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Thermodynamic averages

From statistical mechanics

2dN dimensional integral
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Thermodynamic averages

Suppose the property depends only on 
the position of the particles

dN dimensional integral

Standard integration techniques - 
prohibitively expensive
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Thermodynamic averages
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Evaluating thermodynamic 
averages

Suppose the property depends only on 
the position of the particles

Monte Carlo can be used to sample the 
most probable states of the system
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What is Monte Carlo?

A class of techniques that employ 
random numbers

Can be used to solve deterministic 
problems

Convert deterministic problem to 
probabilistic analog

Perform stochastic sampling 
experiment
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Concept of a random 
process/event

Coin-tossing expt

OUTCOME OF AN EVENT

“TIME”



Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

Concept of a random 
process/event

Coin-tossing expt

OUTCOME OF AN EVENT

X1 = Move to the left
X2 = Move to the right 

P(X1) = Probability that X1 occurs
P(X2) = Probability that X2 occurs
In this case P(X1) + P(X2) = 1
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Probability of an event

Probability that the discrete random variable X 
assumes the value xj is denoted by p(j)

Probability mass function

 

Similarly, for continuous random variable X the 
probability density function is given by

  

j
j n

n
P(X x ) lim P( j)

n￲ ￲
= = =

p(x)dx Pr ob{x X x dx}= < +￲

j

P( j) 1=￥

volume

p(x)dx 1=￲



Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

Random walk
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Random walk

Probability of each outcome after 10 
steps

N
N! 1

p(m,N)
N m N m 2! !
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Binomial distribution
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Standard distributions 
available

Uniform distribution

Binomial distribution

Poisson distribution

Normal distribution

…

Example of sources: C, Fortran, 
MATLAB, Numerical recipes, …
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Uniform distribution

Continuous random variable

Uniform random numbers (URN) are 
built into C and Fortran languages

In Fortran

x
p(x) x

b a

∆∆ =
−

ba

CALL random_number(h)
CALL random_number(h)

h=0.898456
h=0.125385

0 x 1<￲
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URNs for two dimensions

x 10 10 y

1000 URN 10000 URN 20000 URN
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Application of URN: Example 
1

Example: Calculation of value of pi

What is the fraction of dots lying in the 
circle?

1000 URN 10000 URN 20000 URN
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Application of URN: Example 
1

Example: Calculation of value of pi

What is the fraction of dots lying in the 
circle?

Convergence can be slow
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Application of URN: Example 
2
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Generating a random walk 
using a computer

Let perform the random walk, but now 
on a computer

ALGORITHM FOR THE “COIN-TOSSING EXPERIMENT”
1. Obtain the initial condition 
2. Generate a uniform random number and store the value in p
3. If p<0.5 then jump to the left, otherwise jump to the right
4. If total number of jumps is equal to the desired number of 

jumps then stop. Otherwise go to step 2
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Application of URN: Simple 
integration

Simple integration based on sampling

Find the average “height” of the 
function

x=a x=b

f(x)

(b a)xξ = −

URN

b

a

f ( )d f ( ) (b a)ξ ξ = ξ −￲
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Application of URN: Simple 
integration

Can this be used for obtaining 
thermodynamic averages? 

x=a x=b

f(x)
b

a

f ( )d f ( ) (b a)ξ ξ = ξ −￲
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Normal/Gaussian 
distribution

µ ισ τηε µεαν ανδ µ ισ τηε στανδαρδ 
δεϖιατιον 2

1 1 x
P(x; , ) exp

22

� �− µ� �µ σ = −� �� �σπσ � �� �� �
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Importance sampling

Sample only the terms that are 
important to the integral

In our case
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Multivariate (joint) 
distributions

For continuous random variables, the 
joint probability density function is 
given by

For independent RV

Marginal probability density function
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Markov process

Generate a random walk

In terms of conditional probability

Markov process 

0 1 t, ,.., ,...r r r

n n 0 1 n 1 n 1P( ) P( | , ,.., )P( )− −=r r r r r r

n n n 1 n 1P( ) P( | )P( )− −=r r r r
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Conditional probabilities

For two RVs,

From Bayes’ rule one obtains 

1 2 1 1 1 1 1 2 2p(x | x )dx Pr ob{x X x dx if X x }= < + =￲

1 2 1 2 2 2 1 1p(x , x ) p(x | x )p(x ) p(x | x )p(x )= =
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Markov process

Lets look at simple example with 
discrete number of states

1(n)π
2 (n)π

M (n)π

1(n 1)π +
2 (n 1)π +

M (n 1)π +

STATE SPACE
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Transition probability matrix

For the discrete M-state example

Similarly, 

In general,

j ij i ij i
i i

(1) p (1) (0) p (0)π = π = π� �

j ij i ik kj i
i i k

(2) p (2) (0) p p (0)
� �π = π = π� �
� �

� ��

n(n) (0).= Pπ π
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Detailed balance

We obtain

At “equilibrium” the pdf is time-
invariant

Hence,

Detailed balance

j j ij i ji j
i i

i j i j

(n 1) (n) p (n) p (n)
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Metropolis algorithm

Generate a random walk the 
underlying probability distribution

The detailed balance condition 
requires

N
N

NVT

exp( U( ))
p( )
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−β= r
r
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Metropolis algorithm

Others transition probabilities can be 
devised, e.g., Baker sampling

(old)p(old new) (new)p(new old)π = π￲ ￲

{ }new old

p(old new)
exp (U U )

p(new old)

￲ = −β −
￲

{ } i ji j

i j

,exp (U U )
p(i j)

,1

￲ ρ < ρ−β −￯=￲ ￲ ρ ρ￲￯￲
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Baker sampling

mn n

n m

n m

p(m n)

p(m m) 1 p(m n)
￲

α π=￲
π + π

= −￲ ￲￥



Abhijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

Metropolis algorithm

{ } i ji j

i j

,exp (U U )
p(i j)

,1

￲ ρ < ρ−β −￯=￲ ￲ ρ ρ￲￯￲

p=1

Ui-Uj

Reject

Accept

Accept
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Metropolis algorithm

Pseudocode

Step 1. Obtain initial condition, find 

Step 2. Generate a new configuration

Step 3. Evaluate

Step 4. Generate a URN

Step 5. Accept the new configuration provided

Step 6. If the new configuration is accepted,

Step 7. Go to step 2    

new oldp min(1,exp( (U U ))= −β −
ξ

pξ <

old newU U￲

oldU
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