Mi,Mi)

so that the Mi’s are right OA(M)-modules. Burnside’s theorem states that
when k is algebraically closed, M is simple if and only if the structure morphism
is onto, proving that in this case,M is exactly the set of simpleOA(M)-modules.

We have that OA(M)/ In is finite dimensional for n ≥ 0. It follows from
Theorem 5 that

OA(M)/ In
∼→ OO

A(M)(M)/ In

is an isomorphism for each n. By the completeness of OA(M) we have

OA(M) = lim
←
n

OA(M)/ In ' lim
←
n

OO
A(M)(M)/ In ' OO

A(M)(M)

4.1 Commutative affine schemes

We are looking for a definition that can be generalized. The main obstacle is that
noncommutative k-algebras lack the utility of localization. Using deformation
theory, one of our main results is that we can define the localization of A in
an element f ∈ A. In this subsection we recall the functorial construction of
sheaves and schemes in the ordinary noncommutative situation.

We define sheaves on a topological space by limits: Let X be a topological
space. Let Top(X) be the category with objects the open subsets of X and
morphisms the inclusions. A presheaf in a category C on X is a contravariant
functor

F : Top(X)→ C.

Such a presheaf is called a sheaf if in addition

F(U) = lim
←−
V⊆U

F(V )

for each open U ⊆ X.
Notice that the universal properties of the limit gives the properties of exis-

tence and uniqueness given on elements in Hartshorne [5].
For a commutative k-algebra A which we assume to be a finitely presented

domain, the affine scheme structure (SpecA,OSpecA) can be defined as follows.
First of all the Zariski topology X = SpecA is generated by the open sets
D(f), f ∈ A. Consider the canonical morphism

ηf : A→
∏

p∈D(f)

Âp = lim
←

p∈D(f)

Âp.
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Lemma 10. Let O(D(f)) be the subring of lim
←

p∈D(f)

Âp generated by ηf (A) and

η(f)−1. Then O(D(f)) ' Af .

Proof. Because ηf (f) is a unit in lim
←

p∈D(f)

Âp there is a homomorphism φ : Af →

O(D(f)) given by φ(a/fn) = ηf (a)η(f)−n. This homomorphism is both surjec-
tive and injective, so an isomorphism.

The following definition is equivalent to the one given in Hartshorne [5].

Definition 14. Let A be a commutative k-algebra. Let SpecA be the set of
prime ideals p ⊂ A with the topology generated by the open sets D(f) = {p ∈
SpecA|f /∈ p}, f ∈ A. We define a sheaf of rings on SpecA by

OSpecA(U) = lim
←−

D(f)⊆U

O(D(f)).

Then (SpecA,OSpecA) is a locally ringed space coinciding with the ordinary
affine scheme associated to A.

4.2 Noncommutative affine varieties

For varieties, i.e. when A is a finitely generated integral domain, finitely pre-
sented over an algebraically closed field k of characteristic 0, the ringed space
(SpecA,OSpecA) ' (max(A),Omax(A)) can be generalized directly to the the
noncommutative situation. The general embedding of Schk in ncSchk is con-
sidered in section 4.7.

Definition 15. We let SimpA denote the set of all simple (right) A-modules.
For f ∈ A we define the basic open subset D(f) ⊆ SimpA by

D(f) = {M ∈ SimpA | ηM (f) : M →M is invertible }

where for each M ∈ SimpA, ηM (f)(m) = m · f is multiplication by f .

The proof of the following fact is straight forward.

Lemma 11. The family of sets D(f), f ∈ A, is a basis for a topology on
SimpA.

For an associative k-algebra A, for a set M = {M1, . . . ,Mr} of simple A-
modules, Corollary 2 says that the k-algebra

OA(M) = EndH(M)(M)

has exactly the simple right A-modules M = {M1, . . . ,Mr}. There exists a
k-algebra homomorphism

A
ηM→ OA(M)

defining the semi-universal family.
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Definition 16. We call the multi-pointed algebra AM = OA(M) the multi-
localization of A in M.

Lemma 12. i) If M⊆ D(f) then ηM(f) is a unit in AM.

ii) Let ηf : A → lim
←−

M⊂D(f)

AM be the limit of the morphisms ηM : A → AM.

Then ηf (f) is a unit.

Proof. Because ηM is given deformation theoretically as ηM(a) = a+ ξ(a) with
ξ(a) in the Jacobson radical, it follows by definition of D(f) that ηM (f) is
invertible, i.e. a unit in AM. Now ii) follows from the sheaf condition: An
element that is a unit on all stalks can be lifted to a unit globally.

Definition 17. Let A be an associative k-algebra, f ∈ A. Then we define Af
as the subring of lim

←−
M⊂D(f)

AM generated by ηf (A) together with η−1
f (f).

Definition 18. A ringed space (X,OX) is called a multi-locally ringed space
if for each finite set of points P the stalk OX,P is a multi-pointed ring. A
morphism (f, f#) : (X,OX) → (Y,OY ) of ringed spaces is multi-local if the

limit morphism f#
P : OY,f(P ) → OX,P is a morphism of multi-pointed rings.

Definition 19. (Noncommutative affine scheme) Let A be an associative k-
algebra. Let SimpA be the set of simple, right A-modules with the topology
generated by the base {D(f), f ∈ A}. Let OSimpA be the sheaf of k-algebras
defined by OSimp(A)(U) = lim

←−
D(f)⊆U

Af . Then

(SimpA,OSimpA)

is a multi-locally ringed space called the affine noncommutative scheme associ-
ated to A.

Notice that it follows that the stalk of the sheaf OSimpA in the finite point-
setM is OSimpA,M = lim

−→
M⊂P (U)

OSimp(A)(U) = AM so that the ringed space above

is indeed multi-local.

Example 11. If A is commutative and finitely presented, then it is of the
form A = k[x1, . . . , xn]/I for an ideal I, and there is a bijective correspondence
between X = SimpA and the closed points of SpecA, given by

M 7→ Ann(M)

for any simple module M ∈ X = SimpA. In fact, M = A/m for a maximal
ideal m ⊆ A, and A/m ' A/m′ as right A-modules if and only if the maximal
ideal m = m′ coincide. For any f ∈ A, we have that M · f = M if M · f 6=
0, since Mf ⊆ M is an A-submodule in the commutative case. Therefore, a
simple module M = A/m ∈ D(f) if and only if f /∈ m. It follows that when
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X = SimpA has the Jacobson topology and SpecA has the Zariski topology, the
bijective correspondence between X = SimpA and the closed points in SpecA is
a homeomorphism.

Example 12. Let X = SimpA for the noncommutative algebra A given by

A =

(
k[x11] 〈x12〉

0 k[x22]

)
.

In other words, A is a tensor algebra of the k2-bimodule V , where dimk Vij = 1
for (i, j) = (1, 1), (1, 2), (2, 2) and V21 = 0. Then we have that

X = {Mα : α ∈ k} ∪ {Nβ : β ∈ k} = A1
∐

A1

where Mα = k[x11]/(x11−α) and Mβ = k[x22]/(x22−β). As a topological space,
X is a disjoint union of the two affine lines, since we have that D(e1) = {Mα :
α ∈ k} and D(e2) = {Nβ : β ∈ k} are the connected components of X.

The multi-localization in the finite set M = {Mα, Nβ} is given as

AM =

(
H11(M)⊗k Endk(Mα,Mα) H12(M)⊗k Homk(Mα, Nβ)
H21(M)⊗k Homk(Nβ ,Mα) H22(M)⊗k Endk(Nβ , Nβ)

)
.

This is easily computable as there are no non-trivial relations in the definition
of A, and as the two simple modules under consideration is both of k-dimension
1. We get

AM =

(
H11(M) H12(M)
H21(M) H22(M)

)
=

(
k � x11 � � x12 �

0 k � x22 �

)
.

Also notice that this extends to finite sets with more than two elements, e.g.
for M′ = {Mα,Mα′ , Nβ} we get

AM =

k � x11 � 0 � x13 �
0 k � x22 � � x23 �
0 0 k � x33 �

 ,

for M′′ = {Mα, Nβ , Nβ′} we get

AM =

k � x11 � � x12 � � x13 �
0 k � x22 � 0
0 0 k � x33 �

 ,

and there are (natural) canonical restriction morphisms

rM⊆M′ : AM′ → AM, rM⊆M′′ : AM′ → AM.
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4.3 Noncommutative affine schemes of geomet-
ric algebras

The main objective for the present geometric definition of nc affine schemes is
the interpretation to the class of finitely presented tensor-algebras with commu-
tative k-algebras on the diagonal. These are essential for solving problems in
(commutative) algebraic geometry by noncommutative algebraic geometry, and
we call them geometric algebras.

These algebras are most conveniently introduced by examples, where the
generalization is clear.

4.4 Guiding example

Consider a line and a parabola in 2-space intersecting in the origin.

y = x2 and y = cx.

We identify the points in the intersection of these curves. Consider the following
k-algebra.

R =

(
k[t11(1), t11(2)] k〈t12(1)〉

k〈t21(1)〉 k[t22(1), t22(2)]

)
〈t12(1)(t22(1)− t222(2)), (t22(1)− ct22(2))t21(1)〉

=:

F

(
2 1
1 2

)
(f12, f21)

(4.1)

We will study its affine nc scheme (SimpR,OSimpR), and eventually, prove
that O(SimpR) ' R.

In general, the simple modules are the disjoint union of the simple modules
on the diagonal. In our case this gives

SimpR = V (k[t11(1), t11(2)])
∐

V (k[t22(1), t22(2)]) = V1

∐
V2

where we for a k-algebra A let V (A) be its variety. There is a possibility for
having relations on the diagonal, and the generalization is clear. Put

Mi(a, b) = k[tii(1), tii(2)]/(tii(1)− a, tii(2)− b)

for i = 1, 2 and a, b ∈ k. As the topology on each of the affine varieties Vi is
well known, we find that the topology on SimpR is the product topology of V1

and V2, just saying that SimpR = V1

∐
V2 as a topological space.

Recall the following from [2].

Lemma 13. Consider the geometric r × r algebra

F = F (dij) =

k[t11(1), . . . , t11(d11)] . . . 〈t1r(1), . . . , t1r(d1r)〉
...

. . .
...

〈tr1(1), . . . , tr1(dr1)〉 · · · k[trr(1), . . . , trr(drr)]

 .



4.4. GUIDING EXAMPLE 43

Let

Mi(P ),Mj(Q)

be two simple F -modules, each represented by its corresponding point at its cor-
responding entry on the diagonal. Then

Ext1
F (Mi(P ),Mj(Q)) =

∑
k

∂

∂tij(l)
(P,Q).

From Lemma 13 it follows that for R = F/f where f = (fij(lij)) is a finitely
generated two-sided ideal we have that

Ext1
R(Mi(P ),Mj(Q)) = Ext1

F (Mi(P ),Mj(Q))/(
∂f

∂tij
(P,Q))

where the ideal in the quotient means the derivations of all polynomials in f in
all the variables tij(lij) and evaluated in the point P on the left, Q on the right.
This again says that the relations in f must satisfy ∂(f) = 0.

It is well known that for A a finitely presented commutative k-algebra, k
algebraically closed, m1,m2 two different maximal ideals,

Ext1
A(A/m1, A/m2) = 0.

From this it follows that if we have two different points P,Q in the same entry
on the diagonal, that is the set of simple modules {Mi(P ),Mi(Q)}, P 6= Q, then

Ext1
R(Mi(P ),Mi(Q)) = Ext1

k[tii(1),tii(2)](Mi(P ),Mi(Q)) = 0.

We sum up the content of this section in the following.

Corollary 3. Let R = F/f be geometric. Then there are the following possi-
bilities for pairs of simple (one-dimensional, right) k-modules and their tangent
spaces:

A duplicate of a point in one diagonal entry. Then

Ext1
R(Mi(P ),Mi(P )) = Ext1

F (Mi(P ),Mi(P ))/(
∂fii
∂tii

(P )).

Two different points P 6= Q in the same entry. Then

Ext1
R(Mi(P ),M(Q)) = 0.

Two points P and Q in different entries of the diagonal. Then

Ext1
R(Mi(P ),Mj(Q)) = Ext1

F (Mi(P ),Mj(Q))/(
∂f

∂tij
(P,Q)).
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We will start by applying the general concepts to our present example, with
the given geometric algebra R from (4.1). We start by considering two points
{M1(a, b),M2(c, d)} for a particular choice of coordinates on the diagonal. We
make a linear coordinate change, so that it suffices, without loss of generality,
to consider the set of points

M(x, y) = {M1(0, 0) = M1,M2(x, y)}, (x, y) ∈ k2. (4.2)

The computations given by this choice of a finite set of simple modules will
give us the ability to state the results for the other necessary computations
(other selections of finite point-sets).

From Corollary 3 we find that the tangent space in our example is given by

(1.1)

Ext1
R(M1,M1) = Ext1

F (M1,M1) = k
∂

∂t11(1)
⊕ k ∂

∂t11(2)

(1.2)

Ext1
R(M1,M2(x, y)) = (k

∂

t12(1)
)/(

∂f12

∂t12(1)
)

(2.1)

Ext1
R(,M2(x, y),M1) = (k

∂

t21(1)
)/(

∂f21

∂t21(1)
)

(2.2)

Ext1
R(M2(x, y),M2(x, y)) = Ext1

F (M2(x, y),M2(x, y)) = k
∂

∂t22(1)
⊕k ∂

∂t22(2)

From this we read that the tangent space dimensions are

(
2 1
1 2

)
if the point

is (x, y) = (0, 0), otherwise the tangent space dimension is

(
2 0
0 2

)
.

It follows that it is sufficient to consider the set of two simple modules given
by

{M1(0, 0),M2(0, 0)} = {M1,M2}.

We now use the algorithm given in [3] to compute the hull of the deformation
functor in this finite point-set, the result is

R̂M = lim
←−

Sn =

(
kJt11(1), t11(2)K k � t12(1)�
k � t21(1)� kJt22(1), t22(2)K

)
〈t12(1)(t22(1)− t222(2)), (t22(1)− ct22(2))t21(1)〉

=:

F

((
2 1
1 2

))
(f12, f21)

.

We have an injection
ι : R ↪→ R̂M,
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and the image is the (algebraic) multi-pointed ring

RM = im(ι) ⊆ R̂M.

This example can be generalized to any geometric k-algebra R, and we have
the localization morphisms

R→ RM

for every finite set of simple modules M, and because the construction of the
pro-representing hull is natural, this is universal, making R unique.

Corollary 4. For a geometric kr-algebra R,

OSimpR(SimpR) = R.

Proof. Given any other geometric QAR R′ with multi-localizations R′M, this
has to contain all relations and so the localization morphisms factors through
R.

Proposition 1. Let S be a singularity. Then, adding tangents as in the guiding
example 4.4 tells us that that there exists a geometric algebra (SimpR,OSimpR)→
(SpecS,OSpecS) that is a rational morphism to the singularity, and eventually
a noncommutative resolution.

4.5 Noncommutative varieties

Definition 20. A noncommutative (nc) variety is a multi-locally ringed space
(X,OX) such that X has a covering of open affine subsets, i.e. X = ∪iUi such
that

(Ui,OX |Ui) ' (Simp(Ai),OSimp(Ai))

for some k-algebras Ai, separated and of finite type over k, running through
an index set. A morphism of nc schemes, is a morphism in the category of
multi-locally ringed spaces.

The noncommutative deformation theory tells us that we can study the
geometry of a k-algebra A by its representations. Thus we already have the
very short and precise definition of a noncommutative variety.

Definition 21. Let A be an integral, separated k-algebra of finite type over k. A
family of A-modules M is called an affine variety for A if the pro-versal family

ηM : A→ OA(M)

is an isomorphism of k-algebras.

The background for this definition is the generalized Burnside’s theorem,
Theorem 5, which implies that for a finite dimensional k-algebra A we have
that SimpA is a scheme for A.
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Proposition 2. When A is a geometric k-algebra, SimpA is an affine variety
for A.

Proof. We have that ι : A→ OSimp(D(1)) = OSimp(SimpA) is injective because
A is geometric, and surjective onto its image.

When the ordinary commutative schemes X are algebraic varieties over k,
i.e. integral, separated schemes of finite type over k, the embedding of schemes
works directly because of the reconstruction theorem A ' OSimpA(SimpA)
which is Proposition 2.6 in [5] stating that the maximal ideals are sufficient for
reconstructing the k-algebra. This says that the two definitions are equivalent.

Corollary 5. Let X be a commutative variety. Then the set of closed points
Simp(X) ⊂ X is a variety for X.

Proof. This means that SimpX is locally a scheme for A for an open covering
by SpecA. This follows from Proposition 2.

Remark 2. We would like to give a remark on noncommutative schemes that
does not come from commutative ones. This means that there is no algebraic (=
finitely generated) k-algebra A such that O(SimpA) ' A. This is even worse:
There is no reductive group action on an affine commutative variety resulting in
these noncommutative schemes, so they are not even derived from commutative
schemes.

The most trivial example of this is the noncommutative k-algebra in two
variables,

A = k〈x, y〉.

There exist simple modules of any dimension, see Eriksen [2], and so the ring
of observables is necessarily a complete noncommutative kr-algebra which is not
the completion of a kr-algebra with one-dimensional simple modules only on the
diagonal.

4.6 Deformations due to diagrams

To give the stated embedding in the general situation, we need to refine the
families of modules.

Definition 22. A diagram of A-modules is a set of right A-modules M =
{Mi}i∈I , together with a set of A-module homomorphisms Γij ⊆ HomA(Mi,Mj)
for each pair of modules. The idempotents ei ∈ EndA(Mi) is supposed to be
included in the diagram. We will write c = (M,Γ), and |c| =M.

Consider the diagram c where M = {M1, . . . ,Mr} is a finite set of right A-
modules together with a finite path of A-module homomorphisms Γ, consisting
of the idempotents {e1, . . . , er} together with γij(lij) ∈ HomA(Mi,Mj), 1 ≤
i, j ≤ r, 1 ≤ lij ≤ dij . We let k[Γ] denote the path algebra, and we let
A[Γ] = k[Γ]⊗k A. Then M = ⊕ri=1Mi is a right A[Γ]-module, with action given
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by mi · ej = δijmi and M · I(A[Γ]) = 0, where I(A[Γ]) denotes all paths of
length at least one. This also makes the set M = {M1, . . . ,Mr} of A-modules
to a set of right A[Γ]-modules, commuting with the actions of A and k[Γ] by the

embeddings A
∆→ A[Γ] and k[Γ] ↪→ A[Γ] (notice that ∆(a) =

∑r
i=1 aei). The k-

algebra we are going to define depends on the definitions of the ringsO(M, A[Γ])
and O(M, k[Γ]) (see Theorem 5) which are the ring of immediate observables
of the family of A[Γ]-modules, respectively k[Γ]-modules M. The second is a
particular coincidence of the first with A = k, it will suffice to consider the first
one. Because the tangent space determines the base space of O(M, A[Γ]), that
will be our starting point. We start by computing Ext1

A[Γ](Mi,Mj) for all pairs
of A[Γ]-modules, using the isomorphism

Ext1
A[Γ](Mi,Mj) ' HH1(A[Γ],Homk(Mi,Mj))

' Derk(A[Γ],Homk(Mi,Mj))/ Inner,

where we let Homk(Mi,Mj) be the A[Γ]-module with left-right action (a ·
φ)(vi) = φ(vi · a) and (φ · a)(vi) = φ(vi) · a.

Ext1
A[Γ](Mi,Mi)

A derivation δ : A[Γ]→ Homk(Mi,Mi) is given by its action on the genera-
tors as k-algebra, and its action on A. We find δ(ei) = δ(e2

i ) = 2δ(ei) = 0, and
for j 6= i, δ(ej) = δ(e2

j ) = ejδ(ej) + δ(ej)ej = 0. For (k, l) 6= (i, i), we have for
k 6= i that

δ(γkl) = δ(ekγkl) = ekδ(γkl) + δ(ek)γkl = 0,

and for l 6= i that

δ(γkl) = δ(γklel) = γklδ(el) + δ(γkl)el = 0.

There are no restrictions on δ(γii(l)). Thus we have one α(l) ∈ Endk(Mi)
for each l, 1 ≤ l ≤ dii. We find that adα(γii(l)) = [γii(l), α] = αγii(l) −
γii(l)α = 0 by the very definition of the action of A[Γ] on M , and so the inner
derivations only have influence on the derivation δ : A→ Endk(M) determining
a derivation. We conclude that

Ext1
A[Γ](Mi,Mi) ∼= Ext1

A(Mi,Mi)⊕ Endk(Mi)
dii .

Ext1
A[Γ](Mi,Mj)

In this case, if δ : A → Homk(Mi,Mj) is any derivation, we find δ(ep) = 0,
p 6= i, j and δ(ei) + δ(ej) = 0. For p 6= i, we find δ(γpq) = δ(epγpq) = epδ(γpq) +
δ(ep)γpq = 0, for q 6= j we have δ(γpq) = δ(γpqeq) = γpqδ(eq) + δ(γpq)eq = 0.
There are no restrictions on δ(γij(l)). As [ei, δ(ei)] = δ(ei), [ej , δ(ei)] = −δ(ei),
[γij , δ(ei)] = 0, it follows that the derivation given by δ(ei) = α, δ(ej) = −α,
and δ(γij(l)) = 0 is an inner derivation. The relation aek − eka = 0 implies
aδ(ek) + δ(a)ek − ekδ(a) − δ(ek)a = 0 and gives δ(a) = [a, δ(ei)] for k = i,
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δ(a) = −[a, δ(ej)] for k = j, and nothing for k 6= i, j. This means that any
derivation is an inner derivation with respect to A.

Finally, the relation γpqa − aγpq = 0 gives γpqδ(a) + δ(γpq)a − aδ(γpq) −
δ(a)γpq = 0 ⇔ δ(γpq)a = aδ(γpq) which says that δ(γpq) is A-linear. We con-
clude that

Ext1
A[Γ](Mi,Mj) ∼= HomA(Mi,Mj)

dij .

We have proved:

Lemma 14. For 1 ≤ i, j ≤ r, the tangent space of DefM,A[Γ] is given by

t(DefM,A[Γ])ij ∼=

{
HomA(Mi,Mj)

dij , i 6= j

Ext1
A(Mi,Mi)⊕ EndA(Mi)

dii , i = j.

Lemma 15. The deformation functor DefM,k[Γ] is unobstructed.

Proof. Let I → R
πR→ S → 0 be a small morphism in ar. Let MS ∈ DefM,k[Γ]

be given by the element σS : k[Γ] → EndS(S ⊗k M), and let σ′R be a lifting of
σS . Then the obstruction for lifting MS is given by the element

ψR ∈ (Iij ⊗k HH2(k[Γ],Homk(Vi, Vj)),

which is represented by ψR : k[Γ]⊗k k[Γ]→ (Iij ⊗k Homk(Vi, Vj)) given by

ψR(a, b) = σ′R(ab)− aσ′R(b)− σ′R(a)b.

Notice that this factors through the kernel I because σR restricts to σS , so that
ψR restricts to 0 on S. The morphism ψR is k-bilinear. Assume that, relative
to a basis for the kernel I of πR,

ψ(a, b) = i1i2⊗σ′R(ab)− (i1⊗k σ′R(a))(i2⊗k σ′R(b)) = −i1i2⊗k σ′R(a)σ′R(b) 6= 0.

Here σ′R is interpreted as a k-linear homomorphism Vi → Sij ⊗k Vj so that σ′R
does not take values in I ⊗k Homk(Vi, Vj). That is, S is finite dimensional, and
σS is defined on a basis for S, while R is an extended vector space, R = I ⊗k S
as k-vector space. Now, define ξ : k[Γ] → (Iij ⊗k Homk(Vi, Vj)) by ξ(ab) =
−σ′R(a)σ′R(b), all other values 0. This is possible on basis elements because
there are no relations between elements in in the path algebra k[Γ]. Then we
have

d(ξ)(a⊗ b) = ξ(a)− ξ(ab) + ξ(b) = σ′R(a)σ′R(b),

proving that the obstruction o(πR,MS) = 0 (in cohomology), and we are done.

Example 13. A =

(
k x12

x21 k

)
, M = {k, k} where the xij acts trivially on

the Vi = k, i = 1, 2. The tangent space is given according to lemma 13, that is
dx12

, dx21
: A→ Homk(Vi, Vj) and we find the cup-products to be

dx12
∪ dx21

(x12 ⊗k x21) = dx12
(x12)dx21

(x21) = 1,
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all other generators are zero. So we choose defining system ξx12x21 = (x12⊗x21)∨

and let d2 = d + ξx12x21
and can continue the lifting procedure as there are no

relations. That is H ' A.

Example 14. Same as above, but with the relation xijxji = 0. This means
that we cannot define any dual of ξx12x21

= (x12 ⊗ x21), because this element is
zero in A. Then the obstruction is different from 0, and we have to divide out
by x12x21 in the construction of the multi-local formal moduli, i.e. H ' A.

Let V = t(DefM,k[Γ]) be the tangent space of DefM,k[Γ] and let W = (Wij)

with Wij = kdij . There are natural k-linear maps κij : V ∗ij →Wij given by

κij(ψ
∗
ij) = (ψ∗ij(φij(l)))

where {φij(l) : 1 ≤ l ≤ dij} are the morphisms from Mi to Mj in the dia-
gram c. Since DefM,k[Γ] is unobstructed, there is an induced morphism κ :
H(M, k[Γ]) → T(W ), where T(W ) is the tensor algebra of W over kr (the
matrix algebra F generated by the kr-bimodule W ), and ker(κ) ⊆ H(M, k[Γ])
is an ideal.

Let us also denote by ker(κ) the ideal in H(M, A[Γ]) generated by the
image of ker(κ) ⊆ H(M, k[Γ]) under the ring homomorphism H(M, k[Γ]) →
H(M, A[Γ]).

Definition 23. We define H(c) = H(M, A[Γ])/ ker(κ), and the ring of observ-
ables of the diagram c to be

O(c) = im(ηc) ⊆ (H(c)ij ⊗k Homk(Mi,Mj)).

Remark 3. If the quiver Γ is a quiver with relations R, we also denote by ker(κ)
the ideal in H(M, A[Γ])/R generated by the image of ker(κ) ⊆ H(M, k[Γ])
under the ring homomorphism H(M, k[Γ])→ H(M, A[Γ])/R.

For a commutative k-algebra A, let

Spec∗(A) = {A ψp→ A/p : p ∈ SpecA},

where the morphisms ψp ∈ HomA(A,A/p) is the set of all A-linear homomor-
phisms.

Theorem 6. For k algebraically closed of characteristic 0, for A a commutative,
finitely generated k-algebra A,

O(Spec∗(A)) ' A.

Proof. The proof of the existence of a prorepresenting hull is constructive, thus
we will give a constructive proof of this result as well.

The prorepresenting hull H(Spec∗(A)) of the diagram Spec∗(A) is the direct
limit of H(c) for all finite subdiagrams c ⊆ Spec∗(A). In turn, this is defined
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as the quotient of H(|c|, A[Γ]) by the image of the kernel of κ : H(|c|, k[Γ]) →
T(W ), i.e.

H(c) = H(|c|, A[Γ])/ im(ker(κ)).

Let c ⊆ Spec∗(A) be a finite subdiagram, c = (|c|,Γ). First, consider
H(c, A[Γ]). For diagrams c where A is not a node, after dividing out by
im(kerκ), the tangent space looks likeExt1

A(A/p1, A/p1) 0
. . .

0 Ext1
A(A/pr, A/pr)

 ,

which is the product of the domains strictly contained in A. When A is one out
of two nodes in a diagram we get (

0 ψp

0 0

)
,

where p is a prime ideal, p 6= 0.
Constructing the multi-pointed formal moduli, all the time dividing out by

im(kerκ) at each level, we obtain the ring H(c). Taking the direct limit, we get
H(Spec∗(A)).

The global sections, or the regular functions, is then represented by

O(Spec∗(A)) = lim
←

c⊂Spec∗(A)

H(c)⊗kr(|c|) (Homk(A/pi, A/pj)).

The construction gives O(Spec∗(A)) the maximum of relations, i.e. the
maximal ideal for A → lim

←
c⊂Spec∗(A)

HomH(c)(H(c) ⊗kr(|c|) ( ⊕
p∈c
A/p)) to be lifted,

which proves that it is an isomorphism, that is

A ' lim
←

U⊆Spec∗ A

O(U)

where O(U) = lim
←

p∈U

Ap = lim
←

p∈U

(Hom(A⊗k A/p)).

notice that this is the homomorphism A→ O(Spec∗(A)) given in Hartshorne
[5], because Derk(A,A/p) ' (mp/m

2
p)∗ ⊆ (Ap/m

2
p)∗.

4.7 The general definition of noncommutative
schemes

Definition 24. Let A be a k-algebra. A diagram c of A-modules is called an
affine scheme for A if the pro-versal family

ηc : A→ O(c)/R

is an isomorphism of k-algebras, where R is the ideal of relations in the diagram.
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We give the general definition of a noncommutative affine scheme.

Definition 25. We define Simp∗(A) as the diagram Simp∗(A) = {A}∪SimpA
with quiver Γ∗ = ∪Mi,Mj∈SimpAExt1

A(Mi,Mj) ∪ {A→M |M ∈ SimpA}.

Lemma 16. If ηSimp∗(A) is injective, Simp∗(A) is a scheme for A.

Proof. This follows by definition. It is also proved by O.A. Laudal in [6].

Definition 26. We give Simp∗(A) the topology induced by the Jacobson topol-
ogy. On this topological space we consider a multi-locally ringed space OSimp∗

defined as in definition 19, and we call this a noncommutative affine scheme.
A noncommutative scheme is a multi-locally ringed space, locally isomorphic as
such to a noncommutative affine scheme.

Proposition 3. The category of k-schemes is naturally, full, and faithfully
embedded in the category of noncommutative k-schemes, i.e.

schk ⊂ ncSchk

Proof. Consider a k-scheme X with an open affine cover by (SpecA,OSpecA).
Consider the diagram Simp∗(A) defined as above. The open affine embed fully as
(Simp∗(A),OSimp∗(A)). The reconstruction holds, and then Lemma 16 proves it
is faithful. Notice that this procedure formally adds enough generic points.

4.8 Tangent Spaces of QARs

Consider the QAR

A =

(
k[t11] 〈t12〉
〈t21〉 k[t22]

)
//

��

k[t11]/(t11 − α) = V1(α)

k[t22]/(t11 − β) = V2(β)

.

This is a very simple form of a QAR, and the simple modules is exactly the
simple modules on the diagonal, represented by the quotients of their maximal
ideals. The canonical morphisms are given by the usual evaluation of genera-
tors. We have a k-algebra A and two right A-modules M1 = M1(α), M2 =
M2(β), α, β ∈ k.

We will compute the tangent space of this k-algebra in the (semi-) points
(M1,M2), using the well known identity

Ext1
A(Mi,Mj) = HH1(A,Homk(Mi,Mj)).

This implies in particular that

Ext1
A(Mi,Mj) = Derk(A,Homk(Mi,Mj))/ Inner,
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where Inner = {ad(φ)| ad(φ)(a) = aφ − φa} is the subspace of inner deriva-
tions. Before starting the computation, we recall that the bi-module structure
on Homk(Mi,Mj) is given by

(a · φ)(v) = φ(va), (φ · a)(v) = φ(v) · a.

Any derivation is determined by its action on a generator set, we let ei denote
the idempotents.

Ext1
A(M1,M1). For any derivation δ : A→ Endk(V1) we have that

a12 ∈ A12 = e1Ae2 ⇒ δ(a12) = δ(a12e2) = δ(a12)e2 + a12δ(e2) = 0,

a21 ∈ A21 ⇒ δ(a21) = δ(e2a21) = δ(e2)a21 + e2δ(a21) = 0,

a22 ∈ A22 ⇒ δ(a22) = δ(a22e2) = δ(a22)e2 + a22δ(e2) = 0.

Then, as 0 = δ(1) = δ(e1 + e2) = δ(e1), we have that

Ext1
A(M1,M2) = 〈dt11

〉.

Ext1
A(M1,M2). For any derivation δ : A→ Homk(V1, V2) we have that

a11 ∈ A11 ⇒ δ(a11) = δ(a11e1) = δ(a11)e1 + a11δ(e1) = a11δ(e1) = adδ(e1)(a11)

a22 ∈ A22 ⇒ δ(a22) = δ(e2a22) = δ(e2)a22 + e2δ(a22) = δ(e2)a22 = − adδ(e2)(a22)

a21 ∈ A21 ⇒ δ(a21) = δ(a21e1) = δ(a21)e1 + a21δ(e1) = 0.

It follows that

Ext1
A(M1,M2) = 〈dt12

〉.

The two final computations of Ext1
A(M2,M1) and Ext1

A(M2,M2) is exactly
similar, and we can generalize to the following lemma.

Lemma 17. Let F = Tkr (V ) be the QAR from definition 3. LetM = {M1, . . . ,Mr}
be r diagonal points (one-dimensional simple modules), i.e.,

Mi = k〈tii(1), . . . , tii(dii)〉/(tii(1)− αii(1), . . . , tii(dii)− αii(dii)).

Then the tangent space of F in the point M is

TFM =

〈dt11(l11)〉 · · · 〈dt1r(l1r)〉
...

. . .
...

〈dtr1(lr1)〉 · · · 〈dtrr(lrr)〉

 .

With this preliminaries, we are ready to give a relevant example.
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4.9 Example

This example illustrates the generalized Burnside’s theorem (Theorem 5) and
the definition of the generalized Massey products. After the computation, we
give a geometric interpretation of the resulting noncommutative affine scheme.

Let

A =

(
k[t11(1), t11(2)] 〈t12(1), t12(2)〉

0 k[t22]

)
/(f12)

where f12 ∈ A12 = e1Ae2 is the polynomial

f12 = t11(1)t12(2)− t11(2)t12(1)− 2t12(2)t22 + t12(1)t222.

We see that the two origins on the diagonal is a point on the noncommutative
curve f12, i.e., we consider the set of simple modules M = {M1,M2} where

M1 = k[t11(1), t11(2)]/(t11(1), t11(2)) = k, M2 = k[t22]/(t22).

The computation of the tangent space is completed by lemma17, so the
computation starts by letting

S2 =

(
k[t11(1), t11(2)] 〈t12(1), t12(2)〉

0 k[t22]

)
/ I2

and letting the restriction of the universal lifting to S2 be given by the corre-
sponding basis for (Ext1

A(Mi,Mj)).
Before the computation starts, be sure to recall that

dtij : A→ Homk(Mi,Mj)

so that the order of composition is given by dtij (a)dtjk(b).

〈t211〉 : dt11 ∪ dt11(t11 ⊗ t11) = dt11(t11) ◦ dt11(t11) = 1.

d((t211)∗)(a⊗ b) = a(t211)∗(b)− (t211)∗(ab) + (t211)∗(a)b⇒
〈t211〉 = (t11 ⊗ t11)∗ = d((t211)∗) = 0.

〈t11(1)t11(2)〉 : dt11(1) ∪ dt11(2) = (t11(1)⊗ t11(2))∗

d((t11(1)t11(2))∗) + dt11(2) ∪ dt11(1) ⇒
〈t11(1)t11(2)〉 = 〈t11(2)t11(1)〉+ d((t11(1)t11(2))∗).

Similarly,

〈t11(1)t12(1)〉 = d((t11(1)t12(1))∗) = 0

〈t11(1)t12(2)〉 = −〈t11(2)t12(1)〉+ d((t11(2)t12(1))∗)

〈t11(2)t12(2)〉 = d((t11(2)t12(2))∗) = 0

〈t12(1)t22〉 = d((t12(1)t22)∗) = 0

〈t12(2)t22〉 = −1

2
〈t11(1)t12(2)〉+ d((t12(2)t22)∗)
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There is only one choice of monomial bases at this stage, and the computa-
tions above give us

S3 =

(
k[t11(1), t11(2)] 〈t12(1), t12(2)〉

0 k[t22]

)
(t11(1)t12(2) + t11(2)t12(1)− 2t12(2)t22) + I3

Now, we choose bases for this algebra S2 and R3 due to the algorithm (con-
ditions) given in the proof of Theorem 1. Then the defining system is given by
the choices in the computations above, and we continue to the next step. Here
everything is identically zero by the relations in A, except for

〈t12(1)t222〉 = 〈t11(1)t12(2)〉+ d((t12(1)t222)∗).

Then this turns out to be rather easy (modulo all the indexes) as long as we
choose equal monomial bases on both sides. We see that we are through, and
that

Ĥ = Â

with A as a natural algebraization of Ĥ.

4.10 Generalized Matric Massey Products

To compute the local formal moduli of a family of finitely generated A-modules
M = {Mi}ri=1 in the general case, it turns out that the most convenient way is
to work in the Yoneda complex. In this section we describe this technique.

Consider a family M = {M1, . . . ,Mr} of A-modules. For each 1 ≤ i ≤ r
choose a projective (or free) resolution of Mi,

0←Mi ← Li0
di0← Li1

di1← · · ·

Definition 27. The Yoneda complex is given by

YCp(Mi,Mj) =
∏
s≥p

HomA(Lis, L
j
s−p)

for p ≥ 0, with differential dp : YCp(Mi,Mj)→ YCp+1(Mi,Mj) given by

dp({ξs}) = {dis ◦ ξs−1 − (−1)pξs ◦ djs−p}.

The following is then an easily proven fact.

Lemma 18. YHp(Mi,Mj) := hp(YC·(Mi,Mj)) ' ExtpA(Mi,Mj).
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Proposition 4. Let S ∈ ar. To give a deformation (lifting) of M = ⊕ri=1 to S
is equivalent to give a lifting of complexes

0

��

0

��

0

��
I ⊗kr L0

��

I ⊗kr L1
oo

��

I ⊗kr L2
oo

��

· · ·oo

S ⊗kr L0

��

S ⊗kr L1

��

oo S ⊗kr L2
oo

��

· · ·oo

0 Moo L0
oo

��

L1
oo

��

L2
oo

��

· · ·oo

0 0 0

where Lp = ⊕ri=1L
i
p and I = (Iij) is the radical of S.

Proof. The proof is given in the book [3] and is by induction on the n such that
In(S) = 0. Here we give a sketch of the induction step, factoring ρ : S → kr in
small morphisms. Thus we assume π : R → S is a small morphism in ar, and
we assume that MS ∈ DefM (S) is given. Let ker(π) = I = (Iij). Then we can
always choose an S ⊗k A-free resolution of MS , and by the surjectivity of π, we
can lift the differential to R:

0

��

0

��

0

��

0

��
0 Coo

��

I ⊗kr L0
oo

��

I ⊗kr L1

��

I⊗d0oo I ⊗kr L2

��

I⊗d1oo · · ·oo

0 MR
oo

��

R⊗kr L0
oo

��

R⊗kr L1

dR0oo

��

R⊗kr L2

dR1oo

��

· · ·
dR2oo

0 MS
oo

��

S ⊗kr L0
oo

��

S ⊗kr L1

dS0oo

��

S ⊗kr L2

dS1oo

��

· · ·
dS2oo

0 0 0 0

If (dR)2 = 0, the fact that π is small, implies by the long exact sequence,
that MR = H0(dR) is a flat lifting of MS , and that dR is a resolution of MR.

The proof immediately proves the following.
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Lemma 19. With the notation above, the obstruction for lifting MS to R is
given by

o(MS , π) = (dR0 )2 ∈ (Iij ⊗k Ext2
A(Mi,Mj)).

The obstruction is independent of the choice of resolution (LS ., dS .) and proves
that Ext1

A(Mi,Mj) gives DefM a structure of principal homogeneous space.



Chapter 5

Noncommutative GIT

5.1 Basic Definitions

At this stage of the developing theory, we will mostly consider the affine situation
where an affine algebraic group G = SpecOG acts on an affine (commutative)
scheme X = SpecA. Again we will assume that all schemes are over k, alge-
braically closed of characteristic 0, and we notice that most of the results can
be generalized to an arbitrary field k with char k >> 0.

An action of G on X is a morphism of schemes ∇ : G×k X → X, and this
induces for each g ∈ G a morphism ∇g : X → X which again gives ∇g : A→ A
which is usually called the dual action. As ∇ is supposed to be associative, and
the identity when multiplying with the identity, this yields for the dual action
as well:

∇g1g2(a) = ∇g1(∇g2(a)), ∇id = id .

Example 15. Let X = Ank = Spec(k[x1, . . . , xn]) = Spec k[x]. For g ∈ G ⊆
GL(n), we have that φ : k[x]→ k[x] given by φ(x) = g ·x maps the point (x− a)
to

φ−1(x− a) = (g−1 · x− a) = (x−∇g(a)).

Thus ∇g = φ, and we have an argument for computing in the intuitive way.

Definition 28 (Geometric Quotient). Let G be an algebraic group acting on a
variety X. Then

φ : X → Y = X/G

is a geometric quotient of X by G if the geometric fibres of φ are precisely the
orbits of the geometric points of X, that is, in the diagram

G×k X
∇ //

p2

��

X

φ

��
X

φ
// Y

57
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the following conditions are fulfilled:

i) Commutativity: φ ◦ ∇ = φ ◦ p2

ii) We have that φ is onto and submersive: U ⊆ Y open ⇔ φ−1(U) ⊆
X open .

iii) OY = OGX .

Example 16. With the usual notation, when the k-algebra A is noetherian, we
have that

AG = k[s1, . . . , sr]/a,

saying that the invariant ring of A by G is generated by s1, . . . , sr. Then SpecA
is a geometric quotient if the invariants s1, . . . , sr separates orbits. This follows
directly from iii) in definition 28 together with the inclusion AG ↪→ A, and is
(most probably) the origin of the definition.

5.2 Fine Moduli for Orbits

In general, for a family of objects parametrized by schemes

F : Schk → Sets,

a fine moduli for the objects F(Spec k) is a couple U ∈ F(M) such that the
morphism of functors

φU : Mor(−,M)→ F
given by φU (S)(ψ : S → M) = F(ψ)(U) is an isomorphism of functors. Trans-
lated to the affine situation, an affine fine moduli is an affine scheme SpecA
such that the closed points are in one-to-one correspondence with the objects,
i.e., it is generated by the invariants, and such that any other ring B factors
through A. In particular, if the objects of interest are G-orbits, an affine fine
moduli of schemes is a geometric quotient, but not vice versa, as we will see.

Definition 29. Let A be a k-algebra with an action G × A → A. An A − G
module M is a (right or left or both) A-module together with an action

∇ : G×M →M

such that for all g ∈ G, ∇g(am) = ∇g(a)∇g(m)

Let A[G] be the free A-module over G, that is

A[G] = AG = ⊕
i∈G

ag · g.

We will give A[G] a k-algebra structure such that the category of A−G-modules
is equivalent to the category of A[G]-modules. This is satisfied if the associa-
tivity holds for all A−G modules M as defined above:

(agg · ahh)m = agg(ahh ·m) = ag∇g(ah∇h(m)) = ag∇g(ah)∇g(∇h(m))

= ag∇g(ah)∇gh(m)
(5.1)
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Thus this is fulfilled when we give the following definition.

Definition 30. Let G be a group with an action on a k-algebra A. Then the
skew group algebra A[G] is the free A-module indexed by G, and with the product

ag · bh = a∇g(b)gh.

From the explaining computation (5.1), we then have:

Lemma 20. The categories of A−G modules and A[G]-modules are equivalent,

mod A−G ∼= mod A[G].

Consider the orbit Gx ⊂ X = SpecA, and let Gx be its closure. Then the
ideal I(Gx) is a G-invariant ideal which is an A − G module. This is simply
because ∇ : G × X → X is continuous, and so is the map ∇(−, x) : G → X
sending g to g ·x for every x. Thus ∇−1(Gx) ⊆ G is closed, implying that I(Gx)
is G-invariant, and also that

G/ Iso(x) ' Gx,

where Iso(x) = {g ∈ G|gx = x} denotes the isotropy group of x. Thus we get
the useful fact that the dimension of the orbit of x is the codimension of the
isotropy subgroup of x in G.

Lemma 21. The orbits in X under the action of G are in one-to-one corre-
spondence with their closures, which again corresponds to a set of G-invariant
ideals which is a certain family of rk 1 A[G]-modules.

Proof. The correspondence is given by o(x) = Gx 7→ A/I(Gx), the rest follows
by Hilbert’s Nullstellensatz.

In this affine situation, we consider the ring of invariants AG, and Spec(AG)
is a geometric quotient, see the book of Mumford, Fogarty and Kirwan [7].
However, it is certainly no fine moduli, as the examples below will show. To find
a fine moduli, we construct the noncommuative affine moduli of A[G]-modules
corresponding to the orbits. This is a geometric quotient, which is also a fine
moduli.

Lemma 22. Let XG be a (noncommutative) affine scheme that is a fine moduli
for the A/G-modules

{A/ax|ax = I(Gx), x ∈ X}.

Then XG is an affine, noncommutative, geometric quotient of X by G.

Proof. From the reconstruction corollary (2) it follows that

Γ(XG,OXG) ' AG.

The rest follows from the definitions of affine noncommutative schemes and
geometric quotients.
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5.3 Constructive Method for Noncommutative
GIT

Before giving applications, we outline the essentials of the construction in this
subsection. We begin with the affine scheme SpecA, with its group action
G×X → X. We start by computing the invariant ring AG which is generated
by a finite number of invariants, a1, . . . , ad when A is noetherian, i.e. such that
g · ai = ai, 1 ≤ i ≤ d. The radical I(a) of the ideal a = (a1 − α1, . . . , ad − αd) is
the ideal of the the algebraic set containing the closures of all orbits of points
with these invariants.

Construct a composition series of A[G]-submodules (invariant ideals)

0 ⊆ I(a) = a1 ⊂ a2 ⊂ · · · ⊂ an−1 ⊂ an = A.

Each ai/ai−1, 1 ≤ i ≤ n is A[G]-simple, so each of the (radical) ideals in
this composition series corresponds to the closure of an orbit. We get an A[G]
composition series

0 ⊆ A/a1 → A/a2 → · · · → A/an = A,

and the noncommutative fine moduli is

OH(M), M = {A/ai}ni=1.

In the preliminaries, it is explained how we compute the obstructions by pro-
jective resolutions, working in the Yoneda complex rather than in the Hochschild
complex. This is directly applied to the situation with A[G]-modules, with some
simplifying facts.

To compute the rings OH(M), we are in need of projective A[G]-resolutions
of the modules Mi = A/ai above. Because Mi is finitely generated as A-module,
we might choose an A[G]-free resolution. However, we have an easier way.

Lemma 23. Assume that P = An is an A[G]-module. Then P is projective as
A[G]-module.

Proof. To prove that P is projective, we will prove that HomA[G](P,−) is exact.
This means that in the below diagram, φ can be lifted to ξ,

P

φ

��

ξ

~~
M

ρ
// N // 0

Because P is A-free, such a ξ is determined by ξ(ei) = mi, where ρ(mi) =
φ(ei). Then ξ is determined as an A[G]-module homomorphism by extending it
by linearity, i.e., ξ(∇g(ei)) = ∇g(ξ(ei)) for each g ∈ G. Thus the lifting ξ exists,
and P is A[G] projective.
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From this lemma, it follows that any A-free resolution of an A[G]-module
M is also an A[G]-projective resolution. The technique is given in the proof of
the following.

Corollary 6. Let M be an A[G]-module. Then an A-free resolution can be
lifted to an A[G]-projective resolution.

Proof. For each g ∈ G, we can lift the complex due to the following:

0 Moo

∇g
��

An0

∇g,0
��

εoo An1

∇g,1
��

d0oo An2

∇g,2
��

d1oo · · ·d2oo

0 Moo An0
ε

oo An1

d0

oo An2

d1

oo · · ·
d2

oo

The above lemma states that Ani is projective for all i.

We end this section with the following conclusion: Let V = {Vi} be the family
of orbits. Then SimpH(V) is a fine moduli for V in the sense that each orbit is
parametrized by H(V), and all relations between the orbits are incorporated in
Simp(H(V)).

When computing the tangent spaces, we frequently use the following:

Lemma 24. Let q1 ⊆ q2 ⊆ A be two G-invariant ideals. Then

Ext1
A−G(A/q1, A/q2) ' HomA(q1/q

2
1, A/q2)G, and

HomA(q2/q
2
2)G � Ext1

AG(A/q2, A/q1)G,

where g · φ = ∇g ◦ φ ◦ ∇g−1 .

Proof. First of all,

φ ∈ HomA−G(M,N)⇒ φ(∇g(m)) = ∇g(φ(m))⇒ ∇g−1(φ(∇g(m))) = φ(m),

so g · φ = ∇g ◦ φ ◦ ∇g−1 with the left-to-right notation. The rest of the lemma
follows by considering the diagram

0 A/qioo Aoo

!!

An0
d0oo

��

An1
d1oo

||

. . .oo

A/qj

and using the definition of Ext1
A(A/qi, A/qj).
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Chapter 6

Applications of
noncommutative GIT

We will give some examples of application of the general theory. The detailed
computations can be found in the book [3]. We start with maybe the most
central example, Endk(V )/GL(V ) for which we give the general set-up and refer
to the book for the computations for dimk V = 2, 3. After this, we give an
example of a toric variety V defined as its quotient V/(C∗)4 which we prove to
be commutative. Finally we give an example of moduli of n − Lien algebras.
The computation of the moduli of 3-dimensional Lie-algebras can be found in
[10], and an example with the Kleinian quotient singularity can be found in [11].

6.1 GL(n)-Quotients of Endk(k
n)

Let G = GLk(n) act on M2(k) by conjugacy. This means that G acts on An2

,
and our goal is to classify the orbits, with all possible relations. Let A = k[x] =
k[xij ]1≤i,j≤n. Then for g ∈ G we have ∇g(xij) = g(xij)g

−1.

It is a general well known fact in this case that the invariants are the coeffi-
cients s1, . . . , sn of the characteristic polynomial det((xij)− λ id), but for other
applications, we will also sketch the possible computation of the invariant ring
using linear algebra.

Our main observation, is that GL(n) is generated by the elementary matrices,
where any of them comes from applying the corresponding operation on the
identity matrix id:

Ei(c) : Multiply row i by c.

Eij(c) : Add c times row i to row j.

Eij : Exchange row i and row j.

63
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Thus we can write a polynomial as a sum of its homogeneous parts, and
find the invariants in each degree under the action of the above three degree-
preserving actions. Notice that this indicates that we could have worked with
graded algebras, i.e. in the projective setting.

There is no reason for going out of order n. We know that (s1, . . . , sn) is
the (radical) ideal for the closure of the orbit of the Jordan block with 0 on the
diagonal and 1’s above. We construct a composition series

A/(s1, . . . , sn)→ A/an−1 → · · · → A/(xij) ' k,

where the ideals ai are G-invariant, not necessarily generated by invariant el-
ements. Thus these are our A[G]-modules under consideration. Put Vi =
A/an+1−i. We recall Lemma 24, and can prove:

Lemma 25. For 1 ≤ i ≤ n we have that

dimk Ext1
A−G(V1, Vi) = n,

also

dimk Ext1
A−G(Vn, Vn) = 1.

Proof. At first, for a1 = (s1, . . . , sn) we consider the action of G on φ in the
diagram

a1
∇g→ a1

φ→ A/ai
∇g−1

→ A/ai.

It then follows that the invariance of φ forces it to be φ = (α1, . . . , αn) because
it has to map to invariant elements. The only such invariant elements are the
s1, . . . , sn which are contained in ai. Next, from the diagram with an = (xij) =
(x11, x12, · · · , xnn), we have

an
∇g→ an

φ→ A/an
∇g−1

→ k = A/an = k.

As ∇g permutes the elements on the diagonal, and add off the diagonal, it
follows that an invariant φ must be φ = α · id .

Remark 4. There is a certain indication that in general, the dimension matrix
is

D =


n n · · · n
0 n− 1 · · · n− 1
...

...
. . .

...
0 0 · · · 1


This is probably relatively hard to prove, but should be accomplished when the
interest is high enough.
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The setup for M3(k)

A close to complete computation is represented in the book [3]. Here we will
only define the orbit closures, to illustrate the complexity of the problem.

We have A = k[xij ]1≤i,j≤3 and G = GL3(k) acts by conjugation, defining
the similarity classes of matrices M = (xij). As we have already stated, the
invariants are the coefficients s1, s2, s3 of the characteristic polynomial:∣∣∣∣∣∣

x11 − λ x12 x13

x21 x22 − λ x13

x31 x32 x33 − λ

∣∣∣∣∣∣ = −λ3 + s1λ
2 + s2λ+ s3,

with s1 = tr(xij), s2 = −(s11 + s22 + s33), sij = |Cij(xij)|, s3 = det(xij). This
says that a1 = (s1, s2, s3), V1 = A/a1 is the biggest orbit closure in A9. In fact,
we know that this contains the orbits of0 0 0

0 0 0
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 1 0
0 0 1
0 0 0

 .

Now, a1 = (s1, s2, s3) ⊆ (sij) = a2. This is because all sij = 0 implies that
the rank of the matrix is rkM ≤ 1. Finally (sij) ⊆ (xij), which is the 0-matrix,
obviously the smallest invariant, closed set (orbit). So the computation in the
book [3] yields

A = k[xij ]1≤i,j≤3, G = GL3(k), V1 = A/(s1, s2, s3), V2 = A/(sij), V3 = A/(xij).

A fine moduli scheme should contain all relations between these invariants, and
there is a lot of relations.

The fine moduli M2(k)/GL2(k)

This example is computed completely in the book [3]. With the notation as in
the 3×3-example above, we recall the set-up and the result of the computation.

A = k[x11, x12, x21, x22], G = GL2(k).

We have a1 = (x11x22−x12x21, x11+x22) = (s2, s1), a2 = m = (x11, x12, x21, x22), V1 =
A/a1, V2 = A/a2.

We compute the tangent spaces as follows:

Ext1
A−G(V1, V1) :

(s1, s1)
∇g−1

→ (s1, s2)
φ→ A/(s1, s2)

∇g→ A/(s1, s2)

from which we see that the invariant φ are given by φ = α(1, 0) + β(0, 1).
Similar computations let us choose bases for the tangent space, and we

actually find the dimensions given by(
Ext1

A−G(V1, V1) Ext1
A−G(V1, V2)

Ext1
A−G(V2, V1) Ext1

A−G(V2, V2)

)
=

(
2 2
0 1

)
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We use Singular [9] to choose a free resolution of each of the modules V1,
V2. With the chosen bases for the tangent spaces, we choose a representation of
each basis element in the Yoneda complex. Then we follow the computation in
the algorithm given in the proof of 1, and we end up with the final result, the
k-algebra A given in section 4.9:

A =

(
k[t11(1), t11(2)] 〈t12(1), t12(2)〉

0 k[t22]

)
/(f12),

f12 = t11(1)t12(2) − t11(2)t12(1) − 2t12(2)t22 + t12(1)t222. This is a fine moduli
for the orbits:

The simple A-modules are the points on the diagonal: Points (s1, s2) on
k[t11(1), t11(2)] corresponds to the matrices M with corresponding eigenvalues
given by tr(M) = s1,det(M) = s2 which is(

λ1 0
0 λ2

)
when λ1 6= λ2,

(
λ 1
0 λ

)
, when λ1 = λ2 = λ.

Points λ on k[t22] corresponds to the diagonal matrices

(
λ 0
0 λ

)
.

Consider a point in k[t11(1), t11(2)] and compute the tangent dimensions.
These are of dimension 2 exactly when

t12(2)(t11(1)− 2t22)− t12(1)(t11(2)− t222) = 0,

that is when

tr(M) = 2t22, det(M) = t222.

Along the curve

(
λ 0
0 λ

)
the orbit is embedded by tr(M) and det(M) and the

higher order relations are given by the structure theorem 1.

6.2 Toric varieties

In this section, we consider the quotient of a torus action. The simplest case
is the quotient of A2/C∗, and this works perfectly well in the commutative
scheme theory as A2/C∗ ' P1

C
∐
{0}. The only uncertainty is about the relations

between the closed orbit {0} and the generic orbits, but it turns out to be none.
This is not surpricing because of the ordinary semistability: P1 is compact,
so that each generic orbit contains 0, and then the scheme-theoretic universal
quotient exists in the commutative situation (this is in fact a tautology).

To make the example a bit more interesting, we consider toric varieties.
Because it is needed in the computation, we recall their definition.

Definition 31. A toric variety is an irreducible variety X such that

(i) (C∗)n is a Zariski open subset of X,
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(ii) The action of (C∗)n on itself extends to an action of (C∗)n on X.

Let N ' Zn be a lattice, let σ = Cone(S), S ⊆ N finite, be a rational,
strongly convex, polyhedral cone. The dual cone is σ∨ = {u ∈ Rn|〈u, v〉 ≥
0 for all v ∈ S} ⊃M = N∨ = HomZ(N,Z).

Proposition 5 (Gordan’s Lemma.). If σ ∈ NR = N⊗ZR is a rational polyhedral
cone, then

Sσ = σ∨ ∩M
is a finitely generated subgroup.

The affine toric variety associated to σ is

Vσ = Spec(C[Sσ])

and we notice that this is an irreducible variety as Sσ is certainly an integral
domain. Put Sσ = 〈m1, . . . ,mr〉, mi ∈ Zn, then C[Sσ] ' C[tm1 , . . . , tmr ] and
the homomorphism C[x1, . . . , xr] � [Sσ] sending xi to tmi implies that

C[Sσ] ' C[x1, . . . , xr]/I(V ),

V being a variety that is naturally toric: Because σ is strongly convex, dimσ >
0, and then dimσ∨ = dimσ = n > 0. Choose m0 ∈ int(σ∨) ∩M . Then for all
m ∈M , m+ lM0 ∈ σ∨ for some l, and so

tm+lm0

tlm0
∈ C[Sσ]tm0 = C[M ] = C[tZ

n

].

This gives us a composition of morphisms

C[x1, . . . , xr] � C[Sσ] ↪→ C[Sσ]tm0 ' C[M ] = C[t±1
1 , . . . , t±1

n ]

which on the level of varieties is

Cr ⊆ V (I) ⊆ (X∗)n.

Considering points in these affine varieties, these inclusions are given for (t1, . . . , tn) ∈
(C∗)n, by

(t1, . . . , tn) 7→ (tm1 , . . . , tmr ).

Because this is the affine composition given by the factorization above, this
morphism is injective, (C∗)n ↪→ (C∗)r. The action of (C∗)n on itself extends to
an action on (C∗)r by

(t1, . . . , tn) · (x1, . . . , xr) = (tm1x1, . . . , t
mrxr),

and as (C∗)n is contained densely in Vσ which is closed in (C∗)r, Vσ is closed
and so is a toric variety.

Notice now that we have constructed an affine toric variety corresponding
to a cone. A general toric variety can be constructed by gluing a fan of cones,
and any toric variety is constructed from its corresponding fan of cones. For
any toric variety X, we have the possibility to construct the noncommutative
quotient X/(C∗)n.
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A toric example

Remark 5. We would like to give an example as easy as possible, without being
trivial: Let σ = Cone{e1, e1 +e2}. Then its dual cone is Cone{e1−e2, e2}, σ∨∩
Z2 = {(1,−1), (0, 1)}. We have that t(1,−1) · t(0,1) = t(1,0) so that this looks free.
From this we understand that the best we can do is an example of a cone in R3.

We let σ = Cone{e1, e2, e1 + e3, e2 + e3} ⊂ R3, giving

σ∨ = Cone{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)}.

Then we have C[x, y, z, w] → C[Sσ] with the relation m1 + m2 = m3 + m4

implying that
C[Sσ] ' C[x, y, z, w]/(xy − zw)→ C[Z3].

On coordinates, the action (C∗)3 × V (xy − zw)→ V (xy − zw) is given by

(c1, c2, c3) · (a, b, c, d) = (c1a, c2b, c3c,
c1c2
c3

d),

that is
(C∗)3 × SpecA→ SpecA, A = k[x, y, z, w]/(xy − zw),

is given by

(c1, c2, c3) · (x, y, z, w) = (c1x, c2y, c3z,
c1c2
c3

w).

When classifying orbits, both in the commutative and the noncommutative
setting, we start by computing the ring of invariants. In this situation, it turns
out exactly as in the trivial situation A2/C∗ that AG = C.

In this particular case, there are several orbit closures:

o(e1) = Z(y, z, w), ..., o(e4) = Z(x, y, z)

and so on. All orbits contains the closed orbit 0, and using lemma 24, we easily
see that Ext1

A(o(x), {0}) = 0 as only the zero morphism can be invariant. Also,
in all examples computed, it is easy to prove the following conjecture, which we
take as a definition:

Definition 32. Let A be a commutative k-algebra with G-action. Assume that
for all pairs of G-invariant ideals a ( b in A,

Ext1
A−G(A/b, A/a) = 0.

Then A is called strongly geometric.

At this point, we conjecture that affine toric varieties are strongly geometric,
and together with the computations above, this says that quotients by tori exist
and is a commutative, non-affine scheme.

In [10] the noncommutative moduli of 3-dimensional Lie-algebras is com-
puted in all details. We choose to introduce the generalization of this work
in the next section, where our main result is just the existence of a noncom-
mutative moduli space which can be computed following the recipe from the
computation of 3-dimensional Lie-algebras in [10].
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6.3 n-Lie algebras

We assume that all all our vector spaces are over algebraically closed fields k of
characteristic 0.

Recall that anm-dimensional Lie-algebra g over k is given as anm-dimensional
vector space together with a bilinear product, called the bracket, [ , ] : g2 → g
satisfying, for all x, y, z ∈ g,

(i) Skew symmetry: [x, y] = −[y, x]

(ii) The Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Using the first property, we can write the second property as

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

m
adx([y, z]) = [adx(y), z] + [y, adx(z)].

This illustrates the relation between the Jacoby identity and the Leibniz
rule, and we use this for the n-ary generalization.

Definition 33. A k-linear endomorphism f : L → L of a k-algebra L with an
n-ary product [ , . . . , ] is called a derivation if

[f(x1), x2, . . . , xn]+[x1, f(x2), . . . , xn]+· · ·+[x1, x2, . . . , f(xn)] = f([x1, . . . , xn])

for all n-tuples x ∈ Ln.

Definition 34. An n−Liem-algebra, is a k-vector space g of dimension dim g =
m together with an n-ary product [ , . . . , ] : gn → g satisfying

(i) [xσ(1), xσ(2), . . . , xσ(n)] = (−1)σ[x1, x2, . . . , xn] for all σ ∈ Sn

(ii) ad(y1,...,yn−1) = [−, y1, y2, . . . , yn−1] : g→ g is a derivation for all (n− 1)-
tuples y = (y1, . . . , yn−1).

So, in particular, we notice that a 2 − Liem-algebra is nothing but an m-
dimensional Lie-algebra.

The first condition in the lemma states that the bracket defines a linear
homomorphism

C : ∧ng→ g,

whereas the second condition states that C satisfy the Jacobian identity. Be-
cause of the k-linearity, the Jacobian is satisfied if it is satisfied for the elements
in any basis for g.

Now, we fix a basis {e1, . . . , em} for g. We have that dimk(∧ng) =
(
m
n

)
= r,

and we make the convention that the basis for ∧ng given by {ê1, . . . , êr} is enu-
merated by removing tuples by higher to lower degree (lexicographic ordering),
more easily explained by the following:
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Example 17. Assume that {e1, e2, e3, e4} is a basis for g, and let us write
eijkl = ei∧ej ∧ek∧el ∈ ∧4g. We then let the basis for g be {ê1, ê2, ê3, ê4} where
e1 is given by removing e4, that is ê1 = e123, e2 is given by removing e3, that is
ê2 = e124 and so on until ê4 = e234.

To give an n−Liem-algebra is equivalent to choosing a basis for g and to give
a linear map C : ∧ng → g satisfying the Jacobi identity. With the convention
on the basis of ∧ng, the linear map is determined by its m ×

(
m
n

)
coefficient

matrix C = (cij).

Lemma 26. Let g be an n − Liem-algebra and let C be its coefficient matrix
with respect to a basis {ei}ni=1. Then there is a set {C1, . . . , C(mn)} of column

vectors (of size m × 1) such that the coefficient matrix C satisfies the Jacobi
identity if and only if C · C1 = · · · = C · C(mn) = 0.

Proof. The Jacobian gives exactly the correct number of equations which can
be factorized as a matrix product as above.

Definition 35. A morphism φ in the category n− Liem of n−Liem-algebras is
a k-linear map respecting the bracket.

It follows automatically that an isomorphism is a morphism with a two-sided
inverse, and as the bracket is k-linear, the Jacobi-identity is satisfied if it holds
for the elements in any basis for g.

Lemma 27. To give an isomorphism of n−Liem algebras, is equivalent to give
a base change E : g→ g. This induces a commutative diagram

∧ng C // g

E

��
∧ng

Ẽ−1=∧nE−1

OO

ECẼ−1

// g

Or main task in all such settings, is to classify, geometrically, the objects up
to isomorphism. So in this particular case, we are classifying

(
n
m

)
×m-matrices

satisfying the Jacobi identity. We have an action of the linear group GL(n) given
by

∇E(C) = ECẼ−1,

and the problem is equivalent to finding an orbit space under the group action.
This is treated in section 5.

In our particular case, and in all other cases where GL(n) acts by compo-
sition, the rank is invariant for all orbits. Thus we can classify all orbits of
given rank (of the coefficient matrix C), find their closures by rank and the
Jacobi relations, and then give them the geometry given by GL(n)-equivariant
representations of the polynomial algebra A = k[xij ], 1 ≤ i, j ≤

(
n
m

)
.

Theorem 7. There exist a noncommutative fine moduli for n− Liem-algebras
over k for any m,n ∈ N.
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Proof. Because the category n−Liem is equivalent to the category modA[GL(n)],
it follows from the general construction in Section 5 that a noncommuative
quotient exists. This is what is a noncommutative fine moduli.

6.4 The structure of 3− Lie4

The implementation of the generalities in the previous sections is perfect for
computers. However, when making the computations on a computer, it is often
useful to have a hand-computable example to refer to. The example with 3-
dimensional Lie algebras is treated in [10], and now we generalize slightly to
the next step. As is usual with matrices, a small increase in size makes big
differences in computational complexity.

We are in the situation where we classify linear mappings C : ∧3g → g
with respect to the basis {e1, . . . , e4} ⊂ g for g and the corresponding basis
{e123, e124, e134, e234} ⊆ ∧3g for ∧3g. The linear group GL(3) is generated by its
elementary matrices, and we recall the following notation:

• Eij : Interchange rows i and j

• Eij(c) : Add c times row i to row j

• Ei(c): Multiply row i by c.

Also notice that

E−1
ij = Eij , Eij(c)

−1 = Eij(−c), and Ei(c)
−1 = Ei(

1

c
)

so that the inverse of an elementary matrix is itself elementary.

Each linear transformation E : g→ g induces a linear transformation

Ẽ : ∧3g→ ∧3g,

and as the orbits under the action of GL(3) is given by L̃−1CL, L ∈ GL(3) we
write up (results of computation) the explicit matrix for each of the elementary
transformations above:
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Ẽ12 =


−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

 = E1(−1)E2(−1)E34, Ẽ13 =


−1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

 = −E24,

Ẽ14 =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 = E2(−1)E3(−1)E14, Ẽ23 =


−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 = E1(−1)E4(−1)E23,

Ẽ24 =


0 0 −1 0
0 −1 0 0
−1 0 0 0
0 0 0 −1

 = −E13, Ẽ34 =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 = E3(−1)E4(−1)E12,

Ẽ12(c) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 c 1

 = E34(c), Ẽ21(c) =


1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1

 = E43(c),

Ẽ13(c) =


1 0 0 0
0 1 0 0
0 0 1 0
0 −c 0 1

 = E24(−c), Ẽ31(c) =


1 0 0 0
0 1 0 −c
0 0 1 0
0 0 0 1

 = E42(−c),

Ẽ14(c) =


1 0 0 0
0 1 0 0
0 0 1 0
c 0 0 1

 = E14(c), Ẽ41(c) =


1 0 0 c
0 1 0 0
0 0 1 0
0 0 0 1

 = E41(c),

Ẽ23(c) =


1 0 0 0
0 1 0 0
0 c 1 0
0 0 0 1

 = E23(c), Ẽ32(c) =


1 0 0 0
0 1 c 0
0 0 1 0
0 0 0 1

 = E32(c),
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Ẽ24(c) =


1 0 0 0
0 1 0 0
−c 0 1 0
0 0 0 1

 = E13(−c), Ẽ42(c) =


1 0 −c 0
0 1 0 0
0 0 1 0
0 0 0 1

 = E31(−c),

Ẽ34(c) =


1 0 0 0
c 1 0 0
0 0 1 0
0 0 0 1

 = E12(c), Ẽ43(c) =


1 c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = E21(c),

Ẽ1(c) =


c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 1

 = E1(c)E2(c)E3(c), Ẽ2(c) =


c 0 0 0
0 c 0 0
0 0 1 0
0 0 0 c

 = E1(c)E2(c)E4(c),

Ẽ3(c) =


c 0 0 0
0 1 0 0
0 0 c 0
0 0 0 c

E1(c)E3(c)E4(c), Ẽ4(c) =


1 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

 = E2(c)E3(c)E4(c).

Remark 6. Notice that the listing of elementary operations makes it possible
to define several normal forms. One can easily question oneself if there is a
general theory of normal forms, but that is of course not the case. Or more to
say, that is the core of the theory of moduli.

Our next task is to compute the Jacobian variety: Let

C : ∧3g→ g

be the coefficient matrix of a fixed basis for a 3 − Lie4-algebra g. This matrix
is a closed point C in M (3× 3) ' A9 satisfying the Jacobian identity, i.e.,
C ∈ J ⊆ A9. Here we call J the Jacobian variety.

The coefficient matrix is given by a choice of basis for g, and the Jacobi-
identity is satisfied by linearity if and only if it is satisfied for any selection
of 5 elements from {e1, e2, e3, e4}. For a 3 − Lie4-algebra the Jacobi identity
states that [−, y1, y2] is a derivation, for all y1, y2 ∈ g, which says that for for
all x1, x2, x3, y1, y2 ∈ g we have

[[x1, x2, x3], y1, y2] = [[x1, y1, y2], x2, x3]+[x1, [x2, y1, y2], x3]+[x1, x2, [x1, y1, y2]].

From this expression we see that if there are two pairs of equal elements, one
of the brackets must contain two equal elements (by the pigeon-hole principle),
and so identity is automatically satisfied. Because of this, and because the order
is taken care of in the wedge product, when we check the Jacobi identity for any
selection of 4 out of 3 basis elements, it is sufficient to check it for 2 e1’s, 2 e2’s,
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2 e3’s, and 2 e4’s: Totally this gives four equations that can be summarized as
follows:

C ·


C22 + C33 C34 − C12 −C13 − C24 0
C43 − C21 C11 + C44 0 −C13 − C24

−C31 − C42 0 C11 + C44 C12 − C34

0 −C31 − C42 C21 − C43 C22 + C33

 = C ·L = 0 (6.1)

Lemma 28. 3− Lie4 has two irreducible components, that is

3− Lie4 = (L1 ∩ · · · ∩ L4) ∪ (|C| ∩ C · L1 ∩ · · · ∩ C · L4) = J1 ∪ J2

We notice that it is obvious that the components are irreducible sub-varieties
of M(3× 3). Also notice that J1 * J2.

This description makes it possible to make a rank classification of 3− Lie4.
This means that we are classifying the orbits up to rank.

6.5 The orbits of rank 1

Looking at the equation (6.1), we see that the matrix L doesn’t contain

C14, C23, C32, C41.

Thus putting these equal to one gives 4 matrices of rank 1:

R114 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , R123 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

R132 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , R141 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 .

Applying the elementary operations explicitly, we find that all the 3− Lie4-
algebras Rij , i, j > 0, i+j = 5 (the 1’s on the skew diagonal), are all isomorphic.
As the elementary operations are a combination of row and column operators,
we can prove that the Eij-operations sends Rkl to itself or another Rrs, (just
changing the placement of the single 1 to another single 1 on the skew diagonal.
Using a sequence of adding multiples of rows to others, i.e., using the Eij(c) we
find e.g.

R123 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 '


0 0 0 0
c1 c2 1 c3
0 0 0 0
0 0 0 0

 '


0 0 d1 0
0 0 1 0
0 0 d2 0
0 0 d3 0
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with ci, di arbitrary k-constants, and where the generalization to the other R1ij
on the skew diagonal is clear.

The search for a different orbit of rank 1 gives that we can put a 1 in any
place off the skew diagonal, and get a 3−Lie4-algebra: R1ij is a 3−Lie4-algebra
for each Rij off the skew diagonal. After some small considerations (which in
fact is applying the elemenary operations to R113), we suspect that the rank 1
algebras are covered by two different orbit-closures, i.e. cl o(R113) 6= cl o(R114).

Now we end this example, and leave the computations for the interested
reader. We remark that a similar technique can be applied for the classification
of finite dimensional associative algebras.
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Chapter 7

Pre-Dynamic GIT

7.1 Generalities

In general, given the old, familiar polynomial ring A = k[x1, . . . , xd]. What are
the variables x1, . . . , xd really? More precise, what do they represent?

We are used to think that they represent a point in d-space, and all polyno-
mials f ∈ A can be evaluated in the point by f(x1, . . . , xd).

Doing deformation theory as in the preliminaries of these notes, we eventu-
ally understand that this is (at best) a bit unprecise. The x1, . . . , xd represents
the tangents directions, the invariants called directions for which a polynomial
can be differentiated. Of course, if someone choose an origin, the tangent direc-
tions gives the position of the point by units in d-space, and the evaluation of
the polynomial in that point.

With the above more or less unprecise introduction in mind, when a linear
(symmetry-) group G acts on a scheme X, we intuitively get an action on the
tangent space of X, so this induces a dynamical action. This is a zero order
dynamical action, and not all dynamical actions comes from such a group action.
A system of 1’th order partial differential equations on the differential structure
is an action of a Lie-algebra g on the tangent sheaf θX on X, and the orbits
under this action are the integral curves, i.e. the solution spaces, of this system.
In this section, we consider general actions of Lie algebras on tangent sheaves
θX , and we generalize this action to general dynamical actions on the phase
space Ph(X) which is defined as the invariant scheme of all systems. In this
text we restrict our attention to the affine situation with θX = Derk(A) and
Ph(X) = Ph(A) for X = SimpA with A an associative k-algebra.

As before, let A be an associative k-algebra, k an algebraically closed field
of characteristic 0. We recall that a set of modulesM = {M1, . . . ,Mr} is called
a scheme for A if OA(M) = A. The OA-construction is a closure operation, i.e.
OOA(M)(M) implying that OA(M) is a coordinate ring for M, or equivalently
an invariant-ring. Notice that under the trivial group action, the coordinates
are the set of invariants. In section 5 we considered the action of a linear group

77
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G ⊆ GL(n) on an affine space SimpA and we constructed its orbit space. An
action of G on a set of modules M is a group homomorphism

G→ Autk(A)

where we interpret the action of G on a point M as the composition

G→ Autk(A)→ Homk(A,Endk(M)).

This gives the set of orbits M/G a structure of A[G]-modules, and

M/G is a scheme for OA[G](M).

Such a group action is a symmetry on the set of modules. It also induces a
relation on the generators of the invariant ring A[G], and as these generators can
be seen as tangent direction, the relation can be considered to be a dynamical
action. This is made precise by the following.

Lemma 29. An action of a group G on Rep(A),

∇ : G→ Autk(A)

induces an action of a Lie algebra

Lie(G)→ Derk(A)

Proof. This result is a rewriting of the corresponding well known proof of the
existence of the functor Lie for a Lie group G. In this case, Lie(G) is the set
of translation invariant vector fields on the Lie group G, and we translate this
definition directly into the algebraic version. On a variety SimpA, the tangent
bundle is the sheaf Derk(A) which to each point M gives the tangent space by
the composition

Derk(A)
ρM→ Derk(A,Endk(M)).

A vector field is a global section of the sheaf Derk(A), i.e. an element

v ∈ Derk(A),

and a translation of v is φg(v) where

φg = Derk(∇(g)) : Derk(A)→ Derk(A).

We have that v ∈ Derk(A) is translation invariant under the action of G, if for
all g, h ∈ G,

φg(φh(v)) = φgh(v).

So now we let Lie(G) be the subset of translation invariant derivations in
Derk(A).

Lie(G) = {v ∈ Derk(A)|φg(φh(v)) = φgh(v) for all g, h ∈ G}.
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We prove that the bracket [v, w] of two translation invariant derivations
v, w are translation invariant. This follows because the composition v ◦ w is
translation invariant:

g(h(v ◦ w)(a) = v(w(g(ha))) = v(w((gh)a) = v ◦ w((gh)a)

because w is translation invariant. By symmetry, w ◦ v is translation invariant
because v is invariant, and because the sum of translation invariant linear mor-
phisms are translation invariant, the bracket [v, w] is translation invariant.

Corollary 7.

Lie(Autk(A)) ' Derk(A)

Proof. Let φ, ψ ∈ Autk(A). Then for any derivation δ ∈ Derk(A),

δ(ψ(φ(a))) = δ((ψφ)(a)).

The dynamical action defined by a symmetry group as above, is really the
zero order dynamics. The dynamics that are forced, i.e., given by change does
not always come from a linear group.

Definition 36. A first order dynamical action on a scheme M of A-modules
is a Lie algebra homomorphism

g→ Derk(A).

Definition 37. Let A be a fixed k-algebra. We define the category AlgA/k where
the objects are k-algebra homomorphisms φR : A→ R with R an associative k-
algebra. A morphism between (R,φR) and (R′, φR′) is a commutative diagram

R
ψ // R′

A

φR

__

φR′

>>

The following can be found in [3].

Lemma 30. The functor

Derk(A,−) : AlgA/k →Modk

is represented by a couple (Ph(A), d).

Writing up what this means, it says that the natural transformation

Mor(Ph(A),−)→ Derk(A,−)
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given by sending ψ ∈ Mor(Ph(A), R) to Derk(A,ψ)(d) = d ◦ ψ, is an isomor-
phism. Thus there exists an associative A-algebra Ph(A) together with a k-
derivation

d : A→ Ph(A),

i.e. A
i0 //

d

��

Ph(A)

Ph(A)

such that for any associative A-algebra with a k-

derivation δ : A → R, i.e. A
i //

δ
��

R

R

there is a unique φ : Ph(A) → R such

that δ = d◦φ. Notice that this construction is functorial, introducing the Phase
space functor

Ph : AlgA/k → AlgA/k.

Also notice that we have identifications

d∗ : Derk(A)→ MorA(Ph(A), A) and d∗ : Derk(A,Ph(A))→ EndA(Ph(A))

induced by the universal property.

Definition 38. Let M be an A-module given by the structure morphism

ρM : A→ Endk(M).

The natural k-linear morphism

κM : Derk(A)→ Derk(A,Endk(M))/ Inner ' Ext1
A(M,M)

given by δ 7→ δ ◦ ρM is called the Kodaira-Spencer morphism.

To understand the meaning of the Kodaira-Spencer morphism: Consider a
dynamical action g → Derk(A) on the set of A-modules. Let f ∈ A, and let
∂ ∈ g be a derivation. Then κ(∂) = 0 ⇔ ∂f(M) = 0 for all points M . Do
not get confused: The ”functions” on SimpA are the representations M , and A
is the coordinate ring. Thus the set of M such that κM (∂) = 0 is the integral
curve of the system of differential equations κ(g) = 0, and the paralell transports
are given by the inner derivations. This explains why we call this a dynamical
action, and we will construct higher order dynamical actions by a functorial
DeRahm cohomology.

To make this precise, we are in the need of clarifying the parallel transport,
i.e. the connections.

We have a sequence

A
ρM→ Endk(M)

Hom(M,M⊗d)→ Homk(M,M ⊗A Ph(A))

where we check that the composition µM is a k-derivation, that is,

µM ∈ Derk(A,Homk(M,M ⊗A Ph(A))).



7.1. GENERALITIES 81

Definition 39. The Kodaira-Spencer class of M is the class c(M) of µM ,

c(M) = µM ∈ Ext1
A(M,M ⊗A Ph(A))

Lemma 31. There is a k-linear morphism

r : Derk(A)→ Homk(Ext1
A(M,M ⊗A Ph(A)),Ext1

A(M,M))

and

r(ξ)(µM ) = κM (ξ).

Lemma 32. For an A-module M , Endk(M) is an object of AlgA/k and

ad : A→ Endk(M)

is a k-derivation.

Proof. The structure morphism of M ,

ρM : A→ Endk(M)

is anA-algebra homomorphism and proves that Endk(M) is an object of AlgA/k.
We find that for all a, b ∈ A, m ∈M

ad(ab)(m) = [ab,m] = abm−mab
= abm− amb+ amb−mab
= a(bm−mb) + (am−ma)b

= a[b,m] + [a,m]b

= a ad(b)(m) + ad(a)(m)b

so that

ad(ab) = a ad(b) + ad(a)b

which proves that ad : A→ Endk(M) is a k-derivation.

Proposition 6. For every A-module M there is a unique A-algebra homomor-
phism

iM : Ph(A)→ Endk(M)

such that iMδ = ad:

Ph(A)
iM // Endk(M)

A

δ

bb

ad

::

Now we combine these things:
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Theorem 8. Let g be a Lie algebra action (a first order dynamical action)

g→ Derk(A).

Then there is an ideal δg ⊆ Ph(A) such that

δg ⊆ ker iM ⇔ κM (ξ) = 0 for all ξ ∈ g

Proof. Given the action

g
l→ Derk(A,Ph(A))→ Ext1

A(M,M),

we let δg be the two-sided ideal generated by the elements im(l(g)) for g ∈ g,
that is

δg = 〈{im(l(g))|g ∈ G}〉.
Following the sequence for the Kodaira-Spencer morphism

g→ Derk(A)→ Derk(A,Ph(A))→ Ext1
A(M,M)

this sends the a derivation δ = l(g) to the composition

A
δ→ A

i→ Ph(A)
ρM→ Endk(M),

and
δg ⊆ ker(ρM )

From this point on, and in the rest of the subsections in this section, we give
some results needed for the development of the theory of dynamics.

Let now V be a right A-module, with structure morphism

ρ(V ) = ρ : A→ Endk(V ).

We obtain a universal derivation

u(V ) = u : A −→ Homk(V, V ⊗A Ph(A))

defined by u(a)(v) = v⊗ d(a). Let U and V be right A-modules. Then we have
the long exact sequences of Hochschild cohomology,

0→ HomA(U, V )→ Homk(U, V )
ι→ Derk(A,Homk(U, V ))

κ→ Ext1
A(U, V )→ 0.

Substituting U := V and V := V ⊗A Ph(A) we get

0→ HomA(V, V ⊗A Ph(A))→ Homk(V, V ⊗A Ph(A))
ι→ Derk(A,Homk(V, V ⊗A Ph(A)))

κ→ Ext1
A(V, V ⊗A Ph(A))→ 0.
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By this, we obtain the non-commutative Kodaira-Spencer class

c(V ) := κ(u(V )) ∈ Ext1
A(V, V ⊗A Ph(A))

inducing the Kodaira-Spencer morphism

g : ΘA := Derk(A,A) −→ Ext1
A(V, V )

via the identity d∗.
If c(V ) = 0, then the exact sequence above proves that there exist a

∇ ∈ Homk(V, V ⊗A Ph(A))

such that u = ι(∇). This is a way of proving that c(V ) is the obstruction for
the existence of a connection

∇ : Derk(A,A) −→ Homk(V, V )

The same exact sequences furnish a proof for the following.

Lemma 33. Let ρ : A→ Endk(V ) be an A-module and let δ ∈ Derk(A,Endk(V ))
map to 0 in Ext1

A(V, V ), i.e. assume κ(δ) = 0. Then there exist an element
Qδ ∈ Endk(V ) such that for all a ∈ A

δ(a) = [Qδ, ρ̃(a)].

If V is a simple A-module, ad(Qδ) is unique.

Definition 40. Let ρ : A → Endk(V ) be a representation. We define the Lie
sub-algebra gV ⊂ Derk(A) as

gV := gρ = {γ ∈ Derk(A)| g(γ) = κ(δρ) = 0}.

This says that there is always a connection,

∇ : gV → Endk(V ).

These simple results will be important in relation to invariant theory, gauge
groups in physics, and quantisations, covered in the next Sections.

Any Ph(A)-module W given by its structure map

ρ(W )1 =: ρ1 : Ph(A) −→ Endk(W )

corresponds bijectively to an induced A-module structure ρ0 : A→ Endk(W )
together with a derivation δρ ∈ Derk(A,Endk(W )) defining an element

[δρ] ∈ Ext1
A(W,W ).

Fixing this last element we find that the set of Ph(A)-module structures on
the A-module W is in one to one correspondence with

Endk(W )/EndA(W ).
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Conversely, starting with anA-module V and an element δ ∈ Derk(A,Endk(V )),
we obtain a Ph(A)-module Vδ. It is then easy to see that the kernel of the natural
map

Ext1
Ph(A)(Vδ, Vδ)→ Ext1

A(V, V )

induced by the linear map

Derk(Ph(A),Endk(Vδ))→ Derk(A,Endk(V ))

is the quotient

DerA(Ph(A),Endk(Vδ))/Endk(V ).

The image is a subspace [δρ]
⊥ ⊆ Ext1

A(V, V )), which is rather easy to com-
pute, see examples below.

Example 18. Let A = k[t]. Obviously, Ph(A) = k〈t, dt〉 and d is given by
d(t) = dt, such that for f ∈ k[t], we find d(f) = Jt(f) where Jt(f) denotes
the noncommutative derivation of f with respect to t. One should also compare
this with the noncommutative Taylor formula from [3]. If V ' k2 is an A-
module defined by the matrix X ∈ M2(k), and δ ∈ Derk(A,Endk(V )) is defined
in terms of the matrix Y ∈ M2(k), then the Ph(A)-module Vδ is the k〈t, dt〉-
module defined by the action of the two matrices X,Y ∈ M2(k), and we find

e1
V := dimk Ext1

A(V, V ) = dimk EndA(V ) = dimk{Z ∈ M2(k)| [X,Z] = 0}
e1
Vδ

:= dimk Ext1
Ph(A)(Vδ, Vδ) = 8− 4 + dim{Z ∈ M2(k)| [X,Z] = [Y,Z] = 0}

We have the following inequalities:

2 ≤ e1
V ≤ 4 ≤ e1

Vδ
≤ 8.

Example 19. Let A = k[t1, t2], then we find

Ph(A) = k〈t1, t2, dt1, dt2〉/([t1, t2], [dt1, t2] + [t1, dt2])

In particular, we have a surjective homomorphism

Ph(A)→ k〈t1, t2, dt1, dt2〉/([t1, t2], [dt1, dt2], [ti, dti]− 1),

the right hand algebra being the Weyl algebra. This homomorphism exists in all
dimensions. We also have a surjective homomorphism

Ph(A)→ k[t1, t2, ξ1, ξ2]

i.e. onto the affine algebra of the classical phase-space.
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Remark 7. Since Ext1
A(V, V ) is the tangent space of the miniversal deformation

space of V as an A-module, we see that the non-commutative space Ph(A) also
parametrizes the set of generalized momenta, i.e. the set of pairs of an A-
module V and a tangent vector of the formal moduli of V at that point.

Ph(A) is relatively easy to compute. In particular, if A = k[x1, .., xn] is the
polynomial algebra, we have

Ph(A) = k〈x1, .., xn, dx1, .., dxn〉/([xi, xj ], [xi, dxj ] + [dxi, xj ]).

Notice that any rank 1 representation of Ph(A) is represented by a pair (q,p) of
a closed point q ∈ Spec(k[x]) and a tangent p at that point. We will be in need
of the following formulas.

Theorem 9. Given two points (qi, pi), i = 1, 2 we find

dimk Ext1
Ph(A)(k(q1, p1), k(q2, p2)) = 2n, for (q1, p1) = (q2, p2)

dimk Ext1
Ph(A)(k(q1, p1), k(q2, p2)) = n, for q1 = q2, , p1 6= p2

dimk Ext1
Ph(A)(k(q1, p1), k(q2, p2)) = 1, for q1 6= q2.

Moreover, there is a generator of,

Ext1
Ph(A)(k(q1, p1), k(q2, p2)) = Derk(Ph(A),Homk(k(q1, p1)), k(q2, p2)))/Triv

uniquely characterized by the tangent line defined by the vector q1q2.

Proof. Assume for convenience that n = 3. Put xj(qi, pi) = qi,j , dxj((qi, pi) =
pi,j , αj = q1,j − q2,j , βj = p1,j − p2,j .

We see that for any element α ∈ Homk(k(q1, p1), k(q2, p2)) we have

xjα = q1,jα, αxj = q2,jα, dxjα = p1,jα, αdxj = p2,jα,

with the obvious identification. Any derivation

δ ∈ Derk(Ph(A),Homk(k(q1, p1), k(q2, p2)))

must satisfy the relations

δ([xi, xj ]) = [δ(xi), xj ] + [xi, δ(xj)] = 0

δ([dxi, xj ] + [xi, dxj ]) = [δ(dxi), xj ] + [dxi, δ(xj)] + [δ(xi), dxj ] + [xi, δ(dxj)] = 0.

Using the above left-right action-rules, the result follows from the long exact
sequence computing Ext1

Ph(A). The two families of relations above give us two
systems of linear equations.

The first in the variables δ(x1), δ(x2), δ(x3) with matrix−α2 α1 0
−α3 0 α1

0 −α3 α2

 ,
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and the second in the variables δ(x1), δ(x2), δ(x3), δ(dx1), δ(dx2), δ(dx3) with
matrix −β2 β1 0 −α2 α1 0

−β3 0 β1 −α3 0 α1

0 −β3 β2 0 −α3 α2

 .

In particular we see that the trivial derivation given by

δ(xi) = αi, δ(dxj) = βj ,

satisfies the relations, and the generator of Ext1
PhA(k(q1, p1), k(q2, p2)) is

represented by

δ(xi) = 0, δ(dxj) = αj .

This is, in an obvious sense, the ”tangent vector” −q1, q2

It is easy to extend this result from dimension 3 to any dimension n.

Notice that this result shows that the ”Space” of all rank 1 representations
of Ph(A) is the classical phase space of SpecA of dimension 2n, but endowed
with an extra structure. Between two different points, corresponding to either
one point in SpecA and two different tangents, or to two different points in
SpecA, there is respectively a subspace of dimension n and of dimension 1 of
”Ext-tangents”. This will be important for the concept of ”Ether”.

7.2 Blowing Up and Desingularization

The A-algebra Ph(A) is graded by defining for a ∈ A

deg(a) = 0, deg(d(a)) = 1.

By definition, any Ph(A)-representation ρ : Ph(A)→ Endk(V ), corresponds
to a representation ρ0 : A → Endk(V ) together with a derivation of A into
Endk(V ), which again induces a tangent direction in the moduli space of rep-
resentations of A at the point ρ. In complete generality we have a map that we
shall call The General Blowing Up Map

bu : SimphA(Ph(A))→ SimpA,

where SimphA(Ph(A)) is the set of simple graded Ph(A)-modules and the
mapping is onto the 0’th. component.

The corresponding morphism in the commutative case is

bu : ProjA(Ph(A))→ SpecA,

the Blowing Up Map. By the universal property of Ph(A) it is clear that
the fibre of bu at a k-point x ∈ SpecA is Proj(T (x)) ' Pn−1, where T (x) is the
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tangent space of SpecA at the point x, supposed to be of embedding dimension
n.

Therefore any vector field ξ, on SpecA, i.e. any derivation ξ ∈ Derk(A,A),
defines a canonical section of bu

σ(ξ) : D(ξ)→ ProjA(Ph(A))

defined in the open subscheme D(ξ), where ξ is non-trivial. The blow-up of
SpecA defined by ξ is now the closure Spec(A, ξ) of the image of σ(ξ). Thus,

D(ξ) ⊂ Spec(A, ξ) ⊂ ProjA(Ph(A)).

Blowing up the origin in the affine n-space, would then correspond to the
blowing up of Spec(k[x1, ..., xn]) defined by the derivation ξ =

∑
xi

∂
∂xi

.
In the commutative general case, if A = k[x1, ..., xn]/(r1, ..., rs), consider the

Jacobian matrix

J = (
∂ri
∂xj

)

and let Jα be a maximal sub-determinant such that Jα 6= 0 in an open subset
U = Spec(A) − Sing(A) supposed to be non-empty. Compute the solutions of
the linear system of equations

n∑
j=1

∂ri
∂xj

dxj = 0, i = 1, ..., s.

We find solutions of the form

dxl =

d∑
i

cli/Jαdxi, l = d+ 1, ..., n.

The derivations of A of the form

ξi := Jα
∂

∂xi
−

n∑
l=d+1

cli
∂

∂xl

are all non-trivial in U . The corresponding blow-ups of A looks like

A(ξi) = Ph(A)/(〈Jαdxl =

d∑
i

clidxi, l = d+ 1, ..., n〉).

This gives us a possible easier road to de-singularization since the Ph-
operation is canonical and may be iterated.

All this can easily be generalized to perform much more complex blowing ups
of noncommutative affine algebraic schemes, defined by the associative k-algebra
A.
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Denote, generally, mA = kerπ where π : Ph(A) → A corresponds to the
trivial derivation of A. Obviously, mA is the ideal of Ph(A) generated by the
elements {d(a), a ∈ A}.

Consider now a twosided ideal a ⊂ A, and a twosided subideal b ⊂ m. The
twosided ideal (a, b) = a(mA) + (b) ⊂ Ph(A) defines a subscheme

bl(a, b) ⊂ SimphA Ph(A))

which is our general blow up of a noncommutative algebraic Scheme.
The blowing up of a closed subscheme Y = Spec(B) ⊂ X = SpecA is gotten

by considering the ideal a = kerπ, π : A → B, and the twosided subideal
b = ker{Ph(π) : mA → mB ⊂ mA}. The fibre over C of this map is the
projectivization of the normal bundle NB(A).

Now, the blowing down of a subscheme C = Spec(B) ⊂ X = SpecA is gotten
by considering, together with the the points of X −C as simple representations
ρx : A→ k(x), also the representation ρ0 : A→ B, in the way we construct the
general noncommutative algebraic geometry.

7.3 Chern Classes

It is (probably) well known that in the commutative case the Kodaira-Spencer
class gives rise to the Chern characters. In this general case, we shall prepare
for a result mimicking the Chern-Simons classes. Let us assume given a repre-
sentation

ρ0 : A → Endk(V ) and a momentum at ρ0, i.e. an extension ρ1 : Ph(A) →
Endk(V ) of ρ0. Consider now the class in chn(ρ1) ∈ HHn(A,Endk(V )) defined
by the following Hochschild cochain, the k-linear map

chn : A⊗n → Endk(V )

defined by

chn(a1 ⊗ a2...,⊗an) = ρ1(da1da2...dan) ∈ Endk(V ).

It is easy to see that chn is a cocycle because

δ(chn)((a1 ⊗ a2...⊗ an+1)) = a1ρ1((da2da3...dan+1)) (7.1)

+

n∑
1

(−1)ρ1((da1...d(aiai+1)...dan+1)) + (−1)n+1ρ1((da1...dan)an+1 = 0

(7.2)

One may define the Generalized Chern-Simons Class of ρ1 as the class

chn(ρ1) ∈ HHn(A,Endk(V ))

defined by 1/n! chn.
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7.4 The iterated Phase Space functor Ph∗ and
the Dirac derivation

The phase-space construction may be iterated. Given the k-algebra A we may
form the sequence {Phn(A)}0≤n defined inductively by

Ph0(A) = A, Ph1(A) = Ph(A), ...,Phn+1(A) = Ph(Phn(A)).

Let in0 : Phn(A) → Phn+1(A) be the canonical embedding and let dn :
Phn(A)→ Phn+1(A) be the corresponding derivation. Since the composition of
in0 and the derivation dn+1 is a derivation Phn(A) → Phn+2(A) corresponding
to the homomorphism

Phn(A)
in0→ Phn+1(A)

in+1
0→ Phn+2(A)

there exist by universality a homomorphism in+1
1 : Phn+1(A) → Phn+2(A)

such that

in0 ◦ in+1
1 = in0 ◦ in+1

0

and such that

dn ◦ in+1
1 = in0 ◦ dn+1.

Notice that here we compose functions and functors from left to right.
Clearly we may continue this process constructing new homomorphisms,

{inj : Phn(A)→ Phn+1(A)}0≤j≤n,

such that

inp ◦ in+1
0 = in0 ◦ in+1

p+1

with the property,

dn ◦ in+1
j+1 = inj ◦ dn+1.

We find the following identities,

inp i
n+1
q = inq−1i

n+1
p , p < q

inp i
n+1
p = inp i

n+1
p+1

inp i
n+1
q = inq i

n+1
p+1 , q < p.

To see this, compose with in−1
0 and dn−1, and use induction. Thus, the

Ph∗(A) = ⊕Phn(A) is a semi-cosimplicial k-algebra with a cosection h0, onto
A. And it is easy to see that h0 together with the corresponding cosections



90 CHAPTER 7. PRE-DYNAMIC GIT

hp : Php+1(A) → Php(A) for Php(A) replacing A form a trivializing homotopy
for Ph∗(A). Thus we have

Hn(Ph∗(A)) = 0,∀n ≥ 0,

i.e. Ph∗+1 is a cosimplicial resolution of A. Therefore, for any object

κ : A→ R ∈ A/k − alg

the cosimplicial algebra above induces simplicial sets

Mork(Ph?(A), R), MorA(Ph?(A), R),

and one should be interested in the homotopy. See also that this generalises to
a canonical functor

Spec : (k − alg∆)op −→ SPr(k)

where (k − alg)∆ is the category of co-simplicial k-algebras, and SPr(k) is the
category of simplicial presheves on the category of k-schemes enriched by any
Grothendieck topology. As usual, the embedding of the category of k-algebras
in the category of cosimplicial algebras is defined simply by giving any k-algebra
a constant cosimplicial structure. The fact that Ph?(A) is a resolution of A is
therefore simply saying that

Spec(Ph?((A))→ SpecA,

is a week equivalence in SPr(k).
This might be a starting point for a theory of homotopy for k-schemes. We

may also consider, for any k-algebra R, the simplicial k-vectorspace

Derk(Ph?(A), R)

Consider this complex for R = A, i.e. MorA(Ph?(A), A). Clearly

MorA(Phn+1(A), A) = Derk(Phn(A), A), n ≥ 0,

and we have

MorA(Phn(A), A) = {ξ0◦ξi1◦...◦ξir |0 ≤ il ≤ il+1 ≤ n|ξ0 = idA, ξi ∈ Derk(A), i ≥ 1}.

Since Ph is a functor, and Ph∗+1 is a cosimplicial resolution of A, we may
apply this to any scheme X given in terms of an affine covering U, and obtain
an algebraic homology (or cohomology) with converging spectral sequences

E1
pq = Hp(HU

−q(Derk(Ph?(A), A))), Eq,p = H−qU (Hp(Derk(Ph?(A), A)))

If we in MorA(Phn(A), A) identify ξ ∼ αξ, α ∈ k∗, we obtain a rational
cohomology with converging spectral sequences
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Epq1 = Hp(Hq
U(MorA(Phn(A), A),Q)), Eq,p2 = Hq

U(Hp(MorA(Phn(A), A),Q))

Remark 8. The above suggests that we are closing in on Stacks and Motives.
Any reasonable cohomology theory defined on the category of k-schemes is now
seen to be defined on the image category of Spec, so probably extendable to
SPr(k) and therefore comes with a homotopy theory attached. Moreover, sup-
pose we instead of the example R = A above, considered the category (actually
an ordered set) of morphisms, a(A) := {A → A/pi}, for some family of ir-
reducible twosided ideals, corresponding in the commutative case to families of
subschemes of X = SpecA. By the theorem (4.2.4) of [?] there is for any fi-
nite subcategory V ⊂ a(A), a formal moduli H(V) for the deformation functor
Def(V) of the category of morphisms V with the algebra A trivially deformed,
provided the corresponding cohomology groups of the deformation theory are
countably generated.

Moreover, we may globalize this to hold for any scheme X and in particular
to any projective scheme over k,for which we know that the cohomology groups
of the deformation theory will be of finite dimension, implying that the formal
moduli H(V) will be finitely generated formal k-algebras.

Formally the theory will be of the same nature for schemes as for algebras,
and so to minimise the place and problems with hanging on to dull dual descrip-
tions, we shall just describe the affine case. Of course in this case the formal
moduli H(V) will not, in general, be finitely generated formal k-algebras, but
this should not be of much trouble for most mathematicians.

Obviously, if W ⊂ V there is a natural morphism

π(V,W) : H(W)→ H(V),

usually just called π or name omitted. Given a commutative diagram

A
ρ

��

ρ′

  
R

ψ
// R′

we have a diagram of canonical morphisms

H(ρ)

##

H(ρ′)

{{
H(ψ)

where we have put H(ψ) := H(ψ : ρ→ ρ′). And for any diagram like
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A
ρ

~~

ρ′

""
ρ
′′

��

R

ψ ��

R′ψ′

}}
R
′′

we find a diagram of canonical morphisms

H(ψ) H(ψ′)

H(ρ
′′
)

cc ;;

with the same abbreviation as above.
A prime cycle in the motive of A should be any object (ρ,H(ρ)), ρ ∈ Irr(A),

the set of which we shall call h(A). A cycle should then be a linear combination
over some abelian group of such prime cycles.

We should like to define the intersection product of cycles, as a bilinear
product of cycles. If ρ and ρ′ prime cycles, then we define the intersection as
the sum

ρ ∩ ρ′ =
∑

α(ρ, ρ′)ρ′′, α(ρ, ρ′) := |H(ρ, ψ)⊗H(ρ′′) H(ρ′, ψ′)|.

We would like to compare it to the Serre intersection formula

ρ ∩ ρ′ =

∞∑
0

(−1)i TorAi (R,R′)

in the commutative case. But this demands a certain work which will be
postponed.

Anyway, the notion of motive over the rationals should be given by the set
of finite cycles

M(A) = FinMap(h(A),Q)

divided out with some equivalence relation which to be considered in later work.

Consider now the cosimplicial algebra

A
i00→ Ph(A)

i1p→ Ph2(A)
i2p→ Ph3(A)

i3p→ · · ·

where for each integer n, the symbol inp , for p = 0, 1, ..., n signify the family

of A-morphisms between Phn(A) and Phn+1(A) defined above. The system
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of k-algebras and homomorphisms of k-algebras {Phn(A), inj }n,0≤j≤n has an
inductive (direct) limit, defined by,

Ph∞(A) = lim−→
n≥0

{Phn(A), inj }

together with homomorphisms

in : Phn(A) −→ Ph∞(A)

satisfying

inj ◦ in+1 = in, j = 0, 1, . . . , n.

Moreover, the family of derivations {dn}0≤n define a unique Dirac derivation

δ : Ph∞(A) −→ Ph∞(A).

such that in ◦ δ = dn ◦ in+1. Put

Ph(n)(A) := im in ⊆ Ph∞(A)

The k-algebra Ph∞(A) has a descending filtration of two-sided ideals {Fn}0≤n
given inductively by

F1 = Ph∞(A) · im(δ) · Ph∞(A)

and

δFn ⊆ Fn+1, Fn1Fn2 . . .Fnr ⊆ Fn, n1 + . . .+ nr = n

such that the derivation δ induces derivations δn : Fn −→ Fn+1. Using
the canonical homomorphism in : Phn(A) −→ Ph∞(A) we pull the filtration
{Fp}0≤p back to Phn(A), obtaining a filtration of each Phn(A) with,

Fn1 = Phn(A) · im(δ) · Phn(A)

and inductively,

δFnp ⊆ Fn+1
p+1 , Fnp1

Fnp2
. . .Fnpr ⊆ Fnp , p1 + . . .+ pr = p.

Definition 41. Let D(A) := lim←−
n≥1

Ph∞(A)/Fn, the completion of Ph∞(A) in the

topology given by the filtration {Fn}0≤n. The k-algebra Ph∞(A) will be referred
to as the k-algebra of higher differentials, and D(A) will be called the k-algebra
of formalized higher differentials. Put

Dn := Dn(A) := Ph∞(A)/Fn+1
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Clearly δ defines a derivation on D(A), and an isomorphism of k-algebras

ε := exp(δ) : D(A)→ D(A)

and in particular an algebra homomorphism

η̃ := exp(δ) : A→ D(A)

inducing the algebra homomorphisms

η̃n : A→ Dn(A)

which, by killing, in the right hand algebra the image of the maximal ideal
m(t) of A corresponding to a point t ∈ Simp1(A) induces a homomorphism of
k-algebras

η̃n(t) : A→ Dn(A)(t) := Dn/(Dnm(t)Dn)

and an injective homomorphism

η̃(t) : A→ lim←−
n≥1

Dn(A)(t)

see [?].

Remark 9 (Formal curves of representations). Since Ext1
A(V, V ) is the tangent

space of the miniversal deformation space of V as an A-module, we see that the
noncommutative space Ph(A) also parametrizes the set of generalized momenta,
i.e. the set of pairs of an A-module V and a tangent vector of the formal
moduli of V at that point. Therefore the above implies that any representation
ρ : Ph∞(A) → Endk(V ) corresponds to a family of Phn(A)-module structures
on V for n ≥ 1, i.e. to an A-module V0 := V , an element ξ0 ∈ Ext1

A(V, V ), i.e.
a tangent of the deformation functor of V0 = V as A-module, an element ξ1 ∈
Ext1

Ph(A)(V, V ), i.e. a tangent of the deformation functor of V1 := V as Ph(A)-

module, an element ξ2 ∈ Ext1
Ph2(A)(V, V ), i.e. a tangent of the deformation

functor of V2 := V as Ph2(A)-module, etc.
All this is just ρ0 : A→ Endk(V ) considered as an A-module together with a

sequence {ξn}, 0 ≤ n, of a tangent, or a momentum ξ0, an acceleration vector
ξ1, and any number of higher order momenta ξn. Thus, specifying a Ph∞(A)-
representation V implies specifying a formal curve through v0, the base-point of
the miniversal deformation space of the A-module V . Formally, this curve is
given by the composition of the homomorphism ε(τ) := exp(τδ) and ρ.

This is seen as follows. Consider the diagram

A

ρ0

��

i00 // Ph(A)
i1p //

ρ1yy

Ph2(A)
i2p // · · · // Ph∞(A)

Endk(V )
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where, for each integer n, the symbol inp , for p = 0, 1, ..., n signify the fam-

ily of A-morphisms between Phn(A) and Phn+1(A) defined above. Suppose now
that we can extend ρ0 to a morphism ρ1 which should be seen as a momentum for
the representation ρ0, and suppose moreover that we can continue finding mor-
phisms ρnp : Php(A) → Endk(V ) for p = 2, ...,∞ making the diagram commute
and such that,

in−1
p ρn = ρn−1

for all n ≥ 2, and all n ≥ 2. then it is relatively easy to do the computation and
find that the map

[δ] : A→ Ph∗(A),

defined by [δ](a) :=
∑∞
n=0 1/n!dn(...(d0))(a), composed with any one of the ρp

will be an algebra homomorphism.

If we arrange for all the ρp : Php(A)→ Endk(V )⊗ k[τ ]/(τ)p to be (obvious)
graded homomorphisms, we have in fact found a formal curve parametrized by
τ in the moduli space of Rep(A).

It is, however, impossible to prepare a physical situation such that a measure-
ment, i.e. an object like ρ0, is given by an infinite sequence {ξn}, of dynamical
data. We shall have to be satisfied with a finite number of data, and normally
with just the first one , i.e. the momentum ξ0, given by ρ1. This is the problem
of Preparation and of the Time Evolution of a representation ρ, to be treated
in the sequel.

7.5 The generalized de Rham Complex

Consider now the diagram

A
i00 // Ph(A)

i1p // Ph2(A)
i2p // Ph3(A)

i3p //

m1
1

OO

i1p // m1
2

OO

i2p // m1
3

OO

i3p //

where for each integer n, the symbol inp , for p = 0, 1, ..., n signify the family

of A-morphisms between Phn(A) and Phn+1(A) defined above, and where m1
n is

the ideal of Phn(A) generated by im(d) which is the same as the ideal generated
by the family {in−1

p (in−2
p (...(i1p(d(A))...))} for all possible p. And, inductively,

let mmn be the ideal generated by m1
nm

m−1
n .

We find an extended diagram
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A

��

i00 // Ph(A)

��

i1p // Ph2(A)

��

i2p // Ph3(A)

��

i3p // ...

A

d0

""

i00 // A
d1

%%

i1p // A
d2

%%

i2p // A
d3

##

i3p // ...

m1
1/m

2
1

d1

$$

i1p // m1
2/m

2
2

d2

%%

i2p // m1
3/m

2
3

d3

""

i3p // ...

m2
1/m

3
1

d1

$$

i1p // m2
2/m

3
2

d2

$$

i2p // m2
3/m

3
1

d3

""

i3p // ...

. . .
. . .

. . .

The diagonals are not necessarily complexes, but it suffices to kill d2, to kill
all dn, n ≥ 2, and for this it suffices to kill d1d0, as one easily see operating
with the edge homomorphisms inp , n ≥ 2 on the elements, d1(d0(a)) for a ∈ A.
Therefore we shall in this general situation make the following definition.

Definition 42. The curvature R(A) of the associative k algebra A is the k-
linear map composition of d0 and d1,

R(A) = d0d1 : A→ m2
2/m

3
2.

Now, kill the curvature R(A) and all the terms under the first diagonal,
beginning with m2

1/m
3
1, together with all terms generated by the actions of the

edge homomorphisms on these terms and let Ωm
n be the resulting quotient of

mmn /m
m+1
n for n ≥ 0. Clearly, Ω0

n = A for all n ≥ 0, and we have got a graded
semi cosimplicial A-module with a k-differential d such that d2 = 0, looking like

A

��

i00 // Ph(A)

��

i1p // Ph2(A)

��

i2p // Ph3(A)

��

i3p //

A

d

""

i00 // A

d

%%

i1p // A

d

%%

i2p // A

d

""

i3p //

Ω1
1

d

$$

i1p // Ω1
2

d

%%

i2p // Ω1
3

d

!!

i3p //

Ω2
2

i2p // Ω2
3

i3p //

It is a graded complex in two ways. First as a complex induced from the
semi-cosimplicial structure with differential of bidegree (1, 0), and second as
complex with differential d of bidegree (1, 1).
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Lemma 34. Suppose A is commutative. Then there is a natural morphism of
complexes of A-modules

Ω?A ⊂ Ω??,

with
ΩnA := ∧rΩA ' Ωnn.

Proof. Let ai ∈ A, i = 1, ..., r and compute in Ωr? the value of dr(a1a2...ar). It
is clear that this gives the formula∑

di1(a1)di2(a2)..dir (ar) = 0,

the sum being over all permutations (i1, i2, ..., ir) of (0, 1, ..., r − 1). Here we
consider A as a subalgebra of Phn(A) via the unique compositions of the is0 :
Phs(A) ⊂ Phs+1(A). In particular, we have

d0(a1)d1(a2) + d1(a1)d0(a2) = 0

for all a1, a2 ∈ A. This relation and the relation d0(a2)d1(a1) = d1(a1)d0(a2),
which follows from commutativity, d(a2)a1 = a1d(a2), forces the left and right
A-action on ΩA to be equal. It immediately give us d0(a1)d1(a2) = −d0(a2)d1(a1).

Consider now the diagram,

A

��

i00 // Ph(A)

��

i10 // Ph2(A)

��

i20 // Ph3(A)

��

i30 // ...

A
i00 // A⊕ Ω1

A

i10 // A⊕ Ω1
A ⊕ Ω2

A

i20 // A⊕ Ω1
A ⊕ Ω2

A ⊕ Ω3
A

i30 // ...,

where the bottom line is a sequence of Nagata-extentions of the k-algebra A,
and the vertical homomorphisms correspond to the natural derivations among
these, defined by the derivations of the deRham complex, Ω? of A.

The universality of the two systems proves that there is a surjective map

α : Ωnn → ΩnA := ∧nΩA.

The map that sends the element da1 ∧ da2 ∧ ... ∧ dan ∈ ΩrA to

d0(a1)d1(a2)..dn−1(ar) ∈ Ωnn

is an inverse, proving that α is an isomorphism.

It follows from this that in the commutative case, for any scheme X con-
sidered as a covering of affine schemes in some sense, there are two spectral
sequences converging to the same cohomology, first

E(1)2
p,q = Hp(Hq

dR(X,Ω∗∗))

then
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E(2)2
p,q = Hq

dR(X,Hp(Ω∗∗)).

Let now V be a right A-module, and assume c(V ) = 0, such that there
exist an element ∇′ ∈ Homk(V, V ⊗A Ph(A)) with c = ι(∇′). This implies that
for a ∈ A and v ∈ V we have ∇′(va) = ∇′(v)a + v ⊗ d0(a). Composing ∇′
with the projection, o : Ph(A) → A, corresponding to the 0-derivation of A,
we therefore obtain an A-linear homomorphism P : V → V , a potential. Since
i00 : A→ Ph(A) is a section of o, we find a k-linear map

∇0 := ∇′ − P : V → V ⊗m1
1.

Using the property
dn ◦ in+1

j+1 = inj dn+1,

we find well defined k-linear maps

∇1 : V → V ⊗ Ω1
2, ∇2 : V → V ⊗ Ω1

3, ...,∇n : V → V ⊗ Ω1
n+1 ∀n ≥ 0

given by

∇n+1 := ∇n ◦ in+1
1 , n ≥ 0,

such that for all v ∈ V, ω ∈ Ωnp , the formula

∇n(v ⊗ ω) = ∇n(v)ω + v ⊗ dn(ω)

makes sense and defines a sequence of derivations

∇n : V ⊗ Ωpn → V ⊗ Ωp+1
n+1,

sometimes just denoted dn and called a connection ∇ on the A-module V . We
obtain a situation just like above,

V

��

i00// V ⊗ Ph(A)

��

i1p // V ⊗ Ph2(A)

��

i2p // V ⊗ Ph3(A)

��

i3p //

V

d0

$$

i00 // V
d1

''

i1p // V
d2

''

i2p // V
d3

$$

i3p //

V ⊗ Ω1
1

d1

''

i1p // V ⊗ Ω1
2

d2

''

i2p // V ⊗ Ω1
3

d3

##

i3p //

V ⊗ Ω2
2

i2p // V ⊗ Ω2
3

i3p //

In general, there are no reasons for these derivations dn := ∇n, n ≥ 0 to
define complexes, and we shall make the following definition.
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Definition 43. The curvature R(V,∇) of the connection ∇ defined on the right
A-module V is the k-linear map, composition of d0 and d1,

R(V ) = d0d1 : V → V ⊗ Ω2
2.

The following Lemma is then easily proved,

Lemma 35. Suppose A is commutative, and assume c(V ) = 0. Let ∇ : ΘA →
Endk(V ) be the classical connection corresponding to ∇0. Suppose moreover
that the curvature R of ∇ is 0, then R(V ) = 0, implying that d2 = 0, and so
the diagonals in the diagram above are all complexes.

Proof. We put

∇(vi) =
∑
j,k,

aki,jvjd0(xk)

and obtain

∇1(∇0(vi)) =
∑
j,k,l

∂aki,j
∂xl

vjd1(xl)d0(xk) +
∑
j,k,l,m

aki,ja
l
j,mvmd1(xl)d0(xk)

Now the classical curvature of ∇ may be defined as

Rik,l =
∑
j

∂aki,j
∂xl

vj +
∑
j,m

aki,ja
l
j,mvm −

∑
j

∂ali,j
∂xk

vj −
∑
j,m

ali,ja
k
j,mvm,

so if R = 0 and d1(xl)d0(xk) = −d1(xk)d0(xl), we find that ∇1(∇0(vi)) = 0,
from which it follows that d2 = 0

7.6 Excursion into the Jacobian Conjecture

The conjecture referred to Jacobi, says that for algebraically closed fields k, any
algebraic morphism

F : An → An

with everywhere nontrivial Jacobi determinant, det J(F ) is an isomorphism.
It is usually formulated by considering F = {fi ∈ k[x1, ..., xn] : i = 1, ..., n} as
the algebraic homomorphism

F : k[x1, ..., xn]→ k[x1, ..., xn], F (xi) := fi,

where J(F ) = (fi,j). We have put

fi,j =
∂fi
∂xj

.
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Since det J(F ) must be a non-zero element of k, it is clear that there exist an
inverse (gi,j) of the matrix J(F ) with gi,j ∈ k[x1, ..., xn] which can be written
as ∑

i

gk,i
∂fi
∂xj

dxj = δj,kdxj .

The integral gi of
∑
j gi,jdxj is the polynomial such that

dgi =
∑
j

gi,jdxj .

We might try out the following optimistic equation,

gk(f1, ..., fn) = xk?

Since dgk(f1, ..., fn) =
∑
i gk,i(f1, ..., fn) ∂fi∂xj

dxj , and since we may assume

that F has the origin xi = 0 as fixed point, we find that

gk(f1, ..., fn) = xk(mod(x)2)

and we may reduce the question to the case where

fi(x1, ..., xn) = xi + αi, αi ∈ (x)2

which is a known result.
We conclude by noting the important fact that this theory works alge-

braically. We have used the word dynamical without rights. There is no time
in this setup, so it is still pure algebra. To do dynamical (applied) theory, we
need something to differentiate with respect to, e.g. time or any other measure
of change. There are several attempts to solve this, given by Toën, Quillen,
Voevodsky, Connes. One direct way to do this, is to introduce the all order mo-
menta on a derived scheme, which is the content of O.A. Laudals contribution
in the next section.



Chapter 8

Dynamical Algebraic
Structures

8.1 Noncommutative Algebraic Geometry

Mathematics is since the time of Galilei the language of physics. And since
Descartes, Newton and Leibnitz, geometry and differential algebra have been
our best tools for making the Universe understandable. The last centuries have
seen an amazing development in science and technology due to the the parallel
achievements in mathematics and physics. The theory of general relativity
and the modern theory of quantum physics have transformed our world-view
and our daily life in a way almost unimaginable just fifty years ago. And the
pace of change is, seemingly, accelerating. And so is the pace of change of
the mathematical bases for these two grand theories. The differential geometry
and the operator algebra have served these two fundamental sciences well for a
century, but the human curiosity does not rest. The feeling that they should
somehow be united, has been there for a long time, and has produced a lot of
new mathematics. Algebraic geometry is as old as geometry, but has seen a
formidable development the last 50 years, starting with the Grothendieck era,
including a new fundament for the age-old theory of deformations. Operator
algebra, has in the same period due to work of Von Neumann, Gelfand and
Connes, been transformed into a fascinating noncommutative geometry.

The physicists have, of course, taken advantage of these developments, and
used the new mathematics to construct new models. At the moment the sit-
uation is never the less that there are still two theories, the general relativity
treating gravitation and to some extent electroweak forces, and the quantum
field theory taking care of relativistic quantum theory. The result of the latter
is the Standard Model, a wander of an effective theory for most of the forces of
nature, but not including gravitation.

The hope has therefore been that by creating some sort of fusion of classical
algebraic and the new non-commutative geometry one would be able to create a

101
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model fusing the standard model and the theory of gravitation. This is, in our
views, what a mature Noncommutative Algebraic Geometry should be about.

There are many attempts to create a geometry based on the classical al-
gebraic geometry, modified by Serre, Chevalley and Grothendieck, but where
the algebra part is extended from commutative to associative algebras. In this
text we give reasons for why we think this effort must include the study of
noncommutative deformation of algebraic structures.

The idea is to look at the common goal of quantum theory and Grothendieck’s
scheme theory, which is the study of the local and global properties of the set
of representations of algebras, together with their dynamical structure.

8.2 Moduli of Representations

A point in scheme theory is a representation of a (commutative) ring, i.e. a
morphism ρ : A → R where R is another ring. The scheme is in a general
sense the moduli space Rep(A) of such representations. The object of scheme
theory is then to study the properties of these moduli spaces, their categorical
relations, and eventually to classify them.

In quantum theory, the objects of interest are also representations ρ : A→ R
of a ring of observables A, but here R = Endk(V ), where k is a field we may
use for measuring for any observable a ∈ A, the eigenvalues of ρ(a) as operator
on the k-vector space V . The aim is to study the structure of the moduli space
of such representations Rep(A) and in particular to understand the dynamical
properties of this space.

In both cases the local structure of the moduli spaces are defined via defor-
mation theory. But here is where noncommutative deformation theory enters,
not only because the rings we must work with are non-commutative, but also be-
cause the local structure we are interested in is no longer given by commutative
algebra. In fact, the local structure of Rep(A) in a finite family B ⊂ Rep(A) is
not the superposition of the local structure of each one of the representations.
Noncommutative deformation of the family B produces a homomorphism

η : A→ O(V),

the O-construction, which is the localisation process in noncommutative algebra.

8.3 Blowing down subschemes

Let us first take an easy example. Given an affine scheme defined by a k-algebra
A, then a subscheme is given locally by a quotient C of A and can be considered
as a representation of A. Then the Blow Down of SpecC in SpecA is given by

η : A→ O(V)

where V is the family of points outside SpecC in SpecA plus the represen-
tation C.
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8.4 Moduli of Simple Modules

The basic notions of affine noncommutative algebraic geometry related to a
(not necessarily commutative) associative k-algebra, for k an arbitrary field
have been treated by many authors in several texts, see e.g.[?], [?], [?], [?],
[?]. Given a finitely generated algebra A, let Simp<∞(A) be the category of
simple finite dimensional representations, i.e. right modules of A. We show
in [?] that any geometric k-algebra A, see also [?], may be recovered from the
(non-commutative) structure of Simp<∞(A), and that there is an underlying
quasi-affine (commutative) scheme-structure on each component Simpn(A) ⊂
Simp<∞(A) parametrizing the simple representations of dimension n. In fact,
we have shown the following.

Theorem 10. There is a commutative k-algebra C(n) with an open subvariety
U(n) ⊆ Simp1(C(n)), an étale covering of Simpn(A) over which there exists
a versal representation Ṽ ' C(n) ⊗k V , a vector bundle of rank n defined on
Simp1(C(n)) and a versal family, i.e. a morphism of algebras,

ρ̃ : A −→ EndC(n)(Ṽ )→ EndU(n)(Ṽ ),

inducing all isoclasses of simple n-dimensional A-modules.

EndC(n)(Ṽ ) induces also a bundle of operators on the étale covering U(n) of
Simpn(A).

8.5 Evolution in the Moduli of Simple Modules

Assume given a derivation ξ ∈ Derk(A). Pick any v ∈ Simpn(A) corresponding
to the right A-module V , with structure homomorphism ρV : A → Endk(V ),
then ξ composed with ρv gives us an element

ξv ∈ Ext1
A(V, V ).

Therefore, ξ defines a unique one-dimensional distribution in ΘSimpn(A),
which once we have fixed a versal family, defines a vector field

[ξ] ∈ ΘSimpn(A),

and in good cases, a (rational) derivation

[ξ] ∈ Derk(C(n)).

Moreover, O.A. Laudal has proved in [?] the following.

Theorem 11. Formally, at any point v ∈ U(n) ⊂ Simp(C(n)) with local
ring Ĉ(n)v there is a derivation [ξ] ∈ Derk(Ĉ(n)v) and a Hamiltonian Qξ ∈
EndĈ(n)v

(V̂v) such that, as operators on V̂v, we have

ξ = [ξ] + [Qξ,−].



104 CHAPTER 8. DYNAMICAL ALGEBRAIC STRUCTURES

This means that for every a ∈ A, considered as an element ρ̃(a) ∈ Mn(Ĉ(n)v),
ξ(a) acts on V̂v as

ρ̃(ξ(a)) = [ξ](ρ̃(a)) + [Qξ, ρ̃(a)].

This result will turn out to be a very general version of the Dirac equation.
Notice also that we have the canonical isomorphism

Derk(A,A) ' MorA(Ph(A), A).

Therefore the derivation ξ and the A-module V correspond to a Ph(A)-
module Vξ.

The Schrødinger equation, where time is ξ is then

ξ(φ) = Q(φ)

and the solutions are given by the following.

Theorem 12. The evolution operator u(τ0, τ1) that changes the state ψ(τ0) ∈
Ṽ (v0) into the state φ(τ1) ∈ Ṽ (v1), where τ is a parameter of the integral curve
c connecting the two points v0 and v1, i.e. the time passed is given by

φ(τ1) = u(τ0, τ1)(φ(τ0)) = exp[

∫
c

Q(τ)dτ ] (φ(τ0)),

where exp
∫
c

is the noncommutative version of the ordinary action integral,
essentially defined by the equation

exp[

∫
c

Q(τ)dt] = exp[

∫
c2

Q(τ)dτ ] ◦ exp[

∫
c1

Q(τ)dτ ]

where c is c1 followed by c2.

see again [?].
There is an important special case of the above results that we shall refer to as

the Singular Case. Suppose [ξ]v = 0, then the derivation ξ ∈ Derk(A,Endk(V ))
maps to 0 ∈ Ext1

A(V, V ). This situation deserves the status as a Corollary.

Corollary 8. In the general case, let

ρ : A→ Endk(V )

be any representation and suppose given a derivation ξ ∈ Derk(A,Endk(V )),
corresponding to a 0- tangent vector of V , meaning that ξ maps to 0 ∈ Ext1

A(V, V ).
Then there exists an operator, Qξ ∈ Endk(V ) such that for any a ∈ A,

ξ(a) = [Qξ, a], and the evolution operator in this case is reduced to its first
order term given by the Hamiltonian Qξ in the state-space V as the map

∀v ∈ V, ∂v
∂t

:= ξ(v) = Qξ(v).
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This implies that the corresponding 0’th order changes of the A-module
structure of V , can be considered equivalently as a Heisenberg-process, or as
a Schrødinger-process.

Proof. The fact that the condition implies that there exists an operator Qξ ∈
Endk(V ) such that for any a ∈ A, ξ(a) = [Qξ, a], means that the lifting of the
A-module V to the A⊗ k[ε]-module Vξ := V ⊗ k[ε] with the action of A defined
by ξ is trivial. The automorphism Eξ := (id + Qξε) of V0 := V ⊗ k[ε] induces
an isomorphism between the trivial lifting V0 and Vξ. In fact, for any a ∈ A, as
operator in V ⊗ k[ε], we have the formula for left operators

(id+Qξε)(a(id−Qξε)) = (id +Qξε)(a− aQξε) = a+ (Qξa− aQξ)ε = a+ ξ(a)ε.

Thus, the infinitesimal action of ξ in V is the endomorphism Qξ which again
induces the infinitesimal action (i.e.the derivation) of Endk(V ),

ad(Qξ) ∈ Derk(Endk(V ))

since for any ψ ∈ Endk(V ) we find as above

(id +Qξε)(ψ(id−Qξε)) = (id +Qξε)(ψ−ψQξε) = ψ+(Qξψ−ψQξ)ε = ψ+[Qξ, ψ]ε.

8.6 Dynamical Structures

As we have seen, in Subsection 8.1 the dynamics of the space of representations
of our algebra A, i.e. the dynamics of the space of measurements of the family
of observables that A is assumed to represent can be encoded in the category
of representations of the k-algebra Ph∞(A), and the universal Dirac derivation
δ. We would therefore like to use the tools developed above for the k-algebra
Ph∞(A), and with ξ = δ.

However, Ph∞(A) is rarely of finite type, and so the moduli space of simple
modules does not have a classical algebraic geometric structure.

We shall therefore introduce the notion of dynamical structure to reduce the
problem to a situation we can handle. This is also what physicists do. They
invoke a parsimony principle, or an action principle, originally proposed by
Fermat, and later by Maupertuis, with the purpose of reducing the preparation
needed to be able to see ahead.

Definition 44. A dynamical structure σ is a two-sided δ-stable ideal (σ) ⊂
Ph∞(A) such that

A(σ) = Ph∞(A)/(σ),

the corresponding dynamical system, is of finite type. A dynamical structure,
or system, is of order ≤ n if the canonical morphism
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σ : Ph(n−1)(A)→ A(σ)

is surjective. If A is generated by the coordinate functions, {ti}i=1,2,...,d a dy-
namical system of order n may be defined by a force law, i.e. by a system of
equations

δntp = Γp(ti, dtj , d
2tk, .., d

n−1tl), p = 1, 2, ..., d.

Put

A(σ) := Ph∞(A)/(δntp − Γp)

where σ := (δntp − Γp) is the twosided δ-ideal generated by the defining
equations of σ. Obviously δ induces a derivation δσ ∈ Derk(A(σ), A(σ)), also
called the Dirac derivation, and usually just denoted δ.

Notice that if σi, i = 1, 2, are two different order n dynamical systems, then
we may well have

A(σ1) ' A(σ2) ' Ph(n−1)(A)/(σ∗),

as k-algebras.
Assuming that the k-algebra A is finitely generated, and given a dynamical

structure σ, then by definition A(σ) is finitely generated and we can use the
machinery of Subsection 8.1, with A = A(σ) and ξ = δ, the Dirac derivation.
We obtain, as above, see Theorem 12.

Theorem 13. There exists a versal family, i.e. a morphism of algebras,

ρ̃ : A(σ) −→ EndC(n)(Ṽ )→ EndU(n)(Ṽ ),

inducing all isoclasses of simple n-dimensional A(σ)-modules.
Moreover, formally at any point v ∈ U(n) ⊂ Simp(C(n)), with local ring

Ĉ(n)v, there is a derivation [δ] ∈ Derk(Ĉ(n)v) and a Hamiltonian Q ∈ EndĈ(n)v
(Ṽv)

such that, as operators on Ṽv, we have

δ = [δ] + [Q,−].

This means that for every a ∈ A(σ), considered as an element ρ̃(a) ∈
Mn(Ĉ(n)v), δ(a) acts on Ṽv as

ρ̃(δ(a)) = [δ](ρ̃(a)) + [Q, ρ̃(a)].

In line with our general philosophy where time is a metric on an appropri-
ate moduli space, the Dirac derivation δ is the time-propagator for represen-
tations. We shall consider [δ] as measuring time in Simpn(A(σ)), respectively
in Spec(C(n)). This is reasonable since the last equation is equivalent to the
following statement: The derivation δ induces an extension of Ṽv as A-module,
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which modulo the derivation [δ] of Ĉ(n)v is trivial. This is formally true for any
derivation δ by the definition of the versal family, i.e. the Ĉ(n)v-module V̂v.

If Ĉ(n)v had not been the versal base space, then we would have had to
be careful. See also Theorem 18, where the relationship between the Dirac
derivation and metrics is explained.

Notice also that EndC(n)(Ṽ ) ' Mn(C(n)), and be prepared in what follows,
to see this used without further warning. There are local (and even global)
extensions of this result, where [δ] and Q may be assumed to be defined (ratio-
nally) on C(n), see [?]. In this case, we may see that, provided the field k is
(sufficiently) algebraically closed, any quantum field ψ ∈ EndC(n)(Ṽ ) can be ex-
pressed as a (finite) rational polynomial of generalized creation and annihilation
operators.

Assume for a while that k = R and that our constructions go through as if
k were algebraically closed. Let v(τ0) ∈ Simpn(A(σ)) be an element, an event.
Suppose there exist an integral curve c of [δ] through v(τ0) ∈ Simp1(C(n)),
ending at v(τ1) ∈ Simp1(C(n)), given by the automorphisms e(τ) := exp(τ [δ]),
for τ ∈ [τ0, τ1] ⊂ R. The supremum of τ for which the corresponding point,
v(τ), of c is in Simpn(A(σ)) should be called the lifetime of the particle. It is
relatively easy to compute these lifetimes, and so to be able to talk about decay
when the fundamental vector field [δ] has been computed. In [?], O.A. Laudal
has also proposed a mathematically sound way of treating interaction purely in
terms of noncommutative deformation theory.

Let φ(τ0) ∈ Ṽ (v0) ' V be a (classically considered) state of our quantum
system at the time τ0 and consider the (uni-)versal family

ρ̃ : A(σ) −→ EndC(n)(Ṽ )

restricted to U(n) ⊆ Simp1(C(n)), the étale covering of Simpn(A(σ)). We
shall consider A(σ) as our ring of observables. What happens to φ(τ0) ∈ Ṽ (v0)
when time passes from τ0 to τ , along c? This leads to a solution of the
Schrödinger equation

dφ

dτ
= Q(φ),

along c applying the Theorem 12, proving that φ is completely determined by
the value of φ(τ0), for any τ0 ∈ c. Here, we shall not go into the problem of
preparing φ(τ0) ∈ V (τ0), i.e. of how to exactly determine where we are, at some
chosen clock-time τ , see [?].

In the situation of Theorem 10 we observe that, since δ = [δ] + [Q,−]. is
a derivation defined in the algebra EndC(n)(Ṽ ), the eigenvalues Λ := {λ} of
the eigenvectors aλ of δ, will have a structure as an additive sub-monoide of
the reals. Assume now that [[δ], Q] = 0 and suppose that [δ](ψ) = νψ and
[Q,ψ] = εψ, then

exp(δ)(ψ) = exp(ad(Q)) exp([δ])(ψ) = exp(ad(Q))(ψ(t+ν)) = exp(ε) exp(ν)(ψ),

which means that if Λ has a generator h0, then we have a Heisenberg relation
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∆E ×∆t ≥ h := exp(h0).

where exp(ε) = ∆E, exp(ν) = ∆t. Compare with [?], (4.4), where the the
singular situation corresponding to δ = ad(Q). is considered.

Remark 10. Let A be any associative k-algebra, finitely generated by {ti, i =
1, ..., d}, and let σ be a dynamical structure. Given any representation, ρ :
A(σ) → Endk(V ), we must have gi,j := ρ([dti, tj ]) = ρ([dtj , ti]) = gj,i, and
moreover,

ρ(δ(gi,j)) = ρ([d2(ti), tj ] + [dti, dtj ]).

This looks, superficially, like a very generalized field equation, where gi,j is
the inverse of a metric [d2ti, tj ] is the action of a force and [dti, dtj ] is the cur-
vature of ρ. We shall return to this, but first we must introduced the third main
ingredient in this story, the relations induced by ”non-observable” infinitesimal
automorphisms, the gauge groups.

8.7 Gauge Groups and Invariant Theory

We may use the above in an attempt to make precise the notion of gauge group,
gauge fields, and gauge invariance, and thus to be able to understand why the
physicists define their objects, the fields and particles the way they do.

Suppose, in line with our philosophy, that we have uncovered the moduli
space M of the mathematical model X of our phenomena P, and that A is the
affine k-algebra of (an affine open subset of) this space, assumed to contain all
the parameters of our interest of the states of X. Now we consider the global
gauge group and invariant theory.

Suppose furthermore that we have identified a k-Lie algebra g0 ⊂ Derk(A),
of infinitesimal automorphisms, i.e. of derivations of A, a global gauge group,
leaving invariant the physical properties of our phenomena P. We would then be
led to consider the quotient space M/g0 which in our noncommutative algebraic
geometry is equivalent to restricting our representations ρ : A → Endk(V ) to
those representations V for which g0 ⊂ gV . This would then imply that the
corresponding Hamiltonians Qγ define a g0-connection on V ,

Q : g0 −→ Endk(V ),

such that for all a ∈ A and for all ξ ∈ g0, ρ(ξ(a)) = [Qξ, ρ(a)]. This is usually
written

ρ(ξ(a)) = [ξ, ρ(a)].

The curvature, i.e. the obstruction for Q to be a Lie- algebra homomorphism

R(ξ1, ξ2) := [Qξ1 , Qξ2 ]−Q[ξ1,ξ2] ∈ EndA(V )
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corresponds to a global force acting on the representation ρ. These forces,
mediated by the gauge-particles ξ ∈ g0 will be the first to be studied in some
details. Put

Rep(A, g0) := {ρ ∈ Rep(A)|κ(ξρ) = 0,∀ξ ∈ g0} = {ρ ∈ Rep(A)|g0 ⊂ gρ},

where Rep(A) is the category of all representations of A and notice that,
in the commutative situation, if we consider the case where the gauge group
g0 = Derk(A) then Rep(A, g0) is the category of A-Connections for which the
space of isomorphism classes is discrete with respect to time. Notice that this
is also the situation in the classical quantum theory where the Hilbert Space is
always considered as the unique state space of interest.

Definition 45. An object V ∈ Rep(A, g0) is called simple if there are no non-
trivial subobjects of V in Rep(A, g0). The generalised quotient Simp(A)/g0 is
by definition the set Simp(A, g0) of iso-classes of simple objects in Rep(A, g0).

If the curvature also vanish, there is a canonical homomorphism

φ : U(g0)→ Endk(V ).

where U(g0) is the universal algebra of the Lie algebra g0.
In the general case let

A′(g0) ⊂ Endk(A)

be the sub-algebra generated byA and g0. Then we put, for all a ∈ A, ξ ∈ g0,

A(g0) = A′(g0)/(ξa− aξ − ξ(a))

and we have an identification between the set of g0-connections on V and
the set of k-algebra homomorphisms

ρg : A(g0)→ Endk(V )

since any such would respect the relation above, such that, for a ∈ A, ξ ∈ g0,

ρg0(ξa) = ρg0(ξ)ρg(a) = ρg0(a)ρg0(ξ) + ρg0(ξ(a)).

Therefore Rep(A)/g0 := Rep(A, g0) ' Rep(A(g0)), and we note for memory
the trivial

Lemma 36. In the above situation, we have the following isomorphisms:

Rep(A)/g0 : = Rep(A, g0) ' Rep(A(g0))

Simp(A)/g0 := Simp(A, g0) ' Simp(A(g0)).
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Notice that the commutator in A(g0), of A and g0 is the subring

Ag0 := {a ∈ A|∀ξ ∈ g0, ξ(a) = 0} ⊂ A.

Notice also that the commutativisation A(g0)com, of A(g0) is the quotient of
A(g0) by an ideal containing {ξ(a)|a ∈ A, ξ ∈ g0}. Therefore there is a natural
map

Ag0 → A(g0)com.

However, this map may not be injective, so we cannot in general identify the
rank 1 points of Simp(A, g0) with Simp1(Ag0).

If the k-algebra C is assumed commutative, the classical invariant theory
identifies the two schemes Spec(C)/g0 and Spec(Cg0) which in the above light
is not entirely kosher. However, if a ⊂ C is an ideal, stable under the action of
g0, then since any derivation γ of C acts on the multiplicative operators a ∈ C
as γ(c) = γc − cγ, it is clear that the quotient C/a is a C(g0)-representation.
Moreover, as representation of C, we have

C/a ∈ Simp1(C)/g0

if and only if the subset Simp1(C/a) ⊂ Simp1(C) is the closure of a maximal
integral subvariety for g0. The space of such integral subvarieties is what Laudal
in [?] have termed the non-commutative quotient, Spec(C)/g0.

Now we consider the local gauge group. Suppose, in the general case, that
there is an A-Lie algebra g1 acting A-linearly on those A-modules V which
we would consider of physical interest. Then g1 should be called a local gauge
group. One may then want to know whether the given action of g0 moves g1

in its formal moduli as an A-Lie algebra. If so, the action of g1 would not be
invariant under the the gauge transformations induced by g0, and we should not
consider (ρ, g1) as physically kosher.

If, on the other hand, the action of g0 does not move g1 in its formal moduli,
it should follow that there is a relation between the g0-action (i.e. the connec-
tion) on V , and the action of g1. Now, since g0 ⊂ Derk(A), it follows from the
Kodaira-Spencer map

ks : Derk(A)→ A1(A, g1 : g1)

see [?], Lemma(2.3), that we have the following result,

Lemma 37. Let cki,j ∈ A be the structural constants of g1 with respect to some
A-basis {xi}, and let π : F→ g1 be a surjective morphism of a free A-Lie algebra
F onto g1 mapping the generators xi of F onto xi. Let Fi,j = [xi, xj ]−

∑
k c

k
i,jxk ∈

ker(π), and let ξ ∈ Derk(A). Then, ks(ξ) is the element of A1(A, g1 : g1)
determined by the element of HomF(ker(π), g1) given by the map

Fi,j → −
∑
k

ξ(cki,j)xk.
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For ks(ξ) to be 0, there must exist an A- derivation Dξ : F→ g1 such that

Dξ(Fi,j) = Dξ([xi, xj ]−
∑
k

cki,jxk) = −
∑
k

ξ(cki,j)xk.

Assume g1 as an A-module is such that g0 ⊂ gg1
, see Definition 40. Let now

∇ : g0 → Endk(g1) be a g0-connection of the A-module g1, and let ξ ∈ g0. Then
ks(ξ) = 0 since we may let

D : g0 → Derk(g1)

be defined by

Dξ(γ) = ad(∇ξ)(γ)

such that, for ξ ∈ g0, a ∈ A, γ ∈ g1,

Dξ(a · γ) = aDξ(γ) + ξ(a) · γ.

If the curvature

R(ξ1, ξ2) := [Dξ1 ,Dξ2 ]−D[ξ1,ξ2]

representing the 2. order action of g0 on g1 vanish, the map

D : g0 → Derk(g1)

is a Lie-algebra morphism, and D defines a Lie algebra structure on the sum

g := g0 ⊕ g1.

The Lie-products of the sum is defined as the product in each Lie algebra,
with the cross-products defined for ξ ∈ g0, γ ∈ g1 as

[ξ, γ] = Dξ(γ).

A structure like this, a Lie-Cartan pair, is now often called a Lie algebroid.
The situation above comes up when we have chosen a dynamical structure σ

for A with Dirac derivation δ. Assume that there exist, as above, a global gauge
group g0 ⊂ Derk(A), and suppose moreover that there is an A-Lie algebra g1

that acts as a local gauge group on the A-module V . Then we would be lead to
consider the quotient of A by both g0 and g1, i.e. the representations

ρ : A→ Endk(V )

for which there exists a diagram

g0

∇
��

D // Derk(g1) g1
oo

∇1

��
Endk(V ) EndA(V )oo
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Here D, which we might call a generalised spin structure, and ∇ are connec-
tions, and ∇1 is the action of g1 on V . If D = ad(∇) has vanishing curvature
then there is a connection of the Lie algebroid g

∇2 : g→ Endk(V ).

The category of representations ρ : A → Endk(V ) with this property vis a
vis the Lie algebra g, and simple as such, will be written

Simp(A)/g.

According to our philosophy, this should be the object of study in mathe-
matical physics.

Notice for later use that if A = k[t1, ..., td] is a polynomial algebra and

ρ : A→ Endk(V )

is an object of Simp(A)/g with an extension to

ρξ : Ph(A)→ EndA(V )

corresponding to a derivation ξ ∈ Derk(A,Endk(V ), then, since in Ph(A) we
have the relations [dti, tj ] = [dtj , ti], we must have

ρξ(dti) ∈ EndA(V ), ρξ([dti, tj ]) =: gi,jξ = gj,iξ ∈ Endk(V ).

Any element ξ ∈ g0 composed with ρ defines a morphism

ρξ : Ph(A)→ Endk(V )

with ρξ(dti) = ξ(ti) ∈ A, and so

gi,jξ = [ρξ(dti), tj ] = 0

for all ξ ∈ g0.
Notice also that physicists have a way of classifying, or naming states, i.e.

the elements of the representation vector space V , according to certain numbers
associated to them, like spin, charge, hyperspin, etc. We find this in the situation
above, as follows.

Consider the Cartan sub-algebra h ⊂ g1. It will operate on the above rep-
resentation space V as diagonal matrices, and the eigenvectors may be labelled
by the corresponding eigenvalues.

Notice also that if Vi ∈ Rep(A, g), i = 1, 2, then it follows from (1.25) that
an extension of the A(g)-module V1 with V2 will also sit in Rep(A, g).

Notice, finally that, given an action of the Lie algebra g0 on A then, since
Ph(−) is a functor in the category of algebras and algebra morphisms, the action
of g0 extends to Ph(A), but not necessarily to a dynamical system of the type
A(σ).

This will turn out to be important for our version of the Standard Model.
There we will also meet the following extension of the situation above.
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8.8 The Generic Dynamical Structures associ-
ated to a Metric

We start with the commutative case, with metrics and gravitation. Let k = R
be the real numbers and consider a commutative polynomial k-algebra C =
k[t1, ..., td]. Let

g = 1/2
∑

i,j=1,..,r

gi,jdtidtj ∈ Ph(C),

correspond to a (non-degenerate) Riemannian metric, i.e. such that gi,j =
gj,i The determinant m of the matrix (gi,j) is non-zero on an affine open subspace
of Ad := SpecC, and there we put

(gi,j) := (gi,j)
−1.

We shall consider the localization C → Cm of C and the diagram of canonical
morphisms

C //

��

Cm

��
Ph(C) // Ph(Cm)

Also, we work with C instead of Cm, making sure that every construction
made for Ph∗(C) goes through for Ph∗(Cm). In particular, all representations
ρ : C → Endk(V ), are supposed to be extendible to Cm, which simply means
that ρ(m) is invertible and V = Vm.

Recall that the Levi-Civita connection

D : ΘC → Endk(ΘC)

is defined to be killing the metric , i.e. it satisfy the equation,

Dg = 0.

Moreover it is without torsion, i.e.

Dξ(κ)−Dκ(ξ) = [ξ, κ],∀ξ, κ ∈ ΘC .

It is given in terms of the Christoffel symbols Γ defined by∑
l

gl,kΓlj,i = 1/2(
∂gk,i
∂tj

+
∂gj,k
∂ti

− ∂gi,j
∂tk

),

as

Dδi(δj) =
∑
k

Γki,jδk
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where we have put δi := ∂
∂ti
.

The dual action of D,

D∗ : ΘC → Endk(ΩC),

normally just called D, comes out as

Dδi(dtj) =
∑
k

Γji,kdtk

A short computation then proves that

Dξ(g) =
∑
i,j

Dξ(gi,jdtidtj) =
∑
i,j

ξ(gi,j)dtidtj+
∑
i,j,k,l

gl,jΓ
l
k,iξkdtidtj+

∑
i,j,k,l

gi,lΓ
l
k,jξkdtidtj .

Since in Ph∞(C) we have

δ(g) =
∑

i,j,k=1,..,r

∂gi,j
∂tk

dtkdtidtj +
∑

i,j,=1,..,r

gi,j(δ
2tidtj + dtiδ

2tj),

we may plug in the formula

δ2tl = −Γl := −
∑

Γli,jdtidtj

on the right hand side, and see that we in the commutative situation, i.e.
for the dynamical structure generated by

(σ0) := {[dti, tj ], [dti, dtj ]|ti, tj ∈ C}

have got a solution of the Lagrange equation

δ(g) = 0.

This solution has the form of a force law

d2tl = −Γl := −
∑

Γli,jdtidtj ,

of the dynamical structure (σ0). The dynamical system is then, of course,
the commutative algebra

C(σ0) = k[t, ξ]

where ξj is the class of dtj . The Dirac derivation now takes the form

[δ] =
∑
l

(ξl
∂

∂tl
− Γl

∂

∂ξl
),

coinciding with the fundamental vector field [δ] in Simp1(C(σ0)) = Spec(k[ti, ξj ]).
The equation
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[δ](g) = 0

imply that g is constant along the integral curves of [δ] in Simp1(Ph(C)),
and these integral curves projects into Simp1(C) to give the geodesics of the
metric g with equations

ẗl = −
∑
i,j

Γli,j ṫiṫj .

We may also look at this from another point of view. Suppose given any
dynamical structure with Dirac derivation δ on Ph(C). Consider Simp1(Ph(C)).
It is obviously represented by C(1) := k[t, ξ], and the Dirac derivation induces
a derivation [δ] ∈ Derk(C(1)) and the Hamiltonian must vanish. Therefore we
have two options for the same notion of time in the picture, g and [δ]. The last
derivation must therefore be a Killing vector field, i.e. we must have a solution
of the Lagrange equation,

[δ](g) = 0,

and we are left with the above solution for δ.
Since the metric is related to the gravitational force, the group of isometries,

O(g) of the metric g, i.e. the group of algebraic automorphisms of C leaving
the metric g invariant would, in line with our philosophy, be an obvious global
gauge group. We shall refer to its Lie algebra as o(g). Since Ph(−) is a functor,
O(g) would also act on Ph(C) and would induce an action of 0(g) on Ph(C),
and so also on Ph∞(C).

Remark 11 (The Lie Algebra of Isometries). Consider the metric

g = 1/2

d∑
i=1

gi,jdtidtj ∈ Ph(C)

and a derivation η =
∑
i ηi

∂
∂ti
∈ Derk(C) acting on C, and so on Derk(C) by

the Lie product, and by functoriality on Ph(C). In particular η acts on ΩC such
that η(dti) is defined by

η(dtj)(δk) = dtj([η, δk]) = −δk(ηj).

The Lie algebra of Killing vectors is the the Lie algebra of derivations

o(g) = {η ∈ Derk(C)|η(g) = 0}

where the equation η(g) = 0 is equivalent to∑
i,j

η(gi,j)dtidtj −
∑
i,j,k

gi,j
∂ηi
∂tk

dtkdtj −
∑
i,j,k

gi,j
∂ηj
∂tk

dtidtk = 0,

implying, for all i, j = 1, ..., d,
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η(gi,j)−
∑
k

∂ηk
ti
gk,j −

∑
k

∂ηk
∂tj

gi,k = 0.

Compare this with the formulas defining the Levi-Civita connection,

D : ΘC → Endk(ΘC)

given as above by

∑
i,j

Dη(gi,jdtidtj) =
∑
i,j

η(gi,j)dtidtj+
∑
i,j,k,l

gl,jΓ
l
k,iηkdtidtj+

∑
i,j,k,l

gi,lΓ
l
k,jηkdtidtj = 0

from which we see that in this case the condition for η ∈ o(g) is the usual

g(Dδi(η), δj) + g(Dδj (η), δi) = 0.

There are two fundamental examples, the Euclidean and the Minkowski met-
rics. First, suppose all gi,j are constants. We are interested in the linear deriva-

tions. We find that the derivations are given in terms of matrices (γi,j) := (
∂γj
∂ti

),
where γi,jgj,j = −γj,igi,i. This gives in dimension 2, for the Euclidean respec-
tively for the Minkowski metric,

(γi,j) =

(
0 1
−1 0

)
, (γi,j) =

(
0 1
1 0

)
.

The corresponding 1-dimensional (rotation) Lie groups acting on C, with
coordinates (t1, t2), are given by the exponential

O(g) = exp(τ

(
0 1
−1 0

)
) =

(
cos(τ) sin(τ)
− sin(τ) cos(τ)

)
,

respectively,

O(g) = exp(τ

(
0 1
1 0

)
) =

(
cosh(τ) sinh(τ)
sinh(τ) cosh(τ)

)
.

as we know.

We will now consider metrics, gravitation, and Energy.
In the commutative case, (and for the corresponding 1-dimensional repre-

sentation), treated above, the Hamiltonian was trivial, and the notion of time
was taken care of by a vector field [δ]. Let us now consider representations ρ
for which the Dirac derivation [δ] vanish, and the notion of time is taken care
of by the Hamiltonian Q.

This is accomplished by introducing another dynamical structure related to
the metric g. Notice first that a non-degenerate metric g = 1/2

∑d
i,j=1 gi,jdtidtj ∈

Ph(C) induces a duality, i.e. an isomorphism of C-modules
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ΘC = HomC(ΩC , C) ' ΩC ,

such that

g(δi,−) = dti.

Recall the relations [dti, tj ] = [dtj , ti] in Ph(C), and consider the twosided
ideal (σg) of Ph(C) generated by

(σg) = ([dti, tj ]− gi,j)

and put

C(σg) := Ph(C)/(σg).

Let moreover

T :=
∑
j

Tjdtj = −1/2
∑
i,j,l

∂gi,j
∂tl

gl,idtj .

An easy computation shows that

Tl = −1/2(
∑
k

Γkk,l +
∑
k,p,q

gk,qΓpk,qgp,l) = −1/2(
∑
j

Γjj,l + Γ̄jj,l)

where Γ̄jj,l :=
∑
j,p,q g

j,qΓpj,qgp,l.
Consider the inner derivation of C(σg), defined by

δ := ad(Q), Q = g − T.

After a dull computation we obtain, in C(σg),

δ(ti) = [Q, ti] = dti, δ
2(ti) = [Q, dti], i = 1, ..., d.

Therefore, by universality we have a well-defined dynamical structure (σg)
with Dirac derivation δ = ad(g − T ).

It is clear that if φ : C → C ′ is an isomorphism of k-algebras, and g′ =
φ(g), then C(σg) is isomorphic to C ′(σg′), so the construction is covariant in
the language of the physicists. In particular, (σg) is invariant with respect to
isometries, implying that o(g) is a sub-Lie algebra of the global gauge group g0

of C(σg).
Any representation,

ρ : C(σg)→ Endk(V )

is defined by

ρ(ti) = ti, ρ(dti) = ρ([Q, ti]),

and since ρ([dti, tj ]) = [ρ(dti), tj ] = gi,j , we find that if we put
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δi :=
∂

∂ti
, ξi :=

d∑
j=1

gi,jδj ,

then

ρ(dti) = ∇ξi
defines a connection,

∇ : Derk(C) =: ΘC → Endk(E)

when the ξi’s generate Derk(C) as a C-module.
Since any connection on a free C-module E is given as

∇δti = δti +∇i
where ∇i ∈ EndC(E), we find in this case that

ρ1(dti) = ∇ξi = ξ + ψi

for some (arbitrary) potential ψ = {ψi} ∈ EndC(V )d.
In the general case, the metric is non-degenerate in Cm, and the derivations

{ξi, i = 1, ..., d} forms a C-basis for Derk(Cm). Therefore, any representation
ρ : C(σg)→ Endk(V ) induces a C-connection

∇ : Derk(Cm)→ Endk(V ).

Fixing one, then any other connection is given by

∇′ξi = ∇ξi + ψi.

For an arbitrary potential ψ, any other morphism ρ′1 : C(σg) → Endk(V )
extending ρ, may be defined by

ρ′1(dti) = ρ(dti) + ψi.

Put ρψ := ρ′ = ρ + ψ. Since the derivation η ∈ Derk(C,Endk(V )) induced
by ρψ is given as η(ti) = [ρψ(g − T ), ti], its image in Ext1

C(V, V ) must be 0. It
follows that η induces a derivation ad(Qη) ∈ Derk(Endk(V )) where

Qη = ρ(g − T ) + [ψ] + 1/2gi,jψiψj + 1/2(
∑
l

Γjj,l + Γ̄jj,l)ψl,

and where

[ψ] =
∑
i

ψi∇δti =:
∑
i

ψi
∂

∂ti
.

Notice that if we consider, for a given ψ, the representation
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ψ : Ph(C)→ EndC(V )

given by ψ(ti) = ti, ψ(dti) = ψi, the formula above would look like

Qη = ρ(g − T ) + [ψ] + ψ(g − T ).

We may consider this as a momentum operation in the state space V , a sum
of a horizontal, a vertical, and between them a mixed component [ψ]. Denote
the horizontal and the vertical terms

Qh := Q = ρ(g − T ), Qv := ψ(g − T ).

We obtain the following formula for the time development of ρψ, i.e. for the
action [Q] := [Q,−], of the Dirac derivation δ on Endk(V )

[Q] := ad(Qh + [ψ] +Qv), i.e. ρψ(dn+1ti) = [Qh + [ψ] +Qv, ρψ(dnti)].

What we termed [δ] vanish here. Therefore we might be tempted to write

δ = [Q].

However, the Dirac derivation acts on the algebra of observables, C(σg),
and our [Q] acts trivially on the moduli space of representations, but as the
time development in each representation. We have seen that it is reasonable to
write δ = [δ] + [Q,−], since for geometric algebras A(σ) that are determined by
its simple finite dimensional representations, one might expect [δ] + [Q,−] to
determine δ.

At the end of this Section, in 17, we shall see that we may consider the
algebras C(σg) as fibres of a family of algebras parametrized by the metrics of
C, then the distinction between δ, [δ] and [Q] = [Q,−] become more serious,
and we shall therefore choose to reserve the notation δ for the derivation of the
algebra of observables, and fuse [δ] and [Q] = [Q,−]

The formula above then, finally, reads,

[δ] := ad(Qh + [ψ] +Qv),

meaning that for any n ≥ 1 we have

ρψ(dn+1ti) = [Qh + [ψ] +Qv, ρψ(dnti)].

Remark 12 (The Global Gauge Group of C(σ)). Since any representation
(ρ1, V ) of C(σg) induces a C-connection on V , it is reasonable to accept g0 =
Derk(C) as the global gauge group for C(σg). We should therefore be interested
in the invariant theory of C(σg) modulo g0. Now, Derk(C), is generated by the
derivations {ξi}, i = 1, ..., d, and clearly o(g) ⊂ g0. We should therefore also try
to express o(g) in terms of the ξ′is.
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Any Killing vector must have the form

η =
∑
i

αiξi

Put this into the earlier equations,

η(gi,j)−
∑
k

∂ηk
∂ti

gk,j −
∑
k

∂ηk
∂tj

gi,k = 0,

and use the well known formulas,

∂gi,k
∂tl

=
∑
p

(gp,kΓpi,l + gi,pΓ
p
k,l),

∂gr,m

∂tq
= −

∑
k

(gr,kΓmk,q + gk,mΓrk,q).

We find that η ∈ o(g) if and only if,

∂αi
∂tj

+
∂αj
∂ti

= 2
∑
k

Γki,jαk,∀i, j = 1, ..., d.

Moreover the Lie structure is given by,

[ξi, ξj ] =
∑
k

ck!,jξk, c
k
!,j = Γj,ik − Γi,jk ,

where we have put,

Γj,ip :=
∑
k

gj,kΓik,p, Γi,jp =
∑
k

gi,kΓjk,p.

Notice that the representation, ρ = ρΘ of C(σg), defined on ΘC , by the Levi-
Civita connection, has a Hamiltonian

Q := ρ(g − T ) = 1/2
∑
i,j

gij∇δi∇δj ,

i.e. the generalized Laplace-Beltrami operator, which is also invariant with
respect to isometries, although the proof demands some algebra.

This might have been considered a quantum version of the Einstein Field
Equation, g is the metric, Q is the quantum Mass-Energy-Stress Operator, and

T = Tldtl, Tl = −1/2(
∑
j

(Γjj,l + Γ̄jj,l) = −1/2(tr∇l + tr ∇̄l),

see below for the computation. This might have been our replacement of the Ric.
However this analogy does not fit into the noncommutative algebraic geometry
that we have chosen to be our basis. The analogy of Einstein’s Field Equations
will have to wait.



8.8. THE GENERIC DYNAMICAL STRUCTURES ASSOCIATED TOAMETRIC121

For the Levi-Civita connection we shall, as above, denote by

ρΘ : C(σgΘ
)→ Endk(ΘC)

the representation of C(σgΘ
), and by

D− : ΘC → Endk(ΘC)

the corresponding connection.
For the representation ρΘ and for an element (a state) φ ∈ ΘC , we would

in line with classical Quantum Theory, assume the dynamics given by the
Schrödinger equation

dφ

dτ
= Q(φ),

where τ would be an ad hoc chosen time parameter. But, again see the
discussion above, we have two, and only two options for the notion of time,
namely φ itself or the metric g measuring the time t.

Since we have

Dφ(φ) = µ
dφ

dt
,

where Dφ is the Levi-Civita connection applied to φ, and µ = g(φ, φ)1/2, it
seems reasonable to replace the classical Schrödinger equation in our situation
by the following

dφ

dt
= Q(φ), φ ∈ ΘC .

We find a general equation of motion for the representations of C(σg) for-
mulated as in the already proved statement.

Theorem 14 (The Generic Equation of Motion). Assume the metric g is non-
degenerate. Then we know that the derivations ξi generate Derk(C). Put δi :=
∂
∂ti

.
Let ρ0 : C → Endk(V ) be a representation, and let ρ : C(σg)→ Endk(V ) be

an extension considered as a preparation, i.e. as fixing a momentum of ρ. Put

ρ(dti) = ∇ξi ∈ EndC(V )

and let ρψ be the representation given by

ρψ(dti) = ∇ξi + ψi, ψi ∈ EndC(V )

The corresponding ρ0-derivation

η ∈ Derk(C,Endk(V ))

maps to 0 ∈ Ext1
C(V, V ) since we have

η(ti) = ρψ(dti) = [ρψ(g − T ), ti].
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This implies that the time development in Endk(V ) is given by the derivation

[δ] = ad(Qh + [ψ] +Qv)

where

Qh : = ρ(g − T ) = Q := 1/2
∑
i,j

gi,j∇δi∇δj

[ψ] : =
∑
i

ψi∇δi

Qv : = ψ(g − T ) = 1/2
∑
i,j

gi,jψiψj + 1/2(
∑
j,l

Γjj,l + Γ̄jj,l)ψl

In particular,

η(ti) = [Qη, ti] = [Q+ [ξ], ti].

Therefore the time development induced in Endk(V ) by ρψ is infinitesimally
given by

[δ] = ad([ψ]) + ad(Q),

and the corresponding first order time development in the state-space is given
by the operator

P := Q+ [ψ] : V → V.

The total energies measured by the representation should be the eigenvalues
of P .

This turns out to be a general version of the Dirac equation that we shall
return to frequently in the sequel. Notice that the potentials ψ will pop up
as the tangent directions in the space of connections P in the following. The
”classical” Dirac equation appears when we put ψk =

∑
i γig

i,k with γi ∈ g1

and find

[ψ] =
∑
i

γiξi =: [δ].

This choice of ψi and in particular, the choice of the γi’s, will follow from
our final model to follow in later work.

Remark 13. Since

T =
∑
l

Tldtl, with Tl = −1/2(
∑
j

(Γjj,l + Γ̄jj,l) = −1/2(tr∇l + tr ∇̄l),

and since
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Q = ρ(g − T ) = 1/2
∑

gi,j∇δi∇δj ,

we find that the purely GR-Schrödinger energy equation

Q(φ) = Eφ

takes the form in C,

1/2
∑

gi,j∇δi∇δj (φ) = Eφ

picking out the energy E, of ”states” φ ∈ C. We find solutions of the form

φ = exp(−e.t) where e := (e1, ..., ed), t := (t1, ..., td)

with energy given by

E = 1/2
∑
i,j

eig
i,jej .

Notice that the energy E is 1/2 of the square length of the momentum ω =
ρ(
∑
l eldtl) =

∑
l elξl, as one might have expected, since we classically have

E = 1/2m|ω|2,

where m =mass. Notice also that the classical curvature in this case is

ρ(Fi,j) = [ρ(dti), ρ(dtj)]−
∑
p

(Γj,ip − Γi,jp )ρ(dtp) = [∇ξi ,∇ξj ]−∇[ξi,ξj ],

and that we usually write

Ri,j := [dti, dtj ], Fi,j := Ri,j −
∑
p

(Γj,ip − Γi,jp )dtp.

Notice also that we shall, when it is clear what we are talking about, write Fi,j
for ρ(Fi,j). Obviously, Fi,j is the obstruction for ρ inducing a representation of
the Lie algebra ΘC = Derk(C).

Now, to be able to handle this time-development, we need to know formulas,
for dlti, l ≥ 1, i = 1, ..., n, in C(σg). To this end, put

∇̄l : = (Γ̄ji,l)

Γ̄ip,q : =
∑
l,r

gr,iΓlr,pgl,q,

Computing, we find, see [?] for a proof,
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Theorem 15 (The Generic Force Laws). In C(σg) where the Dirac derivation
δ is defined, we have the following force law expressed in two different ways in
Ph(C),

(1) d2ti :=δ2(ti) = [g − T, dti] = −1/2
∑
p,q

(Γ̄ip,q + Γ̄iq,p)dtpdtq

+1/2
∑
p,q

gp,q(Rp,idtq + dtpRq,i) + [dti, T ]

(2) d2ti =−
∑
p,q

Γip,qdtpdtq − 1/2
∑
p,q

gp,q(Fi,pdtq + dtpFi,q)

+ 1/2
∑
l,p,q

gp,q[dtp, (Γ
i,q
l − Γq,il )]dtl + [dti, T ]

=−
∑
p,q

Γip,qdtpdtq −
∑
p,q

gp,qFi,pdtq + 1/2
∑
p,q

gp,q[Fi,q, dtp]

+ 1/2
∑
l,p,q

gp,q[dtp, (Γ
i,q
l − Γq,il )]dtl + [dti, T ].

Remark 14. We shall consider the above formulas as general Force Laws in
Ph(C) induced by the metric g. This means the following:

First, assume given a representation

ρ0 : C → Endk(V )

and pick any tangent vector (momentum) of the formal moduli of the C-
module V , i.e. an extension of ρ0,

ρ1 : Ph(C)→ Endk(V ).

Then, if ρ1 can be extended to a representation

ρ2 : Ph2(C)→ Endk(V )

with ρ(d2(d1ti)) = ρ1(d2ti) given by the formula of the Force Law, this means
that the force law has induced a second order momentum in the formal moduli
space of the representation ρ1, usually called E · a(ρ0) where E is the energy
of the object in movement and a is the acceleration, explaining the name Force
Law.

We might also consider (cg), the δ-stable ideal generated by any one of these
equation in Ph∞(C). Since the force laws above hold in the dynamical system
defined by (σg), we obviously have (cg) ⊂ (σg), and we might hope these new
dynamical systems might lead to new Quantum Field Theories as defined above,
with equally new and interesting properties.

One immediate result is that the restriction of the force law , in the commu-
tative case, reduces to General Relativity as we have seen above, since we find
the same geodesics, see [?],
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For a connection ∇, on a free C-module E, the second Force Law above will
now take the form in EndC(E),

ρE(d2ti) +
∑
p,q

Γip,q∇ξp∇ξq

= 1/2
∑
p

Fp,i∇δp + 1/2
∑
p

∇δpFp,i + 1/2
∑
l,q

δq(Γ
i,q
l − Γq,il )∇ξl + [∇ξi , ρE(T )],

where we, as above, have put ρ(dti) = ∇ξi =
∑
j g

i,j∇δj .
Notice that considering the representation ρΘ, corresponding to the Levi-

Civita connection, the above translate into,

ρ(dti) = [Q, ti], ρ(d2ti) =

d∑
j=1

[Q, ρ(dti)],

where Q is the Laplace-Beltrami operator.
Given any observable a ∈ Ph(C), we would expect that the dynamics of the

future values of a to be the spectrum of the operator,

f(τ) := exp(τ · ad(Q))(a).

Collecting the above results and definitions, we may in the light of the general
philosophy of this work, express what we have done as follows. Given the
moduli space of ”models”, our ”universe”, assumed to be given as an affine space
C = SpecC, ”time” is defined by a metric g. The ”furniture”, i.e. the non-
gravitational material content in the universe, is identified with the category of
representations Rep(C). The dynamical properties of any such representation
ρ0 is ”controlled” by the possible extensions of ρ0 to Ph∞(C), and the time
operator given by the Dirac derivation δ. The results of this subsection fuses
the two notions of time. This fusion is given by the generic dynamical structure,
C(σg) of the k-algebra C, induced by a metric g, the Dirac Derivation δ in C(σg),
the time-evaluation, and Energy operator, Q = g − T . This we see is implying
General Relativity and Quantum Theory, nicely related.

Remark 15. What happens if we have a subspace of a space with a given
metric, and want to compare the two possible dynamical structures? This is a
problem that has been central to the development both of general relativity and
cosmology, and we shall take a look at the general problem, but stick to the
case where the spaces are affine algebraic varieties, and in fact, affine spaces,
C = Spec(C) ⊂ B = SpecB with

Φ : B = k[x]→ C = k[t],

the morphism of k-algebras corresponding to the inclusion. We then have poly-
nomial functions, defining Φ,

xi = xi(t1, ..., td), ‘; i = 1, ..., n.
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Assume there is a metric h = 1/2
∑
hi,jdxidxj ∈ Ph(B), so that we may

consider the dynamical system B(σh). A natural problem would be to try to find
a metric g = 1/2

∑
gi,jdtidtj ∈ Ph(C) such that Φ induces a homomorphism of

dynamical systems

φ : B(σh)→ C(σg).

It is easy to see that in C(σg), we have the formulas

dxk =
∑
j

∂xk
∂tj

dtj + 1/2
∑
i,j

∂

∂ti
(
∂xk
∂tj

)gi,j

such that,

[dxk, xl] =
∑
i,j

∂xk
∂ti

∂xl
∂tj

gi,j .

Therefore, the condition for, given the metric h of B, the existence of a
compatible metric g in C is

hk,l =
∑
i,j

∂xk
∂ti

∂xl
∂tj

gi,j .

The analogy with the structure of the three fundamental forms in the study
of unique time coordinates in general relativity, associated to a Cauchy hyper-
surface, is obvious.

8.9 The classical Gauge Invariance

The space of representations ρ of C(σg) on a free (or projective) C-module V
is given as above, by

ρψ(ti) = ti, ρψ(dti) =

n∑
l=1

gilδl + ψi,

where ψi ∈ EndC(V ). The set of iso-classes is identified with the space of
equivalence classes of the corresponding potentials ψ := (ψ1, φ2, ..., ψn). It does
not form an algebraic variety, but it has a nice structure.

The set of potentials is not isomorphic to, but a torsor under

P := (EndC(V ))n.

If, however, V = ΘC , the Levi-Civita connection provides a natural iso-
morphism. The tangent space T(ρ1,ρ2), between any two representations, ρl :
C(σg) → EndC(Vρl), l = 1, 2, represented by elements ψ(l) ∈ P, l = 1, 2, may
also be identified with a quotient of P. In fact,

Ext1
C(σg)(ρ1, ρ2) = Derk(C(σg),Endk(V ))/Triv .



8.9. THE CLASSICAL GAUGE INVARIANCE 127

Any derivation ξ ∈ Derk(C(σg),Endk(V )), maps the relations of C(σg) to
zero, so we shall have

[ξ(dti), tj ] + ρ1(dti)ξ(tj)− ξ(tj)ρ2(dti) = ξ(gi,j).

Since V is a free C-module such that Ext1
C(V, V ) = 0, there exists a linear

map Φ0 ∈ Endk(V ) such that ξ(tj) = tjΦ0 − Φ0tj , for all j. We may therefore,
for a chosen ξ, assume all ξ(ti) = 0, and it follows from the above equation that
the derivation ξ is determined by the family of elements ξ(dti) ∈ EndC(V )), i =
1, ..., n.

In case ρ1 = ρ2 = ρ, corresponding to ψ ∈ P, we see that

Tρ = Ext1
C(σg)(ρ, ρ) = Hom(Ph(C),EndC(V ))/Triv

where the the trivial derivations, mapping ti to 0, are exactly those given by
the n-tuples

((

n∑
j

g1,j(
∂Φ

∂tj
) + [ψ1,Φ]), ..., (

n∑
j=1

gn,j(
∂Φ

∂tj
) + [ψn,Φ]))

for some Φ ∈ EndC(V ) by

W (dti) = (

n∑
j

gi,j(
∂Φ

∂tj
) + [ψi,Φ]).

The expression

Φ(ψ) := (ξ1(Φ) + [ψ1,Φ], ..., ξn(Φ) + [ψn,Φ])

therefore corresponds to an infinitesimal gauge transformation

Φ ∈ Derk(P)

of the space P of representations of C(σg), acting linearly like

Φ(ρ0 + ψ) = (ρ0 + ψ) + Φ(ψ)

The physical relevant space is therefore the quotient

P = P/h

of P with respect to the action of the abelian Lie algebra h := EndC(V ).
As in the finite dimensional situation, the Dirac derivation, here δ = ad(g−

T ), induces a vector field

[δ] ∈ ΘP,

so long as we by vector field understand any map which to an element ψ in P
associates an element in its tangent space, i.e. in Ext1

C(σ)(Vρ, Vρ) for ρ = ρ0 = ψ.
It must however vanish at ρ, since the Dirac derivation δ = ad(g−T ), necessarily
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must be mapped to a trivial derivation in Derk(C(σg),Endk(V )), therefore to 0
in Ext1

C(σg)(Vρ, Vρ). But then it corresponds to an infinitesimal transformation
of V as we have seen,

[δ] = ad(Qh + [ψ] +Qv),

meaning that

ρψ(dn+1ti) = [Qh + [ψ] +Qv, ρψ(dnti)].

This may be interpreted as saying that time, defined by the dynamical struc-
ture (σg), acts in all orders, within each representation ρψ : C(σg)→ Endk(V ).

Remark 16. The physicists usually write δφ := Φ(φ), not caring to mention
Φ, taking for granted that δφ := δΦ(φ) stands for an infinitesimal movement
of φ in the direction of Φ, and call the transformation above an infinitesimal
gauge transformation. The literature on gauge theory and its relation to non-
commutativity of space and to quantization of gravity, is huge. We think that
the introduction of the noncommutative phase space, and in the metric case the
generic dynamical system

(σg) = ([dti, tj ]− gi,j),

can to some degree, elucidate the philosophy behind this effort. See e.g. the
papers, [?], and [?], where the authors initially introduce noncommutativity in
the ring of observables generated by coordinates x̂ν by imposing

[x̂ν , x̂µ] = Θν,µ,

where Θi,j are constants.
The above treatment of the notion of gauge groups and gauge transforma-

tions may also explain why, in physics, one considers potentials as interaction
carriers, thus as particles mediating force upon other particles. And maybe one
can also see why the notion of Ghost Fields or Particles of Faddeev and Popov,
comes in. It seems to me that the introduction of ghost particles is linked to
working with a particular section of the quotient map P → P.

The Dirac derivation, which is entirely dependent upon the notion of a non-
commutative phase space, is not (explicitely) found in present day physics. The
parsimony principle is therefore normally introduced via the construction of a
Lagrangian and an Action Principle, i.e. a function of the (assumed physically
significant) variables, the fields and their derivatives, defined in P, assumed
to to be invariant under the gauge transformations so really defined in P and
supposed to stay stable during time development, see [?]. A non trivial ele-
ment in the toolbox of the physicists helping them to guess the Lagrangian is
the Chern-Simons functional, and that we now spell out in some generality.
Since everything we have done above is functorially (natural), we may work on
nonsingular schemes instead of commutative k-algebras.

Let us as above assume given a a metric g on some scheme X, and that we
have an affine covering given in terms of a family of commutative k-algebras
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Cα and a bundle V defined on X corresponding to a set of representations
ρ0 : C = Cα → Endk(V ). Let ρ : OX(σg) → Endk(V ) be a momentum at ρ0,
i.e. an extension of ρ0 to OX(σg). Then we know that ρ induces a connection
on V , and we have denoted by P := EndOX (V )d, the set of such connections,
or if we want to, the set of representations ρ : OX(σg)→ Endk(V ). Recall that
there is a unique 0-object in P, given the metric, by ρ1(dti) = ξi such that all
other representations ρ is ρ1 plus a potential ψ ∈ EndOX (V )d.

Consider now the class in chn(ρ) ∈ HHn(OX ,Endk(V )), the Chern-classes
defined by the Hochschild co-chain, the k-linear map

chn : C⊗nα → Endk(V )

defined by

chn(c1 ⊗ c2...,⊗cn) = ρ1(dc1dc2...dcn) ∈ Endk(V ).

We know that chn is a co-cycle since

δ(chn)((c1 ⊗ c2...⊗ cn+1)) = c1ρ1((dc2dc3...dcn+1)) (8.1)

+

n∑
1

(−1)ρ1((dc1...d(cici+1)...dcn+1)) + (−1)n+1ρ1(dc1...dcn)cn+1 = 0 (8.2)

The Generalized Chern-Simons Class of ρ, is then the class in the obvious
double complex, defined by the covering {Cα}, and the classes

chn(ρ) ∈ HHn(C,Endk(V ))

defined by 1/n! chn.
Let Φ ∈ h := EndC(V ) and consider Φ as a Hochschild 0-cocycle

Φ : k = C0 → Endk(V ), Φ(α) = αΦ,

then

δΦ(c) = ρ(dc)Φ− Φρ(dc).

In particular,

δΦ(ti) = [ξi + ψi,Φ] = ξi(Φ) + [ψi,Φ].

This proves that

ch1(ρ1 + ψ) = ch1(ρ1 + ψ + Φ(ψ))

i.e. that the Ghost Fields have well defined Chern-Simons class, or that the
Chern-Simons class is a well defined functional

ch∗ : P→ HH∗(C,Endk(V )).
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8.10 A Generalized Yang-Mills Theory

Given a metric g ∈ Ph(C) as above, and assume there is a gauge group, i.e. a
k- Lie algebra g0 operating on C = k[t1, .., td] with extension to C(σg), where σ
is a dynamical structure. Normally σ would be σg, and g0 = Derk(C) since all
representations of C(σg) have a C-connection. Clearly therefore, the Lie algebra
of Killing vectors o(g) is contained in g0.

In the general situation we have, together with the global gauge group g0,
also a local gauge group, i.e. a C-Lie algebra g1 acting insensitively upon the
representations V that pops up in our theory, and also insensitive to the action
of g0 see subsection (1.8). We therefore have a C(σ)-connection

D : g0 → Derk(g1)

which is a kind of a general spin structure, or Coupling Morphism. Recall that
when the curvature of D vanish, g := g0 ⊕ g1 is a Lie-algebroid.

Let us pause to consider a non-trivial example of this situation.

Theorem 16. Assume g0
1 is a finite dimensional k-Lie algebra and consider the

C-Lie algebra g1 := g0
1 ⊗k C. Consider a representation

ρ : C(σg)→ Endk(V )

with gauge global group g0 = Derk(C) and local gauge group g1 ⊂ EndC(V ).
Let the g0-connection

D : g0 → Derk(g1)

be defined as

D(ξi) = ad(∇ξi + ψi),with ψi = gi,lγl, γl ∈ g0
1.

Then we find that the curvature of D is

Fψi,j = ad([ψi, ψj ]).

It vanishes if and only if

[[γiγj ], γ] = 0

for all γ ∈ g1,∀i, j = 1, ..., n.
Put now

ρψ,A : C(σg)→ Endk(V ),

defined by ρ1(dti) = ∇ξ + ψi + Ai where Ai ∈ C is a usual potential. Then
the curvature of ρψ,A is equal to

Fi,j = ad([ψi, ψj ]) + ξi(Aj)− ξj(Ai).
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Proof. By definition, the curvature of D is

Fi,j := [D(ξi),D(ξj)]−D([ξi, ξj ]),

where

[D(ξi),D(ξj)] = [ad(ξi) + ad(ψi), ad(ξj) + ad(ψj)]

= ad([ξi, ξj ]) + ad([ξi, ψj ]) + ad([ψi, ξj ]) + ad([ψi, ψj ])

and

D([ξi, ξj ]) =
∑
k

cki,jD(ξk) =
∑
k

cki,jad(ξk) +
∑
k

cki,jad(ψk),

where cki,j = (Γj,ik − Γi,jk ). Moreover,

ad([ξi, ψj ]) + ad([ψi, ξj ]) = ad(ξi(ψj))− ad(ξj(ψi)).

ξi(ψj)− ξj(ψi) = (gi,l
∂gj,k

∂tl
− gj,l ∂g

i,k

∂tl
)γk

= (−gi,l
∑

(gj,tΓkt,l + gt,kΓjt,l) + gj,l
∑

(gi,tΓkt,l + gt,kΓit,l))γk

= (Γj,it − Γi,jt )gt,kγk

=
∑
k

cki,jψk,

where we have used the standard formulas for the derivatives of the gi,j .
Therefore,

Fi,j : = [D(ξi),D(ξj)]−D([ξi, ξj ])

= ad([ξi, ξj ]) +
∑
k

cki,j ad(ψk) + ad([ψi, ψj ]−
∑
k

cki,jad(ξk)−
∑
k

cki,jad(ψk)

= ad([ψi, ψj ].

The rest is easily seen.

Notice the intuitive link to Dirac spinors.
Anyway, in case g = g0 ⊕ g1 is a Lie algebroid, the action of g1 and the

connection D extends to a connection

D : g→ Endk(V ).

According to our philosophy, we should therefore consider (as moduli space,
for our models), the invariant (or quotient) space

Simp(C)/g ' Simp(C(g)).

Now we have,
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Theorem 17 (Scholie). Consider a representation

ρ0 : C → Endk(V )

with gauge group g as above, and an extension ρ : C(σg) → Endk(V ) con-
sidered as a momentum of ρ0, and as a reference point in the set of connections
P, on (V, ρ0).

The tangent space of P, at any ρ is of the same form, i.e. a quotient P of
P by the action of the Lie algebra EndC(V ). However, we know that the first
order time-development, the Dirac derivation, δ = ad(g− T ) induces the trivial
vector field on P, so the first order time-development of the ρ0 given by any
ρψ := ρ+ψ, ψ ∈ P, does not have a time-development as a representation given
by the Dirac derivative δ of C(σg). We know that the time development on V
is given by the formula

[δ] = ad(Qh + [ψ] +Qv),

meaning that

ρψ(dn+1ti) = [(Qh + [ψ] +Qv), ρψ(dnti)].

This takes care of the complete time development of an endomorphism of V ,
as well as for a state vector φ ∈ V .

The second order time-development is also given in terms of the Force Law
in Ph(C),

d2ti =−
∑
p,q

Γid
p,qtpdtq −

∑
p,q

gp,qFi,pdtq + 1/2
∑
l,p,q

gp,q[Fi,q, dtp]

+ 1/2
∑
l,p,q

gp,q[dtp, (Γ
i,q
l − Γq,il )]dtl + [dti, T ].

Given the gauge group g = g0 ⊕ g1, there are tangent directions v = {vi}
with vi =

∑
j γjg

j,i, and γi ∈ g1, ”normal” to C in V , naturally related to

derivations D : g0 := Derk(C)→ g1 := g0
1 ⊗ C. Put

[ψ] :=
∑
i

γi∇ξi =
∑
i,j

γjg
j,i ∂

∂ti
=
∑
i

vi
∂

∂ti
= v.

Then we may formally write the time operator in the same form as in our general
Quantum Field Theory, see ??

[δ] = ad(Qh + [ψ] +Qv) ∈ Der(Endk(Ṽ ))
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where

Qh : = ρ(g − T ) = Q := 1/2
∑
i,j

gi,j∇δi∇δj

[ψ] : =
∑
i

ψi∇δi

Qv : = ψ(g − T ) = 1/2
∑
i,j

gi,jψiψj + 1/2(
∑
j,l

Γjj,l + Γ̄jj,l)ψl

with the corresponding first order time-action in the state-space defined by

[δ] = [v] +Q ∈ Endk(V ).

Given a classical potential A = {Ai}, Ai ∈ C, put

ρψ,A : C(σg)→ Endk(V ),

defined by ρ1(dti) = ∇ξ + ψi +Ai. Then the curvature of ρψ,A is equal to

Fi,j = ad([ψi, ψj ]) + ξi(Aj)− ξj(Ai).

Remark 17. As we shall see, the gauge groups of the standard model, i.e. the
Lie algebras

g′ := u(1)× sl(2) ⊂ g′1 := u(1)× su(2)× su(3),

which is part of our toy model, see [?], also pops up in our cosmological
model, and now as a real local gauge group in the above sense. The elementary
particles in that model should therefore, in line with the usage of present quantum
theory, be the points of Simp(Ph(H̃))/g = Simp(Ph(H̃)(g)). In fact, we shall
see that an impressive part of the structure of the Standard Model is contained
in the structure of this non-commutative quotient (or invariant) space.

The above is a generalization of the physicists treatment of the type of
representations,

ρW : Ph(C)→ Endk(V ),

parametrized by what they call Gauge Fields, the W l
i ∈ C, in the following

formula,

ρW (ti) = ti, ρW (dti) =

n∑
l=1

gil
∂

∂tl
+

r∑
l=1

W l
i γl.

Put Wi :=
∑r
l=1W

l
i γl and let as above ξi =

∑r
l=1 g

il ∂
∂tl

, and denote by Cpl,m
the structural constants of g1 such that

[γl, γm] =

r∑
p=1

Cpl,mγp.



134 CHAPTER 8. DYNAMICAL ALGEBRAIC STRUCTURES

Now, recall that [ξi, ξj ] =
∑
k(Γj,ik − Γi,jk )ξk, and consider the curvature of

this representation,

Fi,j = [ρ(dti), ρ(dtj)]−
∑
p

(Γj,ip − Γi,jp )ρ(dtp) = [∇ξi ,∇ξj ]−∇[ξi,ξj ].

Fi,j = ρW ([dti, dtj ])−
∑
p

(Γj,ip − Γi,jp )ρW (dtp)

=

r∑
l=1

(∇ξi(W l
jγl)−∇ξj (W l

i γl) +

r∑
l,m,p=1

Cpl,mW
l
iW

m
j γp

−
∑
p

(Γj,ip − Γi,jp )W l
pγl.

Put Fi,j =
∑
F li,jγl, then we obtain the equation

F li,j = (ξi(W
l
j)− ξj(W l

i )) +

r∑
p,m=1

Clp,mW
p
i W

m
j −

∑
p

(Γj,ip − Γi,jp )W l
p

which, if
∑
p(Γ

j,i
p −Γi,jp )W l

p = 0, is the classical expression for the curvature
in this case.

The Euler-Lagrange equations of the Lagrangian

Lgf = −1/4FµναFαµν ,

used by the physicists gives us the corresponding equation of motion,

ξµF
a
µν + ccabW

µbF cµν = 0.

The Yang-Mills equation corresponding to the vanishing of

1/2

n∑
j=1

[Fi,j , ξj +Wj ].

With a Source added, it looks like

ξµF
a
µν + ccabW

µbF cµν = −Jaν .

In the general metric case with non-abelian gauge group it is difficult to
find gauge invariant Lagrangians of reasonable physical relevance, so we have to
operate differently. Here is where the Generic Equation of Motion above comes
in and give us equations of motion quite generally. Recall that the Force Law
is given by
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d2ti = −
∑
p,q

Γip,qdtpdtq − 1/2
∑
p,q

gp,q(Fi,pdtq + dtpFi,q)

+ 1/2
∑
l,p,q

gp,q[dtp, (Γ
i,q
l − Γq,il )]dtl + [dti, T ].

When the metric is Euclidean, or Minkowski, this reduces to

d2ti = −1/2
∑
p

gp,p(Fi,pdtp+dtpFi,p) = −
∑
p

gp,pFi,pdtp−1/2
∑
p

gp,p[dtp, Fi,p].

Therefore,

ρ(d2ti) = −
∑
p,m

gp,pFi,pρ(dtp)−1/2
∑
p,m

gp,p
∂

∂tp
(Fmi,p)γm−1/2

∑
p,l,m

gp,pW
l
pF

m
i,pc

q
l,mγq,

where we let the curvature conserve its name, Fi,j := ρ(Fi,j). The Yang-Mills
equation above is now seen to imply,

ρ(d2ti) = −
∑
p

gp,pFi,pρ(dtp).

This, however indicates that the tangent to the representation ρ̇ given by

ψ = (ψi) = (−1/2
∑
p,m

gp,p
∂

∂tp
(Fmi,p)γm − 1/2

∑
p,l,m

gp,pW
l
pF

m
i,pc

q
l,mγq),

is a classical 0-tangent, so the Yang-Mills equation should just tell us that
there exists a potential Φ ∈ Endk(V ), such that

(ψi) = ((

n∑
j

g1,j(
∂Φ

∂tj
) + [φ1,Φ]), ..., (

n∑
j=1

gn,j(
∂Φ

∂tj
) + [φn,Φ])).

Compare with the Lorentz Force Law, classically and for an electric field,

ai = −
n∑
p=1

Fi,pvp.

Interpreting ρ(d2ti) = mai and ρ(dtp) = mvp, we recover the classical equa-
tion of movement in a field, see [?], p. 115, and as we shall see in Example ??, we
may use this to deduce Maxwell and Bloch’s equations for the time development
of spin, including the Seiberg-Witten monopole equation.
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8.11 Reuniting GR, Y-M and General Quantum
Field Theory

Let us have a look at the significance of the conclusion of the earlier sections,
and the last theorems.

We have, for every polynomial algebra C, outfitted with some metric g,
proved that there exist a derivation

δ := ad(g − T ) ∈ Derk(Ph(C)),

such that it coincides with the canonical derivation d : C → C(σg) in the
generic dynamical system (GDS). The corresponding force laws in Ph(C) gen-
erates equations of motions in General Relativity (GR), as well as in the gen-
eralised Yang-Mills (YM) theory introduced above. In fact, we find a very
satisfying identity between the notions of Time in GDS, GR and in YM. The
Dirac derivation δ = ad(g−T ) in GDS, inducing a quantum field theory (QFT)
on the space P where [δ] and the Hamiltonian Q are deduced from the general
Laplace-Beltrami operator, Q = ad(g − T ).

Since T vanish in Ph(C)com, the time in GR reduces to the Dirac derivation

[δ] =
∑
l

(ξl
∂

∂tl
− Γl

∂

∂ξl
),

and a trivial Hamiltonian. The Schrödinger equation in GDS is given as

(Q− E)(ψ) = 0.

and we shall come back to our generalisation of QFT.

To unify Quantum Field Theory (QFT) and (GDS) and GR, we might have
started with the dynamical system C(g) generated by, say, the Force Laws of
type (1) or (2). Unluckily the structure of this system in general, seems to be
very complicated. It is, for example not easy to decide whether or not C(g) has
finite dimensional representations at all. Anyway, it seems that we may be con-
tent with the above structures, all deduced from GDS, since physicists probably
do not know how to include the second order momentum in the preparation
of their experiments. That shortcoming in the DGT is therefore not yet a big
theoretical problem.

However, we may study an obvious unification of GR, GDS, and GQT, where
the algebra of observables is Ph∞(C), and we shall show that we are able to
classify, i.e. compute the moduli space of, the finite dimensional representations
of Ph∞(C), even though this space will turn out to be of infinite dimension.
Thus we may hope to extend our earlier methods, and obtain a unified theory.
There are however lots of problems involved in this scheme, one is the action of
the gauge groups that turns up. Another is the philosophically maybe reason-
able, but very unpopular, consequence of this restriction of the theory to just



8.11. REUNITINGGR, Y-M ANDGENERAL QUANTUMFIELD THEORY137

the finitely defined measurable entities: Our Space, and everything else mod-
elled by such a theory, would be discrete, simple objects would have point-like
structures, etc.

The computation of the moduli space of finite dimensional representations of
Ph∞(C) mentioned above, and the further analysis of the resulting ”Quantum
Field Theory” will for economical reasons be postponed and fused with the
results above on generic action of equation of time in later work.

To go further, we should have to go back to our philosophy and ask ourselves
why we are capable of identifying and communicate our sense of natural objects,
or rather the impressions that we have about such objects, with their relations
like distances between them and the like. One obvious answer which is at the
base of this paper, is that we assume we have the notion of Time as a metric on
our moduli space of the events we think we have identified and that this clock is
running smoothly such that coupled with the universal constancy of the velocity
of light, this makes most objects look the same today as yesterday up to obvious
shifts corresponding to symmetries that we have called gauge symmetries. This
is the reason for studying the dynamic structure (σg) corresponding to one
fixed metric g. In a sense we assume that most of the Furniture that we have
identified as representations of the algebra (or if one wish, of the scheme) of
observables. stays constant up to an understandable gauge. This is tantamount
to the assumption that our world stays reasonably constant even though we
know, and clearly see, that there are cataclysms in the Universe, completely
changing objects .

Now this is also the reason why we have to go into a more technical relation-
ship between our Time g, and the Furniture, i.e. the representations, V . First,
let us admire a commutative diagram that will help us through the arguments.

C
i // Ph(C)

��
ρ1

��

// Ph2(C)

ρ2

��

// Ph3(C) . . .

ρ3

��

// Ph∞(C)�δ

C

OO

��

i // C(σg)�δg

ρ

&&
C

��

i// Ph(C)(com)

π

��

// Endk(V )

C
i // // EndC(C)

Here δg = ad(g − T ), and π an is arbitrary representation,

Ph(C)(com) := Ph(C)/([dti, tj ], [dti, dtj ])→ EndC(C).

The morphisms ρp, p = 1, 2, .. are uniquely defined by
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ad(g − T ) ◦ ρ1 =d ◦ ρ2 : Ph(C)→ Endk(V )

ad(g − T ) ◦ ρ2 =d ◦ ρ3 : Ph2(C)→ Endk(V )

ad(g − T ) ◦ ρn =d ◦ ρn+1 : Phn(C)→ Endk(V ), n ≥ 1

We shall now be able to prove a theorem that makes a mathematically
reasonable relationship between Time and Furniture, or rather between the
infinitesimal changes of one, and the infinitesimal changes of the other. Until
now we have had essentially two different notions of time, the metric of our
moduli space of our models, and the Dirac derivative of Ph∞(−) of the same.
Now we find that the relationship between these notions is tight.

But first let us recall that we have taken the liberty of working with two
notions of metric. First the classical metric g := (gi,j), and then the element
g := 1/2

∑
i,j gi,jdtidtj ∈ Ph(C),. Obviously g = sym(g), the symmetrization

of g. The context will clearly show which one we are talking about, so we shall
continue talking about the metric g.

Theorem 18. Let M be the space (of isomorphism classes) of metrics on C.
For every point g ∈M consider the diagram

Ph(C)

��

//

ρ1

%%

Ph2(C)

ρ2

��

// Ph3(C) . . .

xx

// Ph∞(C)�δ

C
i
//

d

==

C(σg) ρ
// Endk(V )

Where ρ0 := i ◦ ρ is a representation of C and ρ a momentum of ρ0. Let ρ1

be the induced representation of Ph(C). Consider the family of k-algebras

µ : C(σ)→M

indexed by the possible metrics of C such that C(σg) corresponds to g ∈M.
Let

TM,g = {(hi,j)}, hi,j = hj,i ∈ C

be the tangent space to M at g. Define hi,j by

hi,j = −
∑
p,q

gi,ph
p,qgq,j , h = {hi,j} ∈ TM.

Consider now the first order deformation of the metric g ∈ Ph(C), g +
εh ∈ Phk[ε](C ⊗ k[ε]) = Ph(C) ⊗ k[ε] and the corresponding Dirac derivation
ad(g + εh− T ′) in Phk[ε](C ⊗ k[ε]). Put d′ti := ad(g + εh− T ′)(ti).

Then we find, in C(σg)⊗ k[ε],

[d′ti, tj ] = gi,j − hi,jε.
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Moreover, the ρ1-derivation η : Ph(C)→ Endk(V ) defined by

η(ti) = 0, η(dti) =
∑
l,q

hi,lρ1(gl,qdtq) =
∑
l

hi,l∇δl ∈ Diff1(V, V )

corresponds to a 1.-order derivative of ρ1, i.e. to the morphism

η(ρ1) := ρ2 : Ph2(C)→ Endk(V ),

for which ρ2(d2ti) = η(dti). This induces an element

η(h) ∈ Ext1
Ph(C)(V, V )

where V is the representation ρ1 producing an injective map

η : TM,g → Ext1
Ph(C)(V, V )

onto the linear subspace

Ext1
Ph(C)(V, V )(1) ⊂ Ext1

Ph(C)(V, V )

of first order non-trivial tangent space of the Ph(C)-representation (ρ1, V ),
defined by the derivations η : Ph(C) → Endk(V ) where for all i, η(dti) ∈
Diff1(V, V ).

Thus, any non-trivial deformation of the metric g induces a non-trivial de-
formation of the Ph(C)-representation (ρ1, V ), and any first order non-trivial
deformation of the Ph(C)-representation (ρ1, V ) induces a non-trivial deforma-
tion of the metric.

Proof. Consider the first order deformation g + εh of the metric g. The corre-
sponding derivation ad(g − T ) of Ph(C) defines the Dirac derivation in C(σg)
and the derivation (ad(g + εh− T ′) defines a derivation in Ph(C)⊗ k[ε]. Here

T = −1/2
∑
i,j,l

∂gi,j
∂tl

gl,idtj ,

and

T ′ = −1/2
∑
i,j,l

(
∂(gi,j + hi,jε)

∂tl
)(gl,i + hl;iε)dtj

where hi;i is defined by

hi,j = −
∑
p,q

gi,ph
p,qgq,j .

We find in the quotient, C(σg)⊗ k[ε],
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d′ti = [(g + hε)− T ′, ti]

= [g − T + 1/2ε
∑
p,q,l

hp,qdtpdtq + 1/2ε
∑
p,q,l

(
∂gp,q
∂tl

hl,pdtq +
∂hp,q
∂tl

gl,pdtq), ti])

= dti + 1/2ε
∑
p,q,l

(hp,qg
p,idtq + hp,qdtpg

q,i +
∂gp,q
∂tl

hl,pgq,i +
∂hp,q
∂tl

gl,pgq,i)

= dti + ε
∑
l,q

(−hi,lgl,q)dtq + εP, P ∈ C.

where

P = 1/2(hp,qξp(g
q,i) + ∂∂gp,q∂tlh

l,pgq,i +
∂hp,q
∂tl

gl,pgq,i).

Here we have used

hp,qdtpg
q,i = hp,qg

q,idtp + hp,q[dtp, g
q,i],

hp,q[dtp, g
q,i] = hp,q

∂gq,i

∂tp
.

From this follows

[d′ti, tj ] = gi,j − hi,jε.

Now, consider the derivation

η ∈ Derk(Ph(C),Endk(V ))

defined in Endk(V ) by

η(ti) = 0, η(dti) =
∑
j

hi,j∇δj ∈ Diff1(V ) ⊂ Endk(V )

It is well defined since

η[dti, tj ] = [η(dti), tj ] = hi,j = hj,i = [η(dtj), ti] = η[dtj , ti].[dti, tj ] 6= gi,j

and therefore defines an element

η(h) ∈ Ext1
Ph(C)(V, V )(1).

Moreover, η(h) ∈ Ext1
Ph(C)(V, V ), is 0 only if there exists an S ∈ Endk(V )

such that
0 = η(ti) = [S, ti] ∀ti ∈ C
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implying that S ∈ EndC(V ), so S = (Sr,s) is a matrix with entries in C.
Furthermore, we must have

η(dti) = [S, ρ1(dti)] = (−ξi(Sk,l)) ∈ EndC(V ).

Since η(dti) =
∑
l h
i,l∇δl ∈ Diff1(V, V ), with hi,j = hj,i ∈ C not all van-

ishing, this contradiction proves that η(h) ∈ Ext1
Ph(C)(V, V ), defined by the

tangent h at g ∈M, is not zero.

Remark 18. Given any non-zero tangent h ∈ TM,g, we have seen that there
corresponds to any representation ρ0 with momentum ρ in terms of g, a non-
zero second-order tangent ρ2 of ρ0, given by the element η(h) ∈ Ext1

Ph(C)(V, V ),
determined by the ρ1-derivation η. The corresponding extension of V with itself
as Ph(C)-module is given by the way ti, dtj operates on V ⊕ εV where

ti(v1, v2) = (tiv1, tiv2), dtj(v1, v2) = (ρ1(dtj)(v1), (ρ1(dtj)(v2)− ad(η(dtj))(v1)

resulting in

[dti, tj ] = gi,j − εhi,j ∈ Endk[ε](V ⊕ εV )

so that this extension of ρ1 is really a representation of

Ph(C)⊗ k[ε]/(σg+εh) = C(σg)⊗ k[ε]/(σg+εh).

This η(h) is the measure of an acceleration of the representation ρ0 as rep-
resentation, and should correspond to a ”cataclysmic change” of any massy
”particle” ρ0 : C → Endk(V ) with given momentum ρ, given by

..
ρ0 = ρ2. The

solutions of the corresponding Hamiltonian equations Q(φ) = Eφ in an appro-
priate one-dimensional deformation Ṽτ of ρ1 should be a ”wave” φ(τ) ∈ V .

This fits well with the present understanding of gravitational waves. It also
fit reasonably well with the present cosmological theory. Since a ”cataclysmic
change” of any massy ”particle ρ0 : C → Endk(V )” will influence the metric,
our Time, and vice versa, we find a mathematical reason for taking Mach’s
principle, that ”everything depends upon everything” seriously.

Moreover, let us, for every metric g ∈M consider the scalar curvature R as
a function on the space C := SpecC, and fix a ”compact” subset Ω ⊂ C. Since
R ∼ 1/rd, where r is the ”radius of curvature” of Ω at the corresponding point,
it is not unreasonable to consider the Hilbert action

S(g) :=

∫
Ω

Rdvg,

where dvg is the volume element in C defined by the metric g, as related to
the ”gravitational mass” content of the part of space, Ω. But then one could
look at S as a functional

S : M→ R,
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the stability of which would give us a unique vector field on M, the Hilbert-
Einstein tensor

G ∈ ΘM, G(g) = {Gi,j} := {Rici,j −1/2Rgi,j} ∈ TM,g.

Recall also that we have put, g = 1/2
∑
i,j gi,j and g = sym(g), so one should

have written, G = Ric−1/2Rg.
For any representation (ρ0, V ) with momentum ρ : C(σg) → Endk(V ), the

injective map
η : TM,g → Ext1

Ph(C)(V, V ) would then give us a unique element

[G] := η(G) ∈ Ext1
Ph(C)(V, V ),

which would be a kind of Field Equation of Einstein-Hilbert type, for the
universe, with respect to the furniture (V, ρ1).

Any way, an ”increment” h of the metric g in ΘM would correspond to
the element of η(h) ∈ Ext1

Ph(C)(V, V ) of first order, which corresponds to an
increment of energy of the furniture (V, ρ1) given by the representation ρ of
C(σg). So, again we find a Schrödinger type equation equating derivation with
respect to time, i.e. with the action of [G],

∂

∂t
(ρ1) = ρ2.

where ρ2 corresponds to an Hamiltonian operator Q on V .

8.12 Family of representations versus family of
metrics

Consider again the diagram,

Ph(C)

��

//

ρ1

%%

Ph2(C)

ρ2

��

// Ph3(C) . . .

xx

// Ph∞(C)�δ

C
i
//

d

==

C(σg) ρ
// Endk(V )

Where ρ0 := i ◦ ρ is a representation of a commutative polynomial k-algebra
C, g a metric, and ρ a momentum of ρ0 defined on the corresponding C(σg).

Let ρ1 be the induced representation of Ph(C) and consider a deformation
of ρ1 over the 1-dimensional polynomial algebra k[τ ],

ρ̃1 : Ph(C)→ Endk[τ ](Ṽ ),

with ρ1 = ρ̃(0).
For any τ0, we may look at the composition,

k[τ ]→ k[ε] ' k[τ ]/(τ − τ0)2 → k(τ0) := k[τ ]/(τ − τ0).
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The corresponding extensions

Ph(C)
ρ̃1→ Endk[τ ](Ṽ )→ Endk[ε](V ⊗ k[ε])→ Endk(V )

defines the following notation,

∂

∂τ
(ρ̃1)(τ0) ∈ Ext1

Ph(C)(V, V ).

Given a curve gτ in M and a representation C(σgτ0 ), we know what to
understand by

∂

∂τ
(gτ )(τ0) ∈ Ext1

Ph(C)(V, V )(1).

We may formulate at least three problems:
(1?) Given a curve gτ in M, and a representation ρτ0 : C(σgτ0 )→ Endk(V ),

does there exist a 1-dimensional family of representations

ρ̃1 : Ph(C)→ Endk[τ ](Ṽ )

with ρτ01 = ρ̃1(τ0), such that for all τ1,

∂

∂τ
(gτ )(τ1) =

∂

∂τ
(ρ̃1)(τ1) ∈ Ext1

Ph(C)(Vτ1 , Vτ1)(1).

(2?) Given a metric g := g0 and a representation ρ0 : C(σg) → Endk(V ),
inducing a representation ρ1 of Ph(C). Let

ρ̃1 : Ph(C)→ Endk[τ ](Ṽ ),

be a 1-dimensional family of representations with ρ1 = ρ̃1(0) and such that
for all τ0,

∂

∂τ
(ρ̃1)(τ0) ∈ Ext1

Ph(C)(Vτ0 , Vτ0)(1).

Does there exist a curve of metrics gτ ∈M such that g0 = g0 and

∂

∂τ
(ρ̃1)(τ0) =

∂

∂τ
(gτ )(τ0) ∈ Ext1

Ph(C)(Vτ0 , Vτ0)(1).

(3?) Does there exist an (algebraic) integral curve gτ in M of the vector
field G such that

∂

∂τ
(gτ )(τ) = [G](τ).

Recall that in our model, the Dirac derivation δ induces the dynamical struc-
ture δ := δg = ad(g − T ) for every metric, i.e. for every point in the space of
metrics M. It also creates the time-like vector field [G] in M together with the
observable time in our space SpecC. So it is reasonable to promote δ to our
Chronos =TIME.
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If we may answer affirmatively on (1?), and (3?), it seems that this takes
care of the problem of relations between the metrics and the furniture of our
space SpecC. However, suppose we find that some interesting representation in
our furniture is the iterated extensions of sub representations of ΘC , and that
the local gauge group g1 acts non-trivially on ΘC . Then we obviously find new
conditions for our time model, the metric g. It is reasonable to think that g
must then be g-invariant. This would restrict our choice of metrics, and thereby
also the stock of furniture satisfying the conditions above.

We notice that distances in space are, today, measured by the time light
needs to connect points. If space is empty, i.e. if the only representations we
consider are the trivial representation Simp1(C), then space becomes contin-
uous. However, if we consider some furniture, given by the representation V ,
the eigenvalues of the time operator ad(g − T ) operating as a derivation on
Endk(V ), may be discrete. The semigroup of real eigenvalues may then have a
least positive element, the Planck constant h see [?], section 1.7. If the repre-
sentation V is related to light, say photons, then measurable space must also
be discontinuous, or quantised as it is called in the physics literature.

8.13 Relations to Clifford Algebras

In the situation above where we are given a polynomial algebra C = k[t1, ..., td]
and a non-singular metric g, we know that the C-module of differentials ΩC
generated by the dti, is provided with the metric g−1. Therefore we find that
for every point in t ∈ C, there is a quadratic form on Tt := ΩC,t, given by
g−1(t). We might then consider the Clifford algebra Cliff(Tt, g

−1). This can
now be generalised to construct a generalised Clifford algebra

Cliff(C, g) := Ph(C)/(dtidtj + dtjdti − 2gi,j).

Given a point t ∈ C, we have canonical homomorphisms of k-algebras

Ph(C)→ Cliff(C, g)→ Cliff(Tt, g
−1).

However, there are no decompositions of this composed morphism into some-
thing like

Ph(C)→ C(σg)→ Cliff(Tt, g
−1).

Never the less, as some physicists have remarked, the algebra Cliff(Tt, g
−1)

may be of interest in quantum theory, in particular in relation to the notion of
rotation (in quantum mechanics). Its use in the theory of gravity seems to be
very unnatural.
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