Monte Carlo simulations

Abhijit Chatterjee
Department of Chemical Engineering
IIT Kanpur

November 06, 2010

Thermodynamic averages

From statistical mechanics

$$
\langle\mathrm{A}\rangle=\frac{\square \mathrm{d} \mathbf{p}^{\mathrm{N}} \mathrm{~d} \mathbf{r}^{\mathrm{N}} \mathrm{~A}\left(\mathbf{p}^{\mathrm{N}}, \mathbf{r}^{\mathrm{N}}\right) \exp \left(-\beta \mathrm{H}\left(\mathbf{p}^{\mathrm{N}}, \mathbf{r}^{\mathrm{N}}\right)\right)}{\square \mathrm{d} \mathbf{p}^{\mathrm{N}} \mathrm{~d} \mathbf{r}^{\mathrm{N}} \exp \left(-\beta \mathrm{H}\left(\mathbf{p}^{\mathrm{N}}, \mathbf{r}^{\mathrm{N}}\right)\right)}
$$

2 dN dimensional integral

Thermodynamic averages

Suppose the property depends only on the position of the particles

$$
\langle\mathrm{A}\rangle=\frac{\square \mathrm{d} \mathbf{r}^{\mathrm{N}} \mathrm{~A}\left(\mathbf{r}^{\mathrm{N}}\right) \exp \left(-\beta \mathrm{U}\left(\mathbf{r}^{\mathrm{N}}\right)\right)}{\left\lceil\mathrm{d} \mathbf{r}^{\mathrm{N}} \exp \left(-\beta \mathrm{U}\left(\mathbf{r}^{\mathrm{N}}\right)\right)\right.}
$$

dN dimensional integral
Standard integration techniques prohibitively expensive

Thermodynamic averages

$$
\langle\mathrm{A}\rangle=\frac{\square \mathrm{d}^{\mathrm{N}} \mathrm{~A}\left(\mathbf{r}^{\mathrm{N}}\right) \exp \left(-\beta \mathrm{U}\left(\mathbf{r}^{\mathrm{N}}\right)\right)}{\left\lceil\mathrm{dr}^{\mathrm{N}} \exp \left(-\beta \mathrm{U}\left(\mathbf{r}^{\mathrm{N}}\right)\right)\right.}=\frac{\underset{\mathrm{i}}{\not \approx \mathrm{~A}\left(\zeta_{\mathrm{i}}\right) \exp \left(-\beta \mathrm{U}\left(\zeta_{\mathrm{i}}\right)\right)}}{\nexists \exp \left(-\beta \mathrm{U}\left(\zeta_{\mathrm{i}}\right)\right)}
$$

Degeneracy
Boltzmann factor

Evaluating thermodynamic

averages

Suppose the property depends only on the position of the particles

$$
\langle\mathrm{A}\rangle=\frac{\overline{\operatorname{dr}}{ }^{\mathrm{N}} \mathrm{~A}\left(\mathbf{r}^{\mathrm{N}}\right) \exp \left(-\beta \mathrm{U}\left(\mathbf{r}^{\mathrm{N}}\right)\right)}{\left\lceil\mathrm{d} \mathbf{r}^{\mathrm{N}} \exp \left(-\beta \mathrm{U}\left(\mathbf{r}^{\mathrm{N}}\right)\right)\right.}
$$

Monte Carlo can be used to sample the most probable states of the system

What is Monte Carlo?

A class of techniques that employ random numbers

Can be used to solve deterministic problems
Convert deterministic problem to probabilistic analog
Perform stochastic sampling experiment

Concept of a random process/event
 Coin-tossing expt

Concept of a random process/event
 Coin-tossing expt

hijit Chatterjee, Department of Chentinging, IIT Kanpur

Probability of an event

Probability that the discrete random variable X assumes the value $x j$ is denoted by $p(j)$
Probability mass function

$$
\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{j}}\right)=\lim _{\mathrm{n} \square} \frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}}=\mathrm{P}(\mathrm{j})
$$

$\neq P(j)=1$
Simjlarly, for continuous random variable X the probability density function is given by

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x}) \mathrm{dx}=\operatorname{Prob}\{\mathrm{x}<\mathrm{X} \square \mathrm{x}+\mathrm{dx}\} \\
& \square \mathrm{p}(\mathrm{x}) \mathrm{dx}=1 \\
& \text { volume }
\end{aligned}
$$

Random walk

Random walk

Probability of each outcome after 10 steps

Binomial distributiont $(\mathrm{m}, \mathrm{N})=\frac{\mathrm{N} \text { ! }}{\mathrm{N}+\mathrm{m}}$

Standard distributions available

Uniform distribution
Binomial distribution
Poisson distribution
Normal distribution

Example of sources: C, Fortran, MATLAB, Numerical recipes, ...

Uniform distribution

Continuous random variabper) $\Delta \mathrm{x}=\frac{\Delta \mathrm{x}}{\mathrm{b}-\mathrm{a}}$

Uniform random numbers (URN) are built into C and Fortran languages

CALL random_number(h\% h=0.898456
In Fortran CALL random_number($\mathrm{h} \%$ \% $\mathrm{h}=0.125385$

URNs for two dimensions

\qquad
phijit Chatterjee, Department of Chemical Engineering, IIT Kanpur

Application of URN: Example

Example: Calculation of value of pi

What is the fraction of dots lying in the

1000 URN

10000 URN

20000 URN

Application of URN: Example

1

Example: Calculation of value of pi

 What is the fraction of dots Ivina in the circ

Application of URN: Example

Generating a random walk

 using a computer Let perform the random walk, but now on a computerALGORITHM FOR THE "COIN-TOSSING EXPERIMENT"

1. Obtain the initial condition
2. Generate a uniform random number and store the value in p
3. If $p<0.5$ then jump to the left, otherwise jump to the right
4. If total number of jumps is equal to the desired number of jumps then stop. Otherwise go to step 2

Application of URN: Simple integration

Simple integration based on sampling
Find the average "height" of the function

Application of URN: Simple

 integrationCan this be used for obtaining thermodynamic averages?

$\prod_{\mathrm{f}}^{\mathrm{f}}(\xi) \mathrm{d} \xi=\langle\mathrm{f}(\xi)\rangle(\mathrm{b}-\mathrm{a})$
$x=a \quad x=b$

Normal/Gaussian distribution

 $\mu \imath \sigma \tau \eta \varepsilon \mu \varepsilon \alpha \nu \alpha \nu \delta \mu \imath \sigma \tau \eta \varepsilon \sigma \tau \alpha \nu \delta \alpha \rho \delta$

Importance sampling

Sample only the terms that are important to the integral

$$
\left.\hat{a}_{a}^{b} \mathrm{f}\right) \mathrm{dx}=\frac{\mathrm{e}}{\mathrm{~b}} \frac{(\mathrm{x})}{\mathrm{p}(\mathrm{x})}(\mathrm{x}) \mathrm{dx}
$$

In our case

$$
\langle\mathrm{A}\rangle=\square \mathrm{d} \mathbf{r}^{\mathrm{N}} \frac{\mathrm{p}\left(\mathbf{r}^{\mathrm{N}}\right) \rho_{\mathrm{NVT}}\left(\mathbf{r}^{\mathrm{N}}\right)}{\mathrm{p}\left(\mathbf{r}^{\mathrm{N}}\right)}
$$

Multivariate (joint) distributions

For continuous random variables, the joint probability density function is

$$
\begin{array}{r}
\operatorname{Prob}\left\{\mathrm{x}_{1}<\mathrm{X}_{1} \square \mathrm{x}_{1}+\mathrm{dx}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}<\mathrm{X}_{\mathrm{N}} \square \mathrm{x}_{\mathrm{N}}+\mathrm{dx}_{\mathrm{N}}\right\} \\
\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right)=\mathrm{p}\left(\mathrm{x}_{1}\right) \ldots \mathrm{p}\left(\mathrm{x}_{\mathrm{N}}\right)
\end{array}
$$

For independent RV
Margihal probability density function

$$
=\mathrm{dx}_{1} \square \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right) \mathrm{dx}_{2} \ldots \mathrm{dx}_{\mathrm{N}}
$$

Markov process

Generate a random walk $\boldsymbol{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{t}}, \ldots$
In terms of conditional probability

$$
\mathrm{P}\left(\mathbf{r}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathbf{r}_{\mathrm{n}} \mid \mathbf{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{n}-1}\right) \mathrm{P}\left(\mathbf{r}_{\mathrm{n}-1}\right)
$$

Markov process

$$
P\left(\mathbf{r}_{n}\right)=P\left(\mathbf{r}_{n} \mid \mathbf{r}_{n-1}\right) P\left(\mathbf{r}_{n-1}\right)
$$

Conditional probabilities

For two RVs,

$$
\mathrm{p}\left(\mathrm{x}_{1} \mid \mathrm{x}_{2}\right) \mathrm{dx}_{1}=\operatorname{Prob}\left\{\mathrm{x}_{1}<\mathrm{X}_{1} \square \mathrm{x}_{1}+\mathrm{dx}_{1} \text { if } \mathrm{X}_{2}=\mathrm{x}_{2}\right\}
$$

From Bayes' rule one obtains

$$
\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{p}\left(\mathrm{x}_{1} \mid \mathrm{x}_{2}\right) \mathrm{p}\left(\mathrm{x}_{2}\right)=\mathrm{p}\left(\mathrm{x}_{2} \mid \mathrm{x}_{1}\right) \mathrm{p}\left(\mathrm{x}_{1}\right)
$$

Markov process

Lets look at simple example with discrete number of states

Transition probability matrix

For the discrete M-state example

$$
\pi_{j}(1)=\sum_{i} p_{i j}(1) \pi_{i}(0)=\sum_{i} p_{i j} \pi_{i}(0)
$$

Similarly,

In general, $\quad \pi(\mathrm{n})=\boldsymbol{\pi}(0) \cdot \mathbf{P}^{\mathrm{n}}$

Detailed balance

We obtain $\pi_{j}(n+1)-\pi_{j}(n)=\underset{\substack{i \\ i \\ i}}{P} p_{i j} \pi_{i}(n)-\underset{\substack{i \\ i j}}{\sum_{j i j}} \pi_{j}(n)$
At "equilibrium" theppdf is time-
 Hence,

$$
\begin{aligned}
& P_{p_{i j}} \pi_{i}(n)=P p_{j i} \pi_{i}(n) \\
& \text { i }{ }^{\mathrm{i}} \mathrm{j} \\
& i_{i}^{i}{ }^{i} \\
& \mathrm{p}_{\mathrm{ij}} \pi_{\mathrm{i}}=\mathrm{p}_{\mathrm{ji}} \pi_{\mathrm{j}}
\end{aligned}
$$

Metropolis algorithm

Generate a random walk the underlying probability distribution

$$
p\left(\mathbf{r}^{\mathrm{N}}\right)=\frac{\exp \left(-\beta U\left(\mathbf{r}^{\mathrm{N}}\right)\right)}{Q_{\mathrm{NVT}}}
$$

The detailed balance condition requitfodg)p(old \square new) $=\pi($ new $) p($ new \square old)

$$
\frac{p(\text { old } \square \text { new })}{p(\text { new } \square \text { old })}=\exp \left\{-\beta\left(\mathrm{U}_{\text {new }}-\mathrm{U}_{\text {old }}\right)\right\}
$$

Metropolis algorithm

$$
\begin{aligned}
& \pi(\text { old }) p(\text { old } \square \text { new })=\pi(\text { new }) p(\text { new }[\text { old }) \\
& \frac{\mathrm{p}(\text { old } \square \text { new })}{\mathrm{p}(\text { new } \square \text { old })}=\exp \left\{-\beta\left(\mathrm{U}_{\text {new }}-\mathrm{U}_{\text {old }}\right)\right\} \\
& \left.\mathrm{p}(\mathrm{i} \square \mathrm{j})=\underset{\boldsymbol{\chi}}{\boldsymbol{\chi} \operatorname{xp}\{ } \begin{array}{l}
-\beta\left(\mathrm{U}_{\mathrm{i}}-\mathrm{U}_{\mathrm{j}}\right)
\end{array}\right\}, \rho_{\mathrm{i}}<\rho_{\mathrm{j}}
\end{aligned}
$$

Others transition probabilities can be devised $_{p} e_{.} g_{*}$ Baker sampling ${ }_{\text {kanpur }}$

Baker sampling

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~m} \square \mathrm{n})=\frac{\alpha_{\mathrm{mn}} \pi_{\mathrm{n}}}{\pi_{\mathrm{n}}+\pi_{\mathrm{m}}} \\
& \mathrm{p}(\mathrm{~m} \square \mathrm{~m})=1-\underset{\mathrm{n} \square \mathrm{~m}}{\nVdash p(\mathrm{~m} \square \mathrm{n})}
\end{aligned}
$$

Metropolis algorithm

Metropolis algorithm

Pseudocode
Step 1. Obtain initial condition, find
Step 2. Generate a new configuration
Step 3. Evaluate $\quad p=\min \left(1, \exp \left(-\beta\left(U_{\text {new }}-U_{\text {old }}\right)\right)\right.$
Step 4. Generate a URN $\quad \xi$
Step 5. Accept the new configuration provided $\xi<p$
Step 6. If the new configuration is accepted, $\mathrm{U}_{\text {old }} \square \mathrm{U}_{\text {new }}$ Step 7. Go to step 2

