ADIC SPACES, LECTURE 3

CHITRABHANU CHAUDHURI

1. Adic spaces

For any Huber pair (A, A^+) the space $X = \operatorname{Spa}(A, A^+)$ has a pre-sheaf of complete topological rings \mathscr{O}_X . The Huber pair is called sheafy if \mathscr{O}_X is a sheaf. Moreover for any $x \in X$ the stalk $\mathscr{O}_{X,x}$ is a local ring equipped with a valuation $v_x : \mathscr{O}_{X,x} \to \Gamma_x \cup \{0\}$.

Let \mathcal{V} be the category whose objects are triples $\mathscr{X} = (X, \mathscr{O}_X, (v_x)_{x \in X})$, where

- X is a topological space,
- \bullet \mathscr{O}_X is a sheaf of complete topological rings, which makes X a locally ringed space
- $v_x : \mathscr{O}_{X,x} \to \Gamma_x \cup \{0\}$ is a continuous valuation.

A morphism in \mathcal{V} , $f: \mathscr{X} \to \mathscr{Y}$ is a morphism of locally ringed spaces $f: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ such that the maps $\mathscr{O}_Y(f^{-1}U) \to \mathscr{O}_X(U)$ are continuous for ever open $U \subset X$ and there exist order preserving homomorphisms of abelian groups $\Gamma_{f(x)} \to \Gamma_x$ such that the following diagram commutes

$$\mathcal{O}_{Y,f(x)} \longrightarrow \mathcal{O}_{X,x}
\downarrow \qquad \qquad \downarrow
\Gamma_{f(x)} \cup \{0\} \longrightarrow \Gamma_x \cup \{0\}$$

upto equivalence.

An adic space is an object \mathscr{X} in \mathscr{V} such that $X = \bigcup U_i$ where $(U_i, \mathscr{O}_X|_{U_i}, (v_x)_{x \in U_i})$ is ismorphic to $\operatorname{Spa}(A_i, A_i^+)$ for a sheafy Huber pair (A_i, A_i^+) in \mathscr{V} . Morphisms of adic spaces are morphisms in \mathscr{V} .

For a sheafy Huber pair the triple $(X = \operatorname{Spa}(A, A+), \mathcal{O}_X, (v_x)_{x \in X})$ is called an affinoid adic space. We denote by $\mathcal{A}d$ the category of adic spaces.

2. The functor of points for adic spaces

Just like schemes any adic space X gives a functor $Ad \to Sets$, called its functor of points. If Y is another adic space, then

$$X(Y) = \operatorname{Hom}_{\mathcal{A}d}(Y, X).$$

If $Y = \operatorname{Spa}(A, A^+)$, then $X(Y) = \operatorname{Hom}_{Hub}((A, A^+), (\mathscr{O}_X(X), \mathscr{O}_X^+(X)))$ in the category of Huber pairs. Hence $(A, A^+) \to \operatorname{Spa}(A, A^+)$ is a fully faithful functor from the category of sheafy Huber pairs to adic spaces.

3. Examples of Adic Spaces

- 3.1. The final object. (A, A) is a Huber pair for any discrete ring A. Consider the ring \mathbb{Z} .
 - The final object in Ad is $Spa(\mathbb{Z}, \mathbb{Z})$. This space has 3 types of points:

(1) η corresponding trivial valuation on \mathbb{Z} .

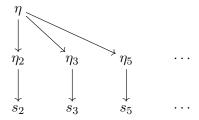
- (2) The points s_p corresponding to the pull back of the trivial valuation on \mathbb{F}_p by the quotient map $\mathbb{Z} \to \mathbb{F}_p$ for each prime $p \in \mathbb{Z}$.
- (3) The points η_p corresponding to the *p*-adic valuation, $|n| = p^{-\alpha}$ if $n = p^{\alpha}m$ where $p \nmid m$ and |0| = 0.

It is easy to see that η is open while the points s_p are closed. On the other hand, $\overline{\eta} = \operatorname{Spa}(\mathbb{Z}, \mathbb{Z})$ and $\overline{\eta_p} = \{\eta_p, s_p\}$.

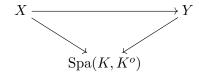
There is a unique map from (\mathbb{Z}, \mathbb{Z}) to any Huber pair (A, A^+) , hence a unique map $\operatorname{Spa}(A, A^+) \to \operatorname{Spa}(\mathbb{Z}, \mathbb{Z})$.

Date: 11 September, 2019.

This space can be represented by the following diagram



On the other hand if K is a non-archimedian field with valuation ring K^o then $\operatorname{Spa}(K, K^o)$ has a single point. An adic space over K is an adic space X with a morphism to $\operatorname{Spa}(K, K^o)$. A morphism between adic spaces over K is a morphism $X \to Y$ such that the following diagram commutes:



The category of adic spaces over K will be denoted by Ad/K, in which the final object clearly is $Spa(K, K^o)$.

3.2. Closed unit disc. Over \mathbb{Z} the closed unit disc is $D_{\mathbb{Z}} = \operatorname{Spa}(\mathbb{Z}[T], \mathbb{Z}[T])$, where $\mathbb{Z}[T]$ is discrete. Note that this is justified by its functor of points $D_{\mathbb{Z}}(\operatorname{Spa}(A, A^+)) = A^+$.

The closed adic unit disc over \mathbb{Q}_p is the affinoid adic space

$$D_{\mathbb{Q}_p} := \operatorname{Spa}(\mathbb{Q}_p \langle T \rangle, \mathbb{Z}_p \langle T \rangle).$$

Here the topology on $\mathbb{Q}_p\left\langle T\right\rangle$ comes from the sup norm

$$\left| \sum_{n=0}^{\infty} a_n T^n \right| = \sup\{|a_n| : n \ge 0\}.$$

Note that for any $|\cdot| \in D_{\mathbb{Q}_p}$, $|T| \leq 1$. Moreover for any point $\alpha \in \overline{\mathbb{Q}_p}$, $|\alpha| \leq 1$ there is a valuation $|\cdot|_{\alpha} = D_{\mathbb{Q}_p}$, given by $|f|_{\alpha} = |f(\alpha)|$. Thus

$$D_{\mathbb{Q}_p} \supset \{\alpha \in \overline{\mathbb{Q}_p} : |\alpha| \le 1\}/\mathrm{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p).$$

However $D_{\mathbb{Q}_p}$ has many more points. For example if

$$B(\alpha, r) = \{ \beta \in \overline{\mathbb{Q}_p} : |\beta - \alpha| \le r \}$$

is the closed ball of radius r around α , where $\alpha \in \overline{\mathbb{Q}_p}$ with $|\alpha| \leq 1$ and $0 < r \leq 1$, then there is a point in $D_{\mathbb{Q}_p}$ corresponding to $B(\alpha, r)$ given by the valuation

$$|f| = \sup\{|f(\beta)| : \beta \in B(\alpha, r)\}.$$

This is called the Gauss point of $B(\alpha, r)$.

There is a natural map $D_{\mathbb{Q}_p} \to \operatorname{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$. If $\operatorname{Spa}(A, A^+)$ is an adic space over \mathbb{Q}_p then

$$\operatorname{Hom}_{\mathcal{A}d/\mathbb{Q}_p}\left(\operatorname{Spa}(A, A^+), D_{\mathbb{Q}_p}^{\mathcal{A}d}\right) = A^+.$$

There is a nice classification of points of D_K which can be found in Scholze's paper on perfectoid spaces in Publ. IHES, for an algebraically closed non-archimedian field K.

3.3. **Open Unit disc.** Over \mathbb{Z} the open unit disc is $D_{\mathbb{Z}}^o = \operatorname{Spa}(\mathbb{Z}[[T]], \mathbb{Z}[[T]])$ where we give $\mathbb{Z}[[T]]$ the T-adic topology. Let (A, A^+) be a complete Huber pair, it can be shown that

$$D_{\mathbb{Z}}^{o}(\operatorname{Spa}(A, A^{+})) = A^{oo}$$

where A^{oo} is the ideal of toplogically nilpotent elements. Since T is topologically nilpotent in $\mathbb{Z}[[T]]$ it has to go to a topologically nilpotent element in A. Conversely sending T to any topologically nilpotent element of A gives a continuous ring homomorphism $\mathbb{Z}[[T]] \to A$.

The open unit disc over \mathbb{Q}_p is a bit harder to define. Consider $\mathbb{Z}_p[[T]]$ with (p,T)-adic topology and let $X = \operatorname{Spa}(\mathbb{Z}_p[[T]], \mathbb{Z}_p[[T]])$. There is a natural map $X \to \operatorname{Spa}(\mathbb{Z}_p, \mathbb{Z}_p)$. There are exactly two points in $\operatorname{Spa}(\mathbb{Z}_p, \mathbb{Z}_p)$,

• the point η corresponding to the p-adic valuation obtained from the inclusion $\mathbb{Z}_p \to \mathbb{Q}_p$,

• the closed point s corresponding to the pullback of the trivial valuation on \mathbb{F}_p by the map $\mathbb{Z}_p \to \mathbb{F}_p$.

The closure of η is the entire space so η is the generic point. Moreover $\{\eta\}$ is the rational open set $\operatorname{Spa}(\mathbb{Z}_p, \mathbb{Z}_p)(p/p)$ and so is isomorphic to $\operatorname{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$.

The generic fiber X_{η} with its natural map to $\operatorname{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$, is the open unit disc over \mathbb{Q}_p which we denote $D^o_{\mathbb{Q}_p}$.

If $|\cdot| \in D_{\mathbb{Q}_p}^o$ then since T is topologically nilpotent, we have $|T^n| \to 0$, hence there is a k > 0 such that $|T^k| \le |p| \ne 0$, thus $|\cdot| \in X(T^k/p)$. Hence

$$D_{\mathbb{Q}_p}^o = \bigcup_{k \ge 1} X(T^k/p).$$

This is an open cover which does not have a finite sub-cover, thus $D_{\mathbb{Q}_p}^o$ is not quasi-compact and hence not affinoid.

Exercise. Show that $\operatorname{Hom}_{\mathcal{A}d/\mathbb{Q}_p}(\operatorname{Spa}(A,A^+),D^o_{\mathbb{Q}_p})=A^{oo}$.

3.4. **Affine Line.** The affine line over \mathbb{Z} is $\mathbb{A}^1_{\mathbb{Z}} = \operatorname{Spa}(\mathbb{Z}[T], \mathbb{Z})$, where $\mathbb{Z}[T]$ has discrete topology. Clearly

$$\mathbb{A}^1_{\mathbb{Z}}(\mathrm{Spa}(A, A^+)) = A.$$

Over \mathbb{Q}_p the affine line is given by a union over closed discs of increasing radii. Consider the following inclusion of Huber pairs

$$\cdots \subset (\mathbb{Q}_p \langle p^2 T \rangle, \mathbb{Z}_p \langle p^2 T \rangle) \subset (\mathbb{Q}_p \langle pT \rangle, \mathbb{Z}_p \langle pT \rangle) \subset (\mathbb{Q}_p \langle T \rangle, \mathbb{Z}_p \langle T \rangle).$$

This gives successive embeddings of adic spaces and we can take the union

$$\mathbb{A}_{\mathbb{Q}_p}^1 = \bigcup_{n=0}^{\infty} \operatorname{Spa}(\mathbb{Q}_p \langle p^n T \rangle, \mathbb{Z}_p \langle p^n T \rangle)$$

which is manifestly an adic space that is not quasi-compact and hence not affinoid.

In fact $\operatorname{Spa}(\mathbb{Q}_p \langle p^n T \rangle, \mathbb{Z}_p \langle p^n T \rangle)$ is the closed disc of radius $1/|p|^n$, since $|p^n T| \leq 1 \Rightarrow |T| \leq 1/|p|^n$. $\operatorname{Exercise}$. Show that $\operatorname{Hom}_{\mathcal{A}d/\mathbb{Q}_p}(\operatorname{Spa}(A, A^+), \mathbb{A}^1_{\mathbb{Q}_p}) = A$.

3.5. **Projective Line.** The projective line over \mathbb{Z} can be constructed by gluing two copies of $\mathbb{A}^1_{\mathbb{Z}}$, which I leave as an exercise.

In case of \mathbb{Q}_p , consider the closed unit disc $D_{\mathbb{Q}_p}$ and take the unit circle

$$S^1_{\mathbb{Q}_p} = \{ |\cdot| \in D_{\mathbb{Q}_p} : 1 = |T| \} = D_{\mathbb{Q}_p}(1/T).$$

This is a rational open subset isomorphic to $\operatorname{Spa}(\mathbb{Q}_p\langle T, T^{-1}\rangle, \mathbb{Z}_p\langle T, T^{-1}\rangle)$. The projective line is obtained by gluing two copies of the closed unit disc along the unit circle

$$\mathbb{P}_{\mathbb{Q}_p}^1 = \operatorname{Spa}(\mathbb{Q}_p \langle T_1 \rangle, \mathbb{Z}_p \langle T_1 \rangle) \sqcup \operatorname{Spa}(\mathbb{Q}_p \langle T_2 \rangle, \mathbb{Z}_p \langle T_2 \rangle) / \sim,$$

where the identification \sim is obtained by the isomorphism

$$\phi: (\mathbb{Q}_p \left\langle T_1, T_1 - 1 \right\rangle, \mathbb{Z}_p \left\langle T_1, T_1^{-1} \right\rangle) \to (\mathbb{Q}_p \left\langle T_2, T_2^{-1} \right\rangle, \mathbb{Z}_p \left\langle T_2, T_2^{-1} \right\rangle)$$

given by $\phi(T_1) = T_2^{-1}$.

Hence clearly $\mathbb{P}^1_{\mathbb{Q}_p}$ is quasi-compact, but it is again not affinoid. To see this let us investigate the ring of global sections of the structure sheaf. If $\sigma \in \mathscr{O}_{\mathbb{P}^1_{\mathbb{Q}_p}}(\mathbb{P}^1_{\mathbb{Q}_p})$ then $\sigma = (\sigma_1, \sigma_2)$ where $\sigma_i \in \mathbb{Q}_p \langle T_i \rangle$ such that $\phi(s_1) = s_2$. This forces s_i to be constants and $\mathscr{O}_{\mathbb{P}^1_{\mathbb{Q}_p}}(\mathbb{P}^1_{\mathbb{Q}_p}) = \mathbb{Q}_p$ with $\mathscr{O}^+_{\mathbb{P}^1_{\mathbb{Q}_p}}(\mathbb{P}^1_{\mathbb{Q}_p}) = \mathbb{Z}_p$. Of course $\mathbb{P}^1_{\mathbb{Q}_p}$ is not $\operatorname{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$.

- 4. Schemes, Formal Schemes and Rigid spaces as Adic spaces
- 4.1. **Schemes.** If A is a discrete ring then (A, A) is a sheafy Huber pair and there are maps of locally ringed spaces

$$\operatorname{Spec} A \to \operatorname{Spa}(A, A) \to \operatorname{Spec} A.$$

The first map is given by sending a prime ideal $P \subset A$ to the trivial valuation on A/P, where as the second map is obtained by taking the support of a valuation. Clearly the composition is identity.

There is a fully faithful functor from the category of schemes to Ad which sends Spec A to Spa(A, A) for a discrete ring A.

4.2. **Formal Schemes.** If A is an adic ring (it is a complete topological ring with I-adic topology for some ideal I) then (A, A) is again a sheafy Huber pair. The formal scheme associated to A is a locally ringed space of topologically complete rings, denoted by Spf(A).

Again there is a fully faithful functor from formal schemes to adic spaces sending $\operatorname{Spf}(A)$ to $\operatorname{Spa}(A,A)$.

4.3. **Rigid spaces.** Let K be a algebraically closed non-archimedian field, (think of \mathbb{C}_p), then an affinoid K-algebra is a complete normed K-algebra A which is a quotient of $K \langle T, \ldots, T_n \rangle$ for some n. The rigid space associated to A is a locally ringed Grothendied-topologised space whose underlying set is

$$Spm(A) = \{m \subset A \mid m \text{ maximal ideal } \}.$$

This space is given a Grothendieck topology and has a structure sheaf with respect to that topology. The associated adic space to spm(A) is $Spa(A, A^o)$. This extends to a fully faithful functor from the category of rigid spaces over K to $\mathcal{A}d/K$.

As an example consider the closed unit poly-disc $\mathrm{Spm}(K\langle T_1,\ldots,T_n\rangle)$; the associated adic space is the closed unit poly disc $\mathrm{Spa}(K\langle T_1,\ldots,T_n\rangle,K^o\langle T_1,\ldots,T_n\rangle)$. The former is not connected whereas the latter is.